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Abstract 

Smallholder farmers can adapt to climate variability and change through sustainable land management (SLM) prac-

tices that help to offset the negative impacts at farm level. However, use of these practices as adaptation strategy 

remains low in Ethiopia in general and the study sites in particular. This study aimed at examining the factors that 

determine farmers’ decision to use SLM measures and to quantify the impact of the practices on crop productivity 

at household and plot level. The study was based on household- and plot-level primary data and employed nearest-

neighbor matching technique to quantify the impact of using the practices on value of production at household level 

and plot level. The results revealed that households that implemented SLM practices within the period (2004–2009) 

experienced a 24.1% higher value of production over non-users in 2016. Similarly, plots that received SLM measures 

within the period (2004–2009) experienced a 28.6% increase in value of production in 2016. The study also made fur-

ther analysis at plot level using continuous treatment effects in order to take into account the number of years a plot 

has been under the practice. The result showed plots with SLM structure that are maintained for at least 6 years have 

a positive increase in value of production at the end of the 6th year, while those that received the practices recently 

or those that lacked continuous maintenance did not experience a statistically significant increase in value of produc-

tion. The result also showed marginal benefit of sustaining the SLM practices increases over time at an increasing rate. 

The implication is that use of SLM measures and maintenance of the structures are crucial to reap significant benefits 

from the practices. Although value of production increases given the SLM practices, implementation is labor intensive 

and there is trade-off with other agricultural activities. Therefore, policy measures are required to incentivize imple-

mentation and maintenance of the SLM structures.
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Background
In primarily agricultural-based economies, the immedi-

ate trade-off between short-term welfare and long-term 

development represents major challenges. In this type 

of economies, land degradation poses major develop-

ment challenge contributing to reduced output, lower 

economic growth and increased poverty [1, 2]. In recent 

years, this challenge is more aggravated in the face of 

changing climate and variability. More particularly, heavy 

dependence on rain-fed agriculture makes the sector 

most vulnerable to climatic change risks and led agricul-

tural productivity to unsustainable level [3, 4].

Ethiopia’s biophysical potential for sustainable agricul-

tural development opportunities has been continuously 

challenged by land degradation and poverty [5, 6]. �e 
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problem is further aggravated by climate variability and 

change, population pressure, limited use of sustainable 

land management (SLM) practices, deforestation, rug-

ged terrain characteristics, erratic rainfall, vulnerable soil 

and heavy dependence on rain-fed agriculture [7, 8]. �e 

on-site cost due to erosion of top soil is estimated to be 

2.0–6.75% of Ethiopia’s agricultural GDP per annum [9, 

10]. Ethiopia could also experience negative and positive 

off-site productivity effects on downstream plots in terms 

of eroded soil that is washed out [11, 12].

On-site and off-site costs of soil erosion are also critical 

challenges in the Dabus sub-basin of the Blue Nile River 

being intensified by the prevailing unsustainable land 

use system, watershed degradation, erratic rainfall and 

severe deforestation. Agricultural practice in the area is 

dominated by cereal crops cultivation, which necessitates 

frequent plowing that leads to little ground cover during 

the rainy season that in turn renders the soil to be more 

susceptible to erosion [13]. �erefore, there is an urgent 

need for efficient mechanisms that helps to reduce soil 

loss and improve agricultural output in the sub-basin.

Previous studies on productivity impacts of soil conser-

vation measures revealed diverse results. A study by [14] 

in the Northern part of Ethiopia suggests that plots with 

stone terraces experience higher crop yields. A study by 

[2] also estimated that users of soil and water conserva-

tion measures achieved 17–24% higher value of produc-

tion compared to non-users. Similarly, a soil and water 

conservation program evaluation study in Honduras by 

[15] revealed a positive effect on value of production. 

Conversely, [8], using matching methods and switching 

regression analysis on farm-level data from high rainfall 

areas in Northern Ethiopia revealed that plots with bunds 

resulted in lower yields compared to non-conserved plots.

A study by [16] indicated that only 31% of smallholder 

farmers in Ethiopia adopted soil and water management 

practices to address perceived changes in rainfall and 

only 4% adopted water harvesting technologies. Study 

results by [17, 18] also found similar results in South 

Africa and Kenya. However, there is inadequate evidence 

to what extent that smallholder farmers have used SLM 

practices for climate risk management in Sub-Saharan 

Africa in general and in Ethiopia in particular. �e results 

of these previous studies are highly aggregated and are 

of little help in addressing local conditions in relation 

to adaptations to climate change. �e studies have also 

paid little attention to the analysis of local factors that 

influence smallholder farmers’ use of SLM practices as 

adaptation strategy. Moreover, the studies overlooked 

the likelihood crop productivity impact of SLM practices 

both at farm and plot level.

