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Human Interaction with Robot Swarms: A Survey

Andreas Kolling∗, Member, IEEE, Phillip Walker†, Student Member, IEEE, Nilanjan Chakraborty‡,

Member, IEEE, Katia Sycara⋆, Fellow, IEEE, Michael Lewis†, Member, IEEE,

Abstract—Recent advances in technology are delivering robots
of reduced size and cost. A natural outgrowth of these ad-
vances are systems comprised of large numbers of robots that
collaborate autonomously in diverse applications. Research on
effective, autonomous control of such systems, commonly called
swarms, has increased dramatically in recent years and received
attention from many domains, such as bio-inspired robotics and
control theory. These kinds of distributed systems present novel
challenges for the effective integration of human supervisors, op-
erators, and teammates that are only beginning to be addressed.

This paper is the first survey of human-swarm interaction
(HSI) and identifies the core concepts needed to design a human-
swarm system. We first present the basics of swarm robotics.
Then, we introduce human-swarm interaction from the perspec-
tive of a human operator by discussing the cognitive complexity
of solving tasks with swarm systems. Next, we introduce the
interface between swarm and operator and identify challenges
and solutions relating to human-swarm communication, state
estimation and visualization, and human control of swarms. For
the latter we develop a taxonomy of control methods that enable
operators to control swarms effectively. Finally, we synthesize the
results to highlight remaining challenges, unanswered questions,
and open problems for human-swarm interaction, as well as how
to address them in future works.

Index Terms—Human-swarm interaction, Human-robot inter-
action, Swarm Robotics, Multi-robot systems

I. INTRODUCTION

Robot swarms consist of multiple robots that coordinate

autonomously via local control laws based on the robot’s

current state and nearby environment, including neighboring

robots. Key advantages of robotic swarms are robustness to

failure of individual robots and scalability, both of which are

due to the simple and distributed nature of their coordination.

Multi-robot systems that are not swarms have explicitly rep-

resented goals, form and execute both individual and group

plans, have different capabilities and can assume different

roles [1], [2], [3]. Robots in these multi-robot systems could

act independently without coordinating, e.g., multiple robots
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searching a different area for victims in a search and rescue

scenario. Conversely, they could also cooperate as a team

in which all members work towards known shared goals, or

coalitions in which members are self-interested. Swarms, on

the other hand, involve coordination between robots that relies

on distributed algorithms and information processing. Because

of this, global behaviors are not explicitly stated, and instead

emerge from local interactions. In such cases, the individual

robots themselves likely could not act independently in any

successful manner.

Swarm robotics was originally studied in the context of

biological swarms found in nature, but has since become its

own distinctive engineering discipline [4], [5], [6], [7], since it

promises to be useful in a wide range of potential applications

including reconnaissance, environmental monitoring, tracking,

exploration, search and pursuit-evasion, infrastructure support,

protection, and even space exploration [8]. Despite their poten-

tial, most robot swarms are still confined to laboratory settings

and simulations. There are a variety of robot simulation

platforms that have been used for studies and benchmarking,

such as the widely used Stage platform [9] which offers 2D

simulations that scale to thousands of robots.

A number of recent projects have made some progress

developing swarm hardware. The Micro Autonomous Sys-

tems and Technology project has created numerous micro

vehicles [10]. The “Swarmanoid” Towards Humanoid Robotic

Swarms”project [11] developed a swarm of heterogeneous

mid-sized robots, including the popular SWARM-BOT plat-

form s-bot [12], [13], [14]. Other projects and experiments

used available platforms including the Kobot [15], E-puck,

and Kilobot [16], [17]. These examples, along with growing

development of robotic hardware and its decreasing cost

suggest that real world applications for swarms are within

reach. To achieve this a number of challenges remain to be

addressed—primarily, the study of human interaction with

such swarms. For the most part, swarms are expected to

operate autonomously. But the presence of a human operator

can be beneficial and even necessary since the operator could

(a) recognize and mitigate shortcomings of the autonomy, (b)

have available ”out of band” information not accessible to the

autonomy and that can be utilized to increase performance,

and (c) convey changes in intent as mission goals change.

