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ABSTRACT 
Diffusion tensor imaging (DTI) is sensitive to the directionally- 
constrained flow of water, which diffuses preferentially along 
axons. Tractography programs may be used to infer matrices of 
connectivity (anatomical networks) between pairs of brain regions. 
Little is known about how these computed connectivity measures 
depend on the scans’ spatial and angular resolutions. To determine 
this, we scanned 8 young adults with DTI at 2.5 and 3mm 
resolutions, and an additional subject at 4 resolutions between 2-4 
mm. We computed 70x70 connectivity matrices, using whole-brain 
tractography to measure fiber density between all pairs of 70 
cortical and subcortical regions. Spatial and angular resolution 
affected the computed connectivity for narrower tracts (internal 
capsule and cerebellum), but also for the corticospinal tract. Data 
resolution affected the apparent role of some key structures in 
cortical anatomic networks. Care is needed when comparing 
network data across studies, and interpreting apparent 
disagreements among findings.  

Index Terms— Connectivity, diffusion imaging, 
tractography, networks, MRI, brain 

1. INTRODUCTION 
DTI and its variants (HARDI, DSI) are greatly advancing our 
understanding of neurological and psychiatric illness. DTI is 
widely used in international efforts to map brain connectivity in 
populations of thousands of subjects, such as the $30 million 
Human Connectome Project (www.humanconnectomeproject.org). 
Much of the effort to map brain networks has focused on DTI and 
its extensions, which can map axonal pathways and tracts in the 
living brain. Diffusion MRI is sensitive to the local direction and 
rate of water diffusion, at each location in the brain. Axonal 
pathways may be reconstructed using tractography methods to 
infer the most likely paths of tracts, based on tensor or higher-order 
(q-space) diffusion models [1]. Other methods exist to map 
functional connectivity, but the meaning of connectivity is 
different – in resting-state fMRI and MEG/EEG, temporal 
correlations are measured between signals at pairs of locations in 
the brain. These correlation matrices are then thresholded to 
identify network “hubs” important for functional synchronization 
of brain activity.   

Diffusion MRI connectivity mapping has broad applications 
in neurology and psychiatry for understanding disrupted patterns of 
brain connections in Alzheimer’s disease, autism [2] and 
neurogenetic disorders of childhood, as well as sex differences and 
genetic effects on connectivity [3]. Much of the technical 
innovation focuses on q-space imaging, which enriches the 
information available on local directional and radial diffusion. The 
quest to improve the local diffusion model has led to elaborate q-
space sampling schemes with large numbers of directional samples 

(HARDI), and/or multiple diffusion weightings (b-values) which 
are sensitive to non-monoexponential radial diffusion [4-6].    

Several empirical and theoretical studies have modeled how 
signal to noise in DTI depends on the spatial and angular resolution 
of the scans [7-8]. Others have optimized the q-space sampling to 
boost SNR in clinically feasible scan times [9]. Much less attention 
has been devoted to understanding how brain networks, and 
patterns of recovered connections, depend on the spatial and 
angular resolution of the scans. Spatial resolution affects even the 
simplest measures derived from DTI, such as fractional anisotropy 
– the most widely used measure of brain integrity; in larger voxels, 
FA measures can be greatly reduced by partial volume effects. 
Here we scanned 9 young adults to monitor how different scanning 
protocols affect the recovery of maps of brain connectivity.  

We hypothesized that both spatial and angular resolution 
would affect measures of cortical and subcortical connectivity. We 
were interested in the anatomical scope and extent of these effects. 
Empirical data on these questions will help to determine how well 
scan data may be pooled or compared in multi-site DTI studies; 
many of these are now being planned or are underway. Those 
designing DTI protocols may also be interested to know how 
comparable their brain connectivity maps are likely to be, relative 
to independently collected data from other imaging centers. 

2. METHODS 
2.1. Data description 

Our first multi-resolution DTI dataset (called the “Mayo 
dataset”) was collected at the Mayo Clinic. 8 healthy subjects (age: 
32.0 years ± 3.9SD; 4 males) were scanned on a GE 3 Tesla brain 
MRI scanner with an 8-channel head coil. DWI data was collected 
using two protocols, summarized in Table 1.  
Table 1. Imaging protocols for the Mayo dataset   

 Protocol 1 (P1) Protocol 2 (P2) 
Isotropic voxel size (mm)  3.0 2.5 

Prescribed matrix 128 x 128 128 x 128 
Number of slices 40 48 
Number of DWI 48 37 
Number of b0 images 4 4 
TR (ms) 7750 9825 
b-value (s/mm2) 1000 1000 