Since adaptation is a local response to climate stimuli, 

agro-ecology-specific factors that affect famers’ decisions 

to use SLM practices and measuring the impact of the 

practices on rural livelihood is an important research gap 

that needs to be addressed. Hence, the present study aims 

to contribute to formulation of location specific climate 

change adaptation strategy through identifying house-

hold- and plot-level factors that determine use of SLM 

practices and productivity impact at both household and 

plot level. For this purpose, the study employed nearest-

neighbor matching technique to measure household- and 

plot-level impacts of adopting SLM practices on value of 

agricultural production. �e study also aims to under-

stand the timing of benefits and then to calculate mar-

ginal benefits of each additional year of maintenance. For 

this purpose, it employed a continuous treatment effect 

estimation method and measured the length of time a 

plot of land must be maintained under SLM practices in 

order to experience a benefit.

Methods
Study area

�e study was conducted in two major agro-ecologies 

of the Dabus sub-basin of the Blue Nile River in North-

West Ethiopia  (Fig.  1). �e sub-basin is characterized 

by hot to warm moist and sub-humid lowlands. It has 

an area of 21,030  km2, and the altitude ranges between 

48 and 3150 masl. Annual rainfall is between 970 and 

1985 mm, and maximum and minimum annual temper-

ature varies between 20–35 and 8.5–20  °C, respectively. 

Considerable part of the sub-basin is cultivated and is 

typified by maize–sorghum and maize–sorghum–peren-

nial complex.

Data and sampling procedure

A household survey conducted in November and Decem-

ber 2016 enumerated 734 farm households, which are 

spatially distributed in the wet lowland and dry lowland 

agro-ecologies of the Dabus sub-basin (Table 1). First 20 

Woredas (districts) in the sub-basin were stratified into 

the two agro-ecologies. Two districts were randomly 

drawn from each agro-ecology (stratum) to represent 

different aspects of the agricultural activity in the sub-

basin. Probability proportional to size (PPS) sampling 

procedure was employed to draw representative Kebeles 

(smallest administration units) from the selected dis-

tricts. Accordingly, three Kebeles were drawn from each 

district making the total number of Kebeles in the sam-

ple 12. Finally, household heads were drawn from the 

selected Kebeles using PPS sampling procedure.

�e household survey employed a structured question-

naire that addressed household characteristics, farm-

ers’ perceptions and use of SLM practices, factors that 

affect use of SLM practices, agricultural inputs and out-

puts, crop enterprise income and plot-level biophysical 
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characteristics. In addition, focus group discussions were 

conducted at village level to substantiate findings from 

household survey data. Data on grain prices for the years 

2004–2016 are obtained from the Regional Office of the 

Ethiopian Central Statistical Agency.

Data analysis

�e study used both descriptive and econometric 

methods to analyze the data. Descriptive method was 

employed to compare the two agro-ecologies of the study 

area and to describe users and non-users of SLM prac-

tices. Productivity was measured using gross value of 

output per hectare. Monetary value was used to meas-

ure output performances as households cultivate more 

than one crop and there needs to be some basis for 

aggregation.

�e econometric models are used to address two pri-

mary questions. First, we calculated the impact that 

SLM measures have on value of production for users 

compared to non-users and at plot level, for plots that 

received the SLM practices versus those that did not. In 

doing so, we used a probit regression technique to have 

insight on which type of household or plot is more likely 

to use and maintain the SLM structures. Second, we 

estimated the marginal benefit of maintaining the SLM 

structure from year to year and how long farmers must 

maintain the structures in order to experience a benefit.

Specification of the probit model

Technology adoption models are based on farmers’ util-

ity or profit-maximizing behavior [19]. �e assumption 

is that farmers adopt a technology/practice only when 

the perceived utility or profit from using new technol-

ogy is greater than the traditional or the old technology. 

On this assumption, probit regression model is selected 

to analyze determinants of farmers’ decision to use SLM 

practices as adaptation strategy. Suppose that Yj and Yk 

represent a household’s utility for two choices, which are 

denoted by Uj and Uk, respectively. �e linear random 

utility model could then be specified as:

Fig. 1 Map of the study area and agro-ecological zones

Table 1 Distribution of respondents by agro-ecology 

and District

Wet lowland Dry lowland

District Number of respond-
ents

District Number 
of respondents

Assosa 184 Mengie 189

Bambasi 183 Sherkole 178

Total 367 Total 367
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where Uj and Uk are perceived utilities of adaptation 

methods j and k, respectively, Xi is the vector of explana-

tory variables that influence the perceived desirability of 

the methods, Bj and Bk are parameters to be estimated, 

and εj and εk are error terms assumed to be indepen-

dently and identically distributed [20]. �erefore, if a 

household decides to use option j, it follows that the per-

ceived utility from option j is greater than the utility from 

other options (say k) depicted as:

�e probability that a household will use method j among 

the set of SLM options could then be defined as:

where P is a probability function, Uij, Uik and Xi are as 

defined above, ε* = εj − εk is a random disturbance term, 

β* = (βi − βj) is a vector of unknown parameters that can 

be interpreted as a net influence of the vector of inde-

pendent variables influencing the decision to use the 

SLM practices, and F(β*Xi) is a cumulative distribution 

function of ε* evaluated at β*Xi. �e dependent variable is 

dummy (binary), which takes a value zero or one depend-

ing on whether or not a farmer is using any of the SLM 

practices as adaptive response to climate variability and 

change. Contrariwise, the explanatory variables are either 

continuous or binary/categorical. �en, the probit model 

is specified as:

where β is vector of parameters of the model, Xj is vector 

of explanatory variables, and εj is the error term assumed 

to have random normal distribution with mean zero and 

common variance δ2 [2]. Ij = Unobservable (latent varia-

ble) households’ actual decision to use SLM practice and 

what we observe is a dummy variable (use of land man-

agement measures) which is defined as: 1 if Ij
* > 0 and 0 

otherwise

Nearest-neighbor matching

Given that a variety of differences exist between users 

and non-users of the SLM practices, it is important to 

control for these potential underlying effects in order to 

ensure reliable impact estimates. �us, nearest-neighbor 

(1)Uj = βjXi + εj and Uk = βkXi + εk

(2)Uij

(

βjXi + εj
)

> Uik(βkXi + εk), k �= j

(3)

P(Y = 1|X ) = P
(

Uij > Uik

)

P
(

βjXi + εj − βkXi − εk > 0|X
)

P
(

βjXi − βkXi + εj − εk > 0|X
)

P
(

X∗Xi + ε∗ > 0
∣

∣X = F
(

β∗Xi

)

(4)I∗j = βXj + εj

(5)pro(adoption = 1) = ϕ
(

βXj

)

(6)pro(adoption = 0) = 1 − ϕ
(

βXj

)

matching approach was used as it allows matching users 

to non-users at household and plot level. In addition, a 

continuous treatment effect estimation technique devel-

oped by [21] has been adopted to quantify differences in 

value of production.

In order to control for causal effect that arises due to 

self-selection bias or methodical assignment of treatment 

groups, we estimated the average treatment effect on 

the treated (ATT), using the nearest-neighbor matching 

method (NNM). �is method matches users and non-

users/control households based on observable charac-

teristics and calculate the mean difference in outcomes 

between the two groups [22]. �us, the control group is 

matched on the probability (propensity score) of adopt-

ing the SLM practices given a set of observable character-

istics from the probit regression model. When matching 

users with non-users, we used the following definitions 

for user households: (1) the household implemented and 

continues to maintain stone terraces or soil bunds or 

grass strips on their cultivated land and (2) the household 

implemented the structures at least on 1/4 of the total 

cultivated land.

User households are paired with non-users when 

their respective observable characteristics are simi-

lar, as determined by a weighted average of the distance 

between values of the observed characteristics. Compari-

son households with propensity scores that are nearest 

to user households receive the highest weights and are 

matched accordingly. We trimmed 5% of the sample from 

the top and bottom of the non-participant distribution in 

terms of propensity scores to ensure comparisons over 

the same propensity score range. �en we compare aver-

age outcomes of user households with the matched non-

user/comparison households. Once a balanced sample 

is realized, NNM technique was applied to estimate the 

average treatment effect of using SLM practices.

Each user household is matched to a non-user house-

hold with its closest propensity score allowing for five 

nearest neighbors in terms of absolute difference in pro-

pensity scores. �us, for each household i, there are two 

potential outcomes: using SLM practice or not using. We 

denote users as Ai(1) and non-users as Ai(0), whereby the 

impact of using the practice is the difference in outcome 

between users and non-users (Δ = A1 − A0). �us, D is 

an indicator variable equal to 1 if the household uses the 

SLM practice and 0 otherwise. �en we find the average 

impact of the treatment on the treated (ATT) as follows 

when X is a vector of control variables:

�ere are two key results from this analysis. �e first 

result is obtained from estimating the probit model 

(7)
ATT = E(�|X ,D = 1 ) = E(A1 − A0|X ,D = 1)

= E(A1 |X ,D = 1) − E(A0|X ,D = 1)
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which predicts the probability of each household using 

SLM practice. �is result allows us to identify specific 

household-level determinants of using SLM practices, 

controlling for initial characteristics. �e probit model is 

also integral to obtaining a balanced sample of user and 

non-user observations that help us to estimate impact. 

�e second result estimates the average impact of SLM 

practices through measuring the difference in total value 

of production between users and non-users.

Continuous treatment effect estimates

We followed [21] to estimate the continuous treatment 

effect. For this purpose, farm plots were indexed by I 

where i = 1, 2… N and letting t = T where t is the level 

of treatment defined as number of years a household has 

been implementing the selected SLM practices on a spe-

cific plot. Accordingly, there is a certain level of potential 

outcome, Yi(t) capturing a response to a level of treat-

ment. A continuous treatment is considered where the 

treatment level lies in the interval [t0, t1] and defines the 

potential outcome as value of production per hectare. For 

each plot, observation is made on the treatment level, 

vector of covariates Xi and potential outcome corre-

sponding to the received level of treatment with interest 

of calculating average dose–response function defined as 

μ(t) = E[Yi(t)].

Un-confoundedness for binary treatments given a set 

of covariates explaining adoption and non-adoption is 

generalized by [21]. Following this, in a continuous treat-

ment case conditional on a set of covariate Xs, the extent 

of treatment is also random. Our assumption is that the 

number of years of maintaining the SLM structures is 

random conditional on a set of plot and household char-

acteristics. Since the length of time for maintenance 

also depends on unobservable characteristics of farm-

ers, we proxy the decision to invest labor/and or finance 

by including a binary variable that denotes manure and 

fertilizer application. �us, we assume that farmers that 

decide to invest on agricultural inputs such as manure 

and fertilizer may have other non-observable traits that 

can be linked to investment decisions on agricultural 

technologies. �us, we captured some of the non-observ-

able characteristics by including these covariates.