There is currently a dearth of studies investigating effective

ways in which human supervisory control of swarms could be

performed. This paper is an attempt to fill this gap by outlining

the basic concepts, requirements, and challenges of human-

swarm interaction (HSI), and by reviewing related literature

within this emerging field to identify issues and important

areas for further work.
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In the following, we will first briefly discuss swarm robotics

in Section II. This will set the context and provides the

uninitiated reader a cursory glance on this growing field. Then,

in Section III, we will discuss HSI from an operator perspec-

tive. Section III-A establishes the operator’s perspective by

introducing cognitive complexity and a notion of difficulty for

the control of large swarms. Within this context we address

the following research questions:

(a) How do the properties of the communication channel

between operator and swarm affect human-swarm interac-

tions, such as the ability to observe and control the swarm?

(b) How can an operator observe a swarm and its dynamics?

(c) What are the different control methods used, and how do

they affect the ability of an operator to control a swarm?

(d) What is the relevance of the notion of levels of automation

in HSI and how has it been exploited and studied?

(e) How do swarm dynamics affect the ability of the operator

to control the swarm?

Question (a) is addressed in Section III-B by discussing

issues of operator-swarm communication. This is followed by

Section III-C in which we address question (b) by discussing

swarm state estimation and visualization. Then in Section III-D

we develop a taxonomy for methods of control with which an

operator can impart intent to the swarm, thereby addressing

question (c). Question (d), relating to levels of automation,

is addressed in Section III-E. Question (e) is addressed in

Section III-F with an emphasis on the timing of operator

inputs. Finally, we conclude with a discussion in Section IV

and present suggestions for further work in Section V.

II. ROBOT SWARMS

In one of the first surveys discussing swarms, Dudek et

al. [18] propose a taxonomy that emphasizes tasks. They

distinguish between tasks that 1) require multiple agents, 2) are

traditionally multi-agent, 3) are inherently single-agent, and

4) may benefit from the use of multiple agents. For the latter

types of tasks, using a multi-robot system has to be justified

with respect to some performance criteria. These criteria are

usually expressed in terms of efficiency, effectiveness, robust-

ness, flexibility, or design complexity. Tasks corresponding to

1) or 2) are frequently mentioned in other surveys [19], [20],

[1], [2], [21] and are most often spatially distributed tasks. In

addition to tasks, a taxonomy based on system properties is

also found in [18] which classifies systems according to: 1)

size, 2) communication range, 3) communication topology, 4)

communication bandwidth, 5) reconfigurability 6) processing

capability of each unit, and 7) composition. A clear distinction

between swarms and multi-robot systems is not made. In fact,

earlier versions of [18] used these terms interchangeably.

Other taxonomies, such as [19], [20], [2], and [21], dis-

tinguish multi-robot systems not based on hardware features

but rather on problems, solutions, issues, and research areas.

In [19] Cao et al. distinguish between systems based on

group architecture, resource conflicts, origins of cooperation,

learning and geometric problems. Parker, in [2], focuses on

the different approaches to designing a distributed intelligence,

namely the bio-inspired paradigm, the organizational and

social paradigms, and the knowledge-based, ontological, and

semantic paradigms. Similarly, and also focused on coordi-

nation, in [1] Farinelli et al. propose a taxonomy of multi-

robot systems that distinguishes whether robots are aware or

unaware of each other.

An emphasis on swarm systems, rather than more general

multi-robot systems, is found in [5], which focuses on the

commonly desired swarm properties of robustness, scalability,

and flexibility. In [6] Brambilla et al. propose two taxonomies,

one classifying methods for design and analysis of swarms and

one classifying types of swarm behaviors. Another recent sur-

vey [7] also includes a list of recent projects and descriptions

of physical robots, projects, and simulation platforms.

From this vast trove of taxonomies and descriptions of

multi-robot and swarm systems, we will present selected

examples and problems to give a brief introduction to swarm

robotics as a whole. We will not rely on a specific taxonomy,

but rather discuss swarm systems from the perspective of

different methodologies, selected tasks, and algorithms that

one may run on a swarm in practice.

A. Swarm Models

Swarms have been studied from a number of perspectives,

including bio-inspired, control theoretic, amorphous comput-

ing, and physics-inspired. The models and methods that orig-

inated from these differ not only with regard to the source

of inspiration but also with regard to theoretical guarantees,

operating conditions, and suitable metaphors. The latter may

have some bearing with regard to the interpretation of a

swarm behavior by human operators. Thus, it is necessary to

understand these commonly used swarm models if one is to

design a human-swarm system around them.