For our second data set, a healthy male subject (32 years old) 
was scanned at multiple spatial resolutions (2x2x2, 2.5x2.5x2.5, 
3x3x3 and 4x4x4 mm3) with axial DTI using the following 
acquisition parameters: TR=8000 ms, TE=83 ms, 128x128 matrix, 
64 slices, b-value=1000 s/mm2, one baseline (b0) scan and 12 
gradient directions. Although the number of diffusion directions 
for this second dataset is less than state-of-the-art (12), the large 
number of values of the spatial resolution makes it of interest.  
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features of “connectivity”, and are combined by standardizing the 
maps (subtracting the mean and dividing by the standard deviation 
across each subject’s map), performing principal component 
analysis (PCA), and extracting the projection of each voxel's 
attributes onto the principal component vector. This score provides 
a robust “connectivity index” between WM ROIs.  

2.4. Cortical connectivity 
Cortical connectivity matrices were computed as in [3]. 35 cortical 
labels per hemisphere (Table 3) were automatically extracted from 
the same subjects’ T1-weighted structural MRI scans using 
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). As the software 
performs a linear registration, the resulting T1-weighted images 
and cortical models were aligned to the original T1 input image 
space and down-sampled to the space of the DWIs, using nearest 
neighbor interpolation (to avoid mixing of labels). To ensure tracts 
would intersect labeled cortical boundaries, labels were dilated 
with an isotropic box kernel of 5 voxels.   
Table 3. 35 cortical labels per hemisphere were extracted, as 
the basis for our 70x70 cortical connectivity matrices.  

1 Banks of the superior temporal sulcus 
2 Caudal anterior cingulate 19 Pars orbitalis 
3 Caudal middle frontal 20 Pars triangularis 
4 Corpus callosum 21 Peri-calcarine 
5 Cuneus 22 Postcentral 
6 Entorhinal 23 Posterior cingulated 
7 Fusiform 24 Pre-central 
8 Inferior parietal 25 Precuneus 
9 Inferior temporal 26 Rostral anterior cingulate 
10 Isthmus of the cingulate 27 Rostral middle frontal 
11 Lateral occipital 28 Superior frontal 
12 Lateral orbitofrontal 29 Superior parietal 
13 Lingual 30 Superior temporal 
14 Medial orbitofrontal 31 Supra-marginal 
15 Middle temporal 32 Frontal pole 
16 Parahippocampal 33 Temporal pole 
17 Paracentral 34 Transverse temporal 
18 Pars opercularis 35 Insula 

Fiber tracking was initiated by specifying three parameters: 
the threshold values for starting and stopping tracking, and the 
critical angle threshold for stopping tracking if the algorithm 
encounters a sharp turn in the fiber direction. Based on the 
diffusion tensor model, the Diffusion Toolkit 
(http://trackvis.org/dtk/) uses these parameters to generate 3D fiber 
tracts using the Fiber Assignment by Continuous Tracking (FACT) 
algorithm. With a brute-force reconstruction approach, we used all 
voxels in the volume as seed voxels to generate the fibers. After 
that, a spline filter was applied to each generated fiber, with units 
expressed in terms of the minimum voxel size of the dataset. After 
whole brain tractography, a 70x70 connectivity matrix was created. 
Each matrix element estimates the proportion of the total number 
of fibers, in that dataset, connecting each of the labels to the others.  

3. RESULTS AND DISCUSSION 
3.1. How does angular resolution affect measures of white 
matter connectivity? 
We chose the P1 dataset (Table 1) for this test as it has the highest 
angular resolution (48 gradients). We downsampled the original 
dataset from 48 to k=47, 46… 16, 15 DWIs. Sub-sampling was 
based on maximizing the total angular distribution energy of the 
remaining set of k gradients, to optimize the uniformity of the 
spherical sampling (see [7]). We calculated white matter 

connectivity based on 4th-order SH CSA-ODFs (Eq. 1) for each 
subsampled dataset as in Section 2.3. Then we assessed how 
angular resolution affected white matter connectivity. (This 
angular subsampling slightly overestimates the consistency 
achievable in scans of the same subject across independent 
scanning sessions). But, by subsampling the same dataset, we can 
isolate the effect of angular sampling and model it, with other 
sources of variance held constant. Fig. 2 shows the standard 
deviation (a measure of instability) of the connectivity matrix 
elements among the connectivity maps calculated from subset 15 
to subset 48; this standard deviation was computed in each of the 8 
subjects, and then averaged across all 8, to infer general patterns. 
As expected, some of the thinnest (narrowest) fiber tracts – the 
cerebellar ICP and SCP, and the internal capsules – were strongly 
affected by altering the angular resolution. Even some of the major 
pathways, including the apparent connections of the cortico-spinal 
tract with the ACR, ALIC and SFO were also quite severely 
influenced (red colors, Fig. 2).  