We define the generalized propensity score (GPS) fol-

lowing [21]. Let r(t, x) = fr/x(t, x) be the conditional den-

sity of the treatment given the covariates, and then the 

GPS is R =  r(T, X). As in the case of binary propensity 

score, GPS has a balancing property that ensures within 

each given strata (where the conditional density holds the 

same value), the probability that T = t does not depend 

on the covariates X. �e estimation of the dose–response 

function requires that we first compute the conditional 

expectation of outcomes as a function of the treatment 

level t and the GPS score R. �en the dose–response at a 

particular t level of treatment is the conditional expecta-

tion over the GPS and given by:

In order to implement the above estimation, the first 

stage estimates the treatment level given the covariates: 

Ti/Xi ∼ N
(

β0 + β ′

1
Xiσ

2
)

. In the simple normal model 

β0, β1, σ can be estimated by maximum likelihood. �e 

GPS is thus estimated as:

In the second stage, the conditional expectation of Yi 

given Ti and Ri is estimated using a quadratic approxima-

tion as suggested by [21].

�e parameters (α0,α1 . . . α5) are estimated using the 

calculated GPS Ri by ordinary least squares. Given the 

second-stage estimated parameters, the average potential 

outcome at treatment level t is estimated to obtain the 

entire dose–response function. We used bootstrap meth-

ods to calculate more robust estimates, standard errors 

and confidence intervals. �e results and discussion sec-

tion presents results for both binary treatment at house-

hold and plot level and the continuous treatment effects 

at plot level.

Results and discussions
Comparison of agro-ecologies on the use of SLM practices

Responses to climate shock through use of different 

land management measures are common in both agro-

ecologies though intensity of use shows some degree of 

variation. Soil and water conservation measures and 

agronomic practices are common SLM measures among 

smallholder farmers in the study area. �e relevance of 

these measures is reported to be increasing from time to 

time to adapt agricultural practices to the challenges of 

declining productivity attributed to climate factors [23].

�e crux of this paper is to assess responses to climate 

variability and change through SLM practices including 

soil bunds, stone bunds, grass strips and to measure the 

impact of these practices at household and plot level. 

Accordingly, the two agro-ecologies were compared in 

terms of use of these practices. In the dry lowland agro-

ecology, 25% of the respondents indicated use of soil/

stone bunds while 12% stated use of grass strips indi-

cating that about 37% the respondents have used these 

measures. In the wet lowland agro-ecology, use of the 

SLM measures is generally higher (52%) where 35% of 

(8)
µ(t) = E[β(t, r(d,X))] = E[Y (t)] where β(t, r)

= E[Y /T = t,R = r]

(9)
∧

R
i

=

1√
2π

∧

σ 2

exp

(
−

1

2σ 2

(
Ti −

̂
β0 − β̂1Xi

)2
)

(10)E[Yi,Ri] = α0 + α1T
2
i + α2T

2
i + α3Ri + α4R

2
i + α5TiRi
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the respondents used stone/soil bunds and 17% are users 

of grass strips (Table 2). �e difference between the two 

agro-ecologies in the use of the practices is statistically 

significant (χ2  =  18.82; P  <  0.001). �is result implies 

that the role of SLM measures in coping with the adverse 

impacts of climate variability and change is well recog-

nized by farmers though the intensity of use statistically 

varies between the two agro-ecologies.

Comparison of users and non-users of SLM practices

Unlike short-term land management technologies that 

reap increased yields within a season or year, benefits 

from long-term SLM measures may accrue over longer 

time horizons. Given this lag, the household survey for 

this study was designed to take into account previous 

land management intervention that farmers have imple-

mented and the length of time that the practices have 

been maintained. Here, only three types of SLM prac-

tices, namely soil bund, stone bund and grass strip, were 

identified as the most common practices in the area. 

Accordingly, households that constructed and main-

tained any of these practices on at least 1/4 of their cul-

tivated land since 2004 and onward and maintain the 

structures until the date of the survey in 2016 are con-

sidered users/adopters. With this criterion, 41% of the 

responds are found to be users of the practice.

Comparison is made between users and non-users of 

the SLM measures in terms of socioeconomic and envi-

ronmental variables. �e results revealed that households 

with farmland that is poor in fertility and steeper slope 

have adopted the SLM practices than those households 

with fertile plot and plain field. Moreover, significant per-

centage of the users have applied fertilizer and manure 

and received extension advice on soil conservation meas-

ures. �e comparison also revealed significant differences 

between users and non-users in terms of frequency of 

challenges faced from extreme climate events, time spent 

in non-farm activities, cultivated land size, literacy level 

and other household characteristics (Table 3).