1) Bio-inspired

Biological systems have long since been an inspiration for

the design of robotic systems in terms of hardware [22] as

well as behavior [23]. Much of the work on swarm robotics

originated from the study of biological swarms and swarm

intelligence [4]. A recent survey [6] reviewed swarm engi-

neering efforts and identified four areas that require further

attention to support the development of real-world applica-

tions, namely (1) modeling and specification of requirements,

(2) design of swarm behaviors, (3) verification and validation

of swarm models, and (4) human-swarm interaction. The most

interesting for the perspective of this paper is the fourth area,

concerned with operation and maintenance of swarms. In this

area, particular concern is given to enabling effective control

when lacking a centralized instance.

One of the better known examples of a swarm algorithm

derived from a biological inspiration is presented in [24].

Therein, Couzin et al. model the spatial behavior of animal

groups with simple local interaction rules. These rules are

determined by three parameters, the radii of three zones,

namely zones of repulsion, orientation, and attraction. In the

paper above, this simple model can generate four qualitatively

distinct swarm behaviors: 1) swarm, 2) torus, 3) dynamic par-

allel, and 4) highly parallel. Which of the resulting behaviors

a swarm generates depends on the choice of parameters and

initial conditions, and raises the obvious question on how a



3

human operator could interact with such a biological swarm

model to induce transitions between these four types or change

the direction of motion for a given type. This question has

been investigated in [25] through the injection of leaders and

predators under the control of an operator, a paradigm that

will be discussed further in Section III-D4.

Another strand of bio-inspired research is related to

pheromone-based communication [26], [27]. Pheromones have

been used in [28] to coordinate a swarm to for surveillance,

reconnaissance, hazard detection, and path finding. On a more

general note, in [29] Sumpter identifies several principles that

describe biological systems that exhibit collective behavior.

Applying these principles to engineered systems has led to

a wide range of bio-inspired systems, some of which are

surveyed in [30].

2) Control Theory

There has been a considerable amount of work done on

swarms from the perspective of control theory—a brief survey

of which is found in [31]. Some of this work has been

done under the heading of distributed robot networks [32].

The authors of [32] unify prior work on connectivity mainte-

nance [33], rendezvous [34], deployment [35], [36], boundary

estimation [37], and tracking [38], and present a rigorous

model for control and communication in such networks. The

physical model of individual robots is defined in [32] as a

continuous-time continuous-space dynamical system with a

state space, input space, allowable initial states, and a control

vector field that determines robot motion given a state and

input. The network aspects are modeled as a communication

edge map which determines whether a communication link

between any two robots exists. This is followed by a formal

definition of control and communication laws, with discrete-

time communication but continuous-time motion.

The practical advantage of this approach is the generalized

consideration of physical dynamics, which have received less

attention in bio-inspired work. While the formal results are

important, their underlying assumptions are necessarily sim-

plified to make them tractable. Yet, resulting formal guarantees

and analysis tools could still be useful for human operators

and system designers. For instance, in [39] formal methods

are used to determine whether human control inputs for

certain swarm tasks are theoretically possible. Control the-

oretic approaches are therefore an important complementary

contribution to bio-inspired works.

3) Amorphous Computing

Amorphous computing [40] refers to the programming

of many small computers distributed irregularly throughout

some surface or volume, with no a priori knowledge of their

location or neighbors [41]. These small computers are each

controlled through identical programs, which dictate their

behavior through interactions with nearby nodes. These com-

puters form a discrete approximation of the continuous space

they inhabit, and thus can be controlled programmatically

through gradients or vector fields. The amorphous computing

idea is thus strikingly similar to swarm robotics in general.

Amorphous computing assumes few capabilities of the indi-

vidual units—typically only an on-board clock, some method

of short-range communication, a power source, and the sensors

and actuators necessary for their application. The setup is also

robust to communication failure or failure of a unit as a whole,

because mechanical failure simply means one less point with

which to estimate the continuous medium.

A programming language, Proto was developed to deal

with distributed computers in a medium, and to determine

the specific engineering problems that need to be solved

before real-world applications of swarms operating under the

amorphous abstraction can come to fruition [42]. Proto allows

an operator to compose behavioral primitives for their swarm.

The authors of [43], [44] have used Proto to create an amor-

phous computing system comprised of about 10,000 individual

robots, and a real-world system of 40 robots where they

tested swarm behaviors. Tests using the real robots indicate

that the system is relatively robust to communication message

drops and lag times, and that swarms programmed under

amorphous computing can successfully demonstrate simple

swarm behaviors, such as rendezvous and dispersion.