 
Fig. 2. Angular resolution affects white matter connectivity 
measures. The names of the ROIs are listed in Table 2. In the red 
cells, varying the angular resolution of the scan affected the 
proportion of fibers apparently connecting the two regions of 
interest (on the x and y axes). Data show the standard deviation of 
the computed proportion of fibers.  
 
3.2. Isolating the spatial resolution effect on apparent white 
matter connectivity 
In general, changing the spatial resolution will also change the 
SNR for any DTI-derived measure. We chose the P2 dataset in 
Table 1 as the target, and gradually reduced its spatial resolution 
by downsampling its isotropic voxels of side 2.5 mm to 2.6, 2.7,…, 
10 mm. Although other choices are possible, we chose linear 
interpolation to downsample the original P2 images to create each 
new image. For each downsampled subset, we calculated white 
matter connectivity based on 4th-order SH CSA-ODFs. Fig. 3 
shows the standard deviation of connectivity matrix elements 
across connectivity maps calculated at all voxel sizes in the range 
2.5, 2.6 …10 mm, averaged across all eight subjects. The 
computed WM connectivity in all tracts and all regions is affected 
by partial volume effects. Greatest differences were found in the 
connections of the medial lemniscus, cerebellar peduncles, internal 
capsules, which are among the thinnest tracts. 

3.3. Joint effect of spatial resolution and SNR on apparent 
white matter connectivity and cortical connectivity 
As 4th-order SH CSA-ODFs require at least 15 gradient directions 
to compute, we instead used the diffusion tensor model to evaluate 
white matter connectivity for the single subject scanned many 



times with only 12 gradient directions, but at multiple spatial 
resolutions. Fig. 4 shows the standard deviation of connectivity 
among connectivity maps calculated at 4 different isotropic spatial 
resolutions (2, 2.5, 3 and 4). These maps show more differences 
than those in Fig. 3, as signal averaging was used to boost the SNR 
for the scans with smaller voxels. By contrast, Fig. 3 is based on 
downsampling the exact same set of scans in 8 subjects, rather than 
performing new scans.  

Fig. 5 shows the standard deviation of elements in cortical 
connectivity matrices for 70 ROIs in the 12-direction dataset, at 4 
different spatial resolutions. The computed pattern of cortical 
connectivity heavily depends on the spatial resolution, with less 
apparent connectivity in scans with large voxels.  The cortical 
connection between parahippocampal and fusiform gyri, and 
between corresponding structures in the left and right hemispheres 
were most affected by spatial resolution. 

 
Fig. 3. White matter connectivity measures depend on the 
spatial resolution of the scans. The names of the ROIs are listed 
in Table 2.  Here the thinnest tracts – the internal capsules and 
cerebellar peduncles – are among those whose connectivity is least 
stable as the spatial resolution of the DTI scan is changed. The 
least stable tracts are shown in red.  

 
Fig. 4. White matter connectivity measures depend on the SNR 
and spatial resolution of the scans. The names of the ROIs are 
listed in Table 2. Red matrix entries show connections that vary 
the most as spatial resolution was changed, in one subject scanned 
at 4 spatial resolutions. Many connections differ with spatial 
resolution; unlike Fig. 3, which downsampled the scan data 
without SNR varying.  

4. CONCLUSION 
Overall, scans with larger voxels were prone to partial volume 
artifacts due to under-sampling, that causes a “loss” of some 

connections, especially for narrower tracts in the cerebellum and 
internal capsule. Differences were prominent throughout the brain. 
Care is needed when (1) interpreting anatomical connectivity 
patterns as objective measures of biological connectivity, (2) 
pooling data across scanners, and (3) comparing studies. 

 
Fig. 5. Cortical connectivity variation within a single subject 
scanned at 4 spatial resolutions. The names of the ROIs are listed 
in Table 3 (1-35, left hemisphere; 36-70, right hemisphere, e.g., 
ROIs 2 and 37 are the caudal anterior cingulate in the left and right 
hemispheres, respectively). 
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