Following the comparison, the overall effect of the SLM 

practices is assessed through matching all user house-

holds with non-use households. In doing so first we made 

a probit model estimation to identify determinants of use 

of the practices and then evaluate if any impact exists due 

to the practice at household and plot level. To account 

for the hypothesized time lag for benefit realization, we 

split the user sample by reported date that the soil con-

servation measures were first built on plots. �en, we 

separately evaluate users that built the structure during 

the initial period (2004–2009) and in the recent period 

(2010–2016). �e analysis started since 2004 because 

only 6% of the total users implemented the practices in 

any given year prior to 2004. Accordingly, for each of 

these periods separate NNM estimations were under-

taken, maintaining the same variables for each analysis 

with a balanced sample.

Determinants of use of sustainable land management 

practices

Given that variety of differences exist between users and 

non-users of SLM practices, it is important to control for 

these potential underlying effects in order to ensure reli-

able impact estimates. Probit model is used to match user 

and non-user households and to provide information on 

household’s probability of using the SLM practices on 

cultivated land. �e probit regression results for house-

hold- and plot-level determinants of use of SLM practices 

are presented in Tables 4 and 5.

�e results from the probit model estimation indicate 

that biophysical factors such as share of non-fertile lands 

and slope category of plots are significantly different 

between users and non-users, suggesting that plots on 

steep slopes; and plots with semi-fertile and non-fertile 

soil are correlated with land management decisions. On 

average, probability of using SLM practices increases 

by 21.1% as the proportion of plots with steep slope 

increases by 1%. �is finding is in line with results of pre-

vious studies that showed a positive relationship between 

slope category of a plot and land management decisions 

[23, 24].

Moreover, respondents that have past experience of 

soil erosion problems are more responsive through SLM 

measures to combat similar future incidents. �e prob-

ability of implementing SLM practices increases on 

Table 2 Use of SLM measures for climate change adaptation

Use of stone/soil bunds and grass strips Agro-ecology χ2 value P value

Wet lowland Dry lowland Total

N % N % N %

Non users 176 48 231 63 407 55 14.42 0.001

Users 191 52 136 37 327 45

Total 367 100 367 100 734 100
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average by 2.3% for households that have past experi-

ence of erosion risk on their cultivated land and at plot 

level, this probability increases to 3.4%. Users of the SLM 

practice have also past experience of crop failure due to 

terminal moisture stress and depletion of soil fertility as 

compared to non-users. In this regard, the probability of 

adopting SLM practices increases by 1.1% for households 

that have experience of crop failure due to drought. Like-

wise, probability of using SLM practices increases in the 

range of 3.9–7.1% as the proportion of infertile and semi-

fertile plots increases by 1%. Similarly, the probability of 

implementing SLM practices increases by 42.1% as the 

proportion of non-fertile plots increases by 1%.

Distance from market revealed significant negative 

correlation with probability of using SLM practices. �e 

probability of implementing SLM practices decreases 

by 3.1% as distance from market increases by 1 km. �is 

finding may reveals that if farmers do not realize a market 

outlet for increased production, they may be less willing 

to implement the structures that could increase yields. 

Moreover, fertilizer/manure application is included as a 

matching binary variable as proxy to willingness to invest 

money/labor in technologies/innovations to increase 

output. �e result shows that the decision to apply fer-

tilizer/manure is positively related to SLM adoption 

decision verifying willingness of SLM users to invest in 

productivity enhancing technologies. �e probability of 

practicing SLM increases by 5.3% for those households 

who are using fertilizer or manure on their cultivated 

land. �e plot-level analysis revealed that the probability 

of implementing SLM practices increases by 14.3% for 

plots that received fertilizer or manure.

It is important that the probit model discussed above 

includes covariates that would not have changed after 

adopting land management practices. For example, we 

included total landholding size, biophysical characteris-

tics of agricultural land, such as soil fertility and slope, 

and household head characteristics which are less likely 

to change over the study period. In order to control for 

endogeneity, we did not match user and non-user house-

holds based on assets which may have been affected by 

successful or unsuccessful investment in SLM practices 

(e.g., variables that proxy income such as changes in live-

stock holdings).

Impacts of SLM practices on value of production

Propensity scores are estimated both for the treated 

and control households (Fig.  2). Accordingly, the esti-

mated propensity scores for the treated households 

vary between 0.069 and 0.964 with mean of 0.688. For 

the control households, the estimated propensity scores 

vary between 0.005 and 0.928 with mean of 0.401. �ere-

fore, the common support region lies between 0.069 and 

0.928. Flowing [10, 25] to evaluate the average treatment 

(ATT) effect on the treated, it is important to ensure that 

for each treated household a close non-treated is found. 