4) Physics-inspired

Physical systems are yet another important source for al-

gorithms with emergent properties. A well-known example

is [45] where the authors present a system of self-propelling

particles that achieve alignment following simple update rules.

Subsequently, Jadbabaie et al. [46] provide a rigorous formal

analysis of such types of systems from a control and graph-

theoretic perspective. The neighbor-based rules therein for

coordinating the motion of particles are not unlike some

flocking algorithms inspired by biological systems. In [47],

also inspired by artificial forces, an inverse-power law is used

to determine attraction and repulsion forces between robots

and groups of robots, coined social potential fields. Another

example of using a force-based law is found in [48], which also

includes obstacles in the force equations. Yet another approach

that seeks inspiration from the natural world is known as

physicomimetics [49], [50], [51]. The key idea here is that

physics in and of itself is a discipline that describes large scale

emergent phenomena in terms of well understood equations,

but which arise from a multitude of lower level interactions

(of particles and forces). The approach has been applied in

[52] and [53].

Despite the similarities to bio-inspired approaches for flock-

ing, the physics-inspired work has a distinctly different per-

spective on the individuals in a swarm. The focus is more

on passive than active interactions with a different perspective

on agency (e.g. particles do not communicate actively and

only influence each other tacitly through forces). One of

the main advantages of a physics-inspired approach is the

considerable body of experimental and formal work relating

to self-organization in physical systems that one can borrow

from. For example, work on predictive self-assembly [54] of

polyhedra has been useful for determining how to generate

self-assembled structures, i.e., in [55] it was shown how to

generate a self-assembled structure by setting desired nearest

neighbor distances. In a swarm this could be expressed by

having each member move to a position that most closely
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achieves the desired inter-robot distances.

B. Swarm Tasks and Behaviors

Existing surveys on swarm robotics provide an excellent and

detailed overview of the large number of swarm behaviors that

have been studied, most of which solve a specific task. Some

include categories for these behaviors, such as in [6] which

distinguishes spatially-organizing, navigation, and collective

decision-making behaviors. In the following we will present a

few selected examples.

1) Aggregation and Rendezvous

One of the simplest swarm behaviors is aggregation, a

process often found in natural swarm systems [56] and adapted

to artificial swarms (see, for example, [57]). From a control-

theoretic perspective a similar problem has been studied as the

rendezvous problem [34]. The basic objective for both is to

move all swarm robots towards a common location.

Bio-inspired aggregation behaviors have been implemented

on real swarm robots in [57]. Therein the authors start with a

model for a specific swarm robot, the s-bot, equipped with an

omni-directional speaker, three directional microphones, and

eight infrared proximity sensors. Weights for a neural network

controller, with direct connections from every sensor to every

actuator, are evolved under a fitness function that measures

aggregation via the average distance of robots from the center

of mass of the swarm. Two distinct aggregation behaviors

were discussed: one leads to multiple static aggregates while

the second leads to a single moving dynamic aggregate that

resembles a flocking behavior.

The rendezvous problem has been studied in [34]. Therein

the authors define an abstract model of a robot that knows

its own location and can transmit it to neighbors within its

communication network. The authors prove theoretical guar-

antees for the convergence of the swarm to the circumcenter

under different static and changing communication topologies.

The main assumptions for guarantees to hold are the ability

to sense or receive the locations of neighboring robots and

having an environment without obstacles. Further work on the

rendezvous problem has led to a reduction in the required

sensor capabilities. For example, in [58], Yu et al. present

a solution to the rendezvous problem that does not require

knowledge about exact location of other robots, but instead

uses only a quantized bearing sensor that reports the presence

of another robot in a small range ahead of the robot.

2) Deployment and Area Coverage

Deployment of swarms, i.e., swarm dispersion governed by

local control laws, is a swarm behavior typically used for area

coverage. Swarms are expected to be ideal for area coverage,

because this task requires covering, with sensors, a large area

in order to observe some phenomena of interest or discover

and track targets. One of the first to apply a force metaphor (a

physics-inspired perspective) for the distribution of large robot

teams are Howard et al. in [48]. Therein, robots are repelled

by obstacles and other robots and, as a consequence, distribute

throughout an environment with obstacles. Experiments with

100 robots show successful dispersion in a realistic office

environment and convergence to a static equilibrium.