Table 3 Comparison of users and non-users of SLM practices

Variable Non-users Users Mean difference (P value)

HH head age (years) 46.4 43.7 0.00

HH head sex (male = 1) 0.9 0.8 0.87

Education (literate = 1) 0.4 0.5 0.03

Household size (number) 0.59 0.58 0.61

Time spent on non-farm activity (months) 3.5 4.3 0.00

Land size in hectares 2.3 2.4 0.45

Household experienced erosion (yes = 1) 0.2 0.3 0.05

Household experienced drought (yes = 1) 0.4 0.6 0.03

Adult equivalent ratio 0.3 0.3 0.72

Steep slope (proportion) 0.1 0.2 0.00

Mixed slope (proportion) 0.05 0.1 0.21

Manure use (proportion of farmers) 0.4 0.6 0.04

Fertilizer use (proportion of farmers) 0.3 0.6 0.05

Received credit (yes = 1) 0.3 0.3 0.24

Semi-fertile plots (proportion) 0.3 0.4 0.13

Non-fertile plots (proportion) 0.2 0.4 0.00

Extension advice on SLM (yes = 1) 0.4 0.8 0.00

Distance from market (km) 5 4.6 0.22

Wet Kola agro-ecology (1 = yes) 0.3 0.4 0.00

Dry Kola agro-ecology (1 = yes) 0.2 0.1 0.00
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To ensure this, households whose estimated propensity 

scores less than 0.005 and larger than 0.928 are not con-

sidered for the matching exercise and hence a total of ten 

observations have been dropped.

It is assumed that most SLM practices require a longer 

time horizon to experience significant benefits to user 

households. In this regard, the impact of the practices 

is analyzed in two ways. First the impact on the value of 

production is analyzed using the entire sample consider-

ing households that implemented the practice between 

2004 and 2016. �en, in order to take into account the 

lag time in land management benefit, the sample is 

splinted between early users (2004–2009) and late users 

(2010–2016).

�e result shows that households that implemented 

the practices in the first period (2004–2009) gained a 

24.1 percept higher value of production (significant at 

P  <  0001) in 2016 compared to matched households 

that did not implement the practice (Table 6). However, 

households that adopted the practices in later years 

(2010–2016) did not realize significant increases in value 

of production compared to matched households that did 

not implement the practice. �is could be attributed to 

the fact that the time is not sufficient to allow the late 

users realize the effects of the practice in terms of replen-

ishing soil nutrients that could help increase agricultural 

production. �e result also pointed out the impact of 

using SLM measures is not significant when the entire 

sample (2004–2016) is used showing only 3% higher 

value of production over non-users (Table  6). �is is 

attributed to the fact that the late users have yet to expe-

rience increase in production and hence miscomprehend 

the gains by early users.

A household-level aggregation is based on the thresh-

olds that households that implemented the selected SLM 

structures on at least 1/4 of their cultivated land. �is 

analysis depicted increase in value of production of early 

users of the SLM practices. However, plot-level disag-

gregated analysis allows a robustness check of the impact 

within households and across plots given differences in 

soil fertility, slope, soil degradation prevalence and appli-

cation of external inputs such as manure and fertilizer.

�e plot-level results are reflections of the household-

level analysis. Accordingly, plots that received SLM 

measures in the first period (2004–2009) experienced 

a 28.6% increase in value of production (significant at 

P < 0001) compared to matched plots that did not receive 

Table 4 Probit results on household-level determinants 

of SLM practices (2004–2016)

*, **, and *** are significance level at 10, 5 and 1%

Dependent variable: household that used SLM practices (soil/stone bund, grass 

strips) on at least 1/4 of cultivated land (Yes = 1)

Variable dy/dx SD

HH head age (years) 0.035 (0.021)

HH head sex (male = 1) 0.003 (0.021)

Land size in hectares 0.024** (0.011)

Household experienced erosion (yes = 1) 0.023* (0.041)

Household experienced drought (yes = 1) 0.011 ** (0.025)

Household size (number) 0.021 (0.003)

Adult equivalent ratio 0.013 (0.011)

Non-farm employment (months) 0.001 (0.011)

Steep slope plots (proportion) 0.211*** (0.032)

Mixed slope plots (proportion) 0.018 (0.028)

Manure/fertilizer use (yes = 1) 0.053*** (0.061)

Education of HH head (literate = 1) 0.031 (0.017)

Semi-fertile plots (proportion) 0.071** (0.037)

Non-fertile plots (proportion) 0.039** (0.062)

Extension advice on SLM (yes = 1) 0.053 (0.024)

Distance from market (km) − 0.031** (0.011)

Wet Kola agro-ecology (1 = yes) 0.241*** (0.028)

Dry Kola agro-ecology (1 = yes) 0.067** (0.046)

Assosa Woreda 0.261*** (0.053)

Bambasi Woreda 0.217*** (0.101)

Sherkole Woreda 0.042* (0.006)

Mengie Woreda 0.135* (0.015)

Number of observations = 506

Wald χ2(20) = 218.21

Prob > χ2 = 0

Pseudo R2 = 0.3232

Table 5 Probit results on plot-level determinants of SLM 

practices (2004–2016)

*, ** and *** are significance level at 10, 5 and 1%

Dependent variable: plots that received SLM practices (soil/stone bund, grass 

strips) (Yes = 1)

Variable dy/dx SD

HH head age (years) 0.021 (0.018)

HH head sex (male = 1) 0.023 (0.001)

Household experienced erosion (yes = 1) 0.034* (0.032)

Household experienced drought (yes = 1) 0.141** (0.025)

Plots with steep slope (proportion) 0.301*** (0.022)

Plots with mixed slope (proportion) 0.015 (0.006)

Percentage of plots received manure/fertilizer 0.143*** (0.001)

Education of HH head (literate = 1) 0.044 (0.008)

Semi-fertile plots (proportion) 0.043** (0.011)

Non-fertile plots (proportion) 0.421** (0.004)

Extension advice on SLM (yes = 1) 0.048* (0.001)

Plot size (hectare) 0.014* (0.021)

Number of observations = 506

Wald chi2(12) = 241.31

Prob > chi2 = 0

Pseudo R2 = 0.2412
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the measures (Table  6). On the other hand, plots that 

received the practice in recent period (2010–2016) had 

no significant increases in value of production compared 

to matched plots. �e plot-level impact for the entire 

period (2004–2016) revealed only a 5% increase in value 

of production over matched plots, though the increase is 

not statistically significant.

Sensitivity analysis

Rosenbaum bound sensitivity test for possible hidden 

bias is presented in Table  7. As depicted in the table, 

the impact of SLM practices on value of production is 

inferred with the critical level of gamma  (eγ). �e effect of 

practicing SLM (treatment effect) found to be significant 

at P  <  0001 showing that the inference for the effect of 

practicing the land management measures is not chang-

ing when the odds of being treated for both users and 

non-users are changed twice  (eγ = 3) in terms of unob-

served covariates. In other words, the outcome variable 

which is estimated at various level of critical value of  eγ is 

significant and this indicates that all important covariates 

that affected use of the SLM practice are well addressed 

in the impact analysis. �erefore, the estimated ATT is 

not rejected at all critical values even when we set  eγ at 

the largest value  (eγ = 3) compared to the value set in dif-

ferent literatures  eγ = 2 (100%). �erefore, the sensitivity 

analysis tends to show that the estimated impact (ATT) 

is mainly the effect of the SLM practices on value of pro-

duction for both household- and plot-level cases. And 

hence, it is insensitive to an unobserved selection bias.

Continuous treatment effect estimation results

Continuous treatment estimation procedure proposed 

by [21]) is customized to evaluate payoff period and mar-

ginal effects of the SLM measures on crop productivity 

expressed in terms of value production. Based on this 

approach, we estimate how plot-level value of produc-

tion varies depending on number of years that the SLM 

measures are maintained. Impact is evaluated at plot 

level since households implement the SLM structures 

on diverse plots in different years. And the difference in 

impact is evaluated based on the length of time that the 

practices are maintained on a specific plot.

First, we estimate the conditional distribution of the 

number of years the SLM measure is maintained given 

a set of covariates. �e treatment level (defined by num-

ber of years) is estimated in order to obtain a GPS using 

plot and household characteristics. �en treatment dis-

tribution is divided by treatment level whereby we define 

Fig. 2 Common support of the propensity scores

Table 6 Average household-level and plot-level impacts of SLM practices

ATT Average Treatment Effect on the Treated

*** significant at (P < 0.000)

Impact Outcome variable (value of production) ATT SE Observations

Household level 2004–2009 0.241*** 0.081 602

2010–2016 0.013 0.044 614

2004–2016 0.030 0.044 614

Plot level 2004–2009 0.286*** 0.021 903

2010–2016 0.015 0.041 915

2004–2016 0.048 0.031 915

Table 7 Rosenbaum bound sensitivity analysis test 

for hidden bias

Gamma  (eγ) P-critical

eγ = 1 0

eγ = 1.5 0

eγ = 2 0

eγ = 2.25 2.80e−12

eγ = 2.5 4.70e−18

eγ = 2.75 5.80e−14

eγ = 3 6.60e−16
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three time intervals in years: [1, 4, 5, 8, 9, 12] and for each 

interval a group of observations are identified. Accord-

ingly, there are 330, 198 and 206 observations in each 

group, respectively.

For each of the covariates in the first regression, we test 

that the mean of one group is similar to the other two 

groups combined, and thus, we are able to satisfy the bal-

ancing property. Table 8 presents whether the GPS actu-

ally balances the set of variables in the different intervals 

of the treatment level. �e first three columns presented 

the test whether the covariates have the same mean for 

observations within the same treatment intervals using 

the raw data. In this case, the raw data are unbalanced 

for most of the covariates as implied by significant mean 

differences. In contrast, the last three columns are mean 

differences after adjusting for the GPS to see whether the 

covariates are better balanced when we condition on the 

estimated GPS. When comparing the two sets of results, 

we can clearly see that the covariates are better balanced 

after the GPS adjustment as implied by non-significant 

mean differences.

�e test result in Table 8 reveals that adjusting for the 

GPS improves the balance of the covariates across the 

treatment intervals, and the next step is estimating the 

second-stage model that generates OLS estimates on log 

of value of production. Based on [21], the parameters of 

the second-stage estimation do not have a direct meaning 

rather they are primarily used to test whether the covari-

ates introduce any bias.

Following the bias test, we generate the derivative of 

the dose–response function, which reveals the mar-

ginal effect of an additional year of maintenance of the 

SLM structure. �e result suggests that maintenance of 

the structures is crucial to reap significant benefits from 

resources invested on the practices. In this regard, users 

that maintain the practices for at least 6  years experi-

enced a positive increase in value of production at the 

end of the 6th year (Table  9). However, users that have 

maintained the practices for less than 6  years do not 

experience a statistically significant impact on the value 

of production as implied by insignificant marginal effects 

during the initial 6  years of implementation. �e nega-

tive marginal effect suggests that the SLM practices may 

require a longer time horizon to slow down soil loss and 

reach a point where nutrient replenishment and other 

biophysical improvements are realized to full potential.

Beyond the 6th  year, maintaining the SLM structures 

results in positive marginal benefit that increases at an 

increasing rate. �us, for each additional year one sus-

tains the SLM practices, the higher the gains in value 

of production. As indicated in Table  9, if a household 

Table 8 Test for equality of means between treatment groups

GPS generalized propensity score

* and ** are significance level at 10 and 5%

Variable Raw data treatment terciles Data adjusted by GPS

[1, 4] [5, 8] [9, 12] [1, 4] [5, 8] [9, 12]

HH head age (years) − 0.32 0.88** − 0.08 − 0.28 1.01 − 0.18

HH head sex (male = 1) − 0.01 − 0.21 − 0.01 0.00 0.00 0.01

Household experienced erosion (yes = 1) − 0.43* − 0.10 0.26* − 0.23 0.00 0.16

Household experienced drought (yes = 1) − 0.32* − 0.11 0.16 − 0.11 0.01 0.11

Steep plot (yes = 1) 0.01 − 0.21* 0.00 0.01 − 0.11 0.01

Manure/fertilizer (yes = 1) − 0.12* 0.00 0.11* − 0.02 0.00 0.01

Education of HH head (literate = 1) 0.00 0.01 0.01 0.01 0.01 0.00

Semi-fertile plot (yes = 1) 0.21** 0.01 0.23** 0.0 0.00 0.01

Non-fertile plot (yes = 1) − 0.12** 0.01 0.09** − 0.02 0.01 0.00

Plot size − 0.22* 0.01 − 0.00 − 0.02 0.01 − 0.01

Table 9 Estimated marginal effect per additional year 

of maintenance

* Significant at 10% level

Years Marginal effects

1 − 0.1

2 − 0.08

3 − 0.05

4 − 0.03

5 − 0.01

6 0.04*

7 0.06*

8 0.08*

9 0.10*

10 0.12*

11 0.14*

12 0.16*
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sustains the SLM structures for 8–9  years, the value of 

production would increase by about 10% and if a house-

hold continues to maintain the structures for 11–12 years 

the expected value of production increases by 16%. In 

this regard, maintenance should continue as far as the 

increase in marginal benefit becomes statistically insig-

nificant. However, since the number of observations are 

minimal for households that sustained the SLM practices 

for more than 9 years, further enquiry is required to fully 

understand the impacts of long-term maintenance. Once 

the soil degradation problems are successfully controlled 

and the necessary soil components are replenished after 

long-term maintenance of the SLM structures, one would 

expect diminishing returns to such practices. �erefore, 

further research over a longer time period may provide 

an estimated envelope of benefits and marginal returns of 

the SLM structures in the study area.

Conclusions and policy recommendations
�is study used primary data to determine smallholder 

farmers’ response to climate variability and change 

through SLM practices and how these practices affected 

crop productivity. Accordingly, the study identified spe-

cific household-level and plot-level determinants of 

SLM decisions and measured household- and plot-level 

impact of the practice on value of production. Moreo-

ver, the study estimated the average impact among users 

given different lengths of time that the land management 

structures are maintained.

�e result revealed that households that implemented 

any of stone bunds, soil bunds, grass strips during the 

period (2004–2009) experience a 24.1% higher value of 

production in 2016 compared to non-users. Conversely, 

households that implemented the practices in later years 

(2009–2016) have no significant increases in value of 

production. Analysis at the plot level suggests similar 

impact, whereby plots that received SLM measures in 

the first period have 28.6% higher value of production in 

2016 compared to matched plots that did not receive the 

practices. �e impact analysis also suggests long-term 

maintenance is crucial and users that maintain the struc-

tures for at least 6 years experienced a positive increase 

in value of production at the end of the 6th year.

�e SLM practices are knowledge and resource inten-

sive by their very nature and may not be implemented 

easily given the awareness level and resource endow-

ments of smallholder farmers. �erefore, scaling up 

these adaptation benefits requires intervention of vari-

ous stakeholders to provide technological support and 

training. �e impact analysis shows longer maintenance 

of the SLM structures provides sustainable and greater 

payoffs overtime. Given the situation in the study area, 

significant benefits are experienced when maintaining 

the structures at least for 6 years. In line with this, further 

research could come up with policy options that encour-

age farmers to accept longer time horizons. Besides, 

further research is required to provide an estimated 

envelope of long-term benefit and marginal returns of 

the SLM practices. Creating market access may also 

motivate farmers to decide on SLM investment and long-

term maintenance through boosting agricultural sur-

plus, lowering transportation costs and improving input 

distribution mechanisms. Lastly, future research should 

address modeling of synergetic effects and complemen-

tarities among different SLM measures that can possibly 

enhance benefits for smallholder farmers.
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