A different approach to area coverage, with the goal of

seeing every part of an environment, akin to the art gallery

problem, is taken in [36]. Therein the environment is given by

a polygonal boundary and robots cover the environment by

creating an incremental partition of the environment as they

progress to cover it. Some results regarding convergence time

and guarantees for a given number of robots are provided.

A fleet of fifty-six real robots was used in [59] to test and

compare five area coverage algorithms showing significant

differences between the time to reach various goal locations

and to fully disperse in the entire environment.

3) Flocking and Formation Control

A more complex set of swarm behaviors is the formation of

specific patterns of motions, specifically flocking, or consensus

on a direction and speed of movement. One of the first

algorithms to enable a swarm of robots to flock was presented

by Reynolds in [60], with the motivation to simulate flocks

of birds for computer graphics. Therein individuals would

follow simple local rules to avoid collisions (separation),

match velocities to their neighbors (alignment) and center

themselves amongst their neighbors (cohesion). Together these

generate a flocking behavior. One of the earlier demonstrations

of how to control a flock of animals, with robots influencing

the flock, were presented in [61]. A simple controller for the

robot was tested in a simulation with a swarm model similar to

[60]. In [62], work on flocking is applied and implemented on

robots with particular emphasis on the translation of control

inputs to robot motion. More precisely, the force vectors

resulting from the flocking rules for cohesion, separation, and

alignment are translated into forward and angular velocity. The

experiments in [62] show improved effective travel distance

when considering magnitudes of the forces.

An overall framework for the analysis of flocking algo-

rithms, including analysis of swarm fragmentation, is pre-

sented in [63], (following a line of work from [64], [65]

and [46]). One of the most interesting aspects of [63] is the

first introduction of a formal definition of what constitutes

flocking. This definition is established with regard to 1) how

much the flock differs from a lattice (i.e., a formation with all

neighbors having a desired distance to each other) in terms of

a deviation energy, 2) to what extent velocities are matched,

3) connectedness and cohesiveness of the flock.

4) Foraging and Transport

Formation of chains between two locations, akin to ant

trails, constitute a more complex behavior [66]. The key

challenge for the chain formation is to establish shortest

paths that can also be used by a larger number of swarm

robots without leading to congestion. Other works have dealt

with cooperatively transporting a single object with multiple

robots [67]. An overview of a range of the work done on

this problem is found in [68]. A bio-inspired perspective for

foraging is given in [69], whereby a stigmergy-based approach,

inspired by the pheromone markers of ants, is presented for a

heterogenous swarm composed of ground and aerial robots.
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III. HUMAN SWARM INTERACTION

In this section we present the key components of a human-

swarm system while focusing on the perspective of the oper-

ator. These are illustrated in Figure 1. We begin in Section

III-A by discussing general issues of cognitive complexity

when interacting and completing tasks with swarms. The

operator interacts with the swarm through an interface that

is constrained by the means of communication and relies on

methods for state estimation and visualization and control

that facilitate the interaction between human and swarm.

Communication is discussed in Section III-B, followed by state

estimation and visualization in Section III-C. Subsequently,

we discuss different methods with which the operator can

control a swarm in the form of a brief taxonomy in Section

III-D. Issues regarding levels of automation as well as input

timing and neglect benevolence, which influence the overall

human-swarm system are discussed in Sections III-E and III-F,

respectively.

operator swarm

interface

III-A

Cognitive

Complexity

III-C

State Estimation

& Visualization

III-B
Communication

III-D
Control Methods

II

Robot
Swarms

III-E Levels of Autonomy

III-F Input Timing and Neglect Benevolence

Figure 1: The key components of a human-swarm system, with

an operator solving complex tasks and communicating with a

swarm through an interface to receive state feedback and send

inputs using appropriate control methods. The entire system

is influenced by levels of automation and input timing and

neglect benevolence. Section indices show our organization.

A. Cognitive Complexity of Human-Robot Systems

Earlier taxonomies of multi-robot systems have focused

primarily on physical characteristics, tasks, and methods, while

human-robot interaction (HRI) taxonomies have considered

roles and structure. Few, however, have addressed the difficulty

of the operator’s tasks. In computer science the notion of

computational complexity—the time that must be used to solve

a problem as a function of the size of its input—has proven

fruitful for separating scalable and tractable algorithms from

non-scalable ones. Algorithms with high complexity may work

for small problems, but fail or grow inefficient for even slightly

larger ones. The task of controlling multiple robots is similar

to an algorithm in that the operator must perform a repetitive

sequence of decisions and actions to enable the system to reach

some desired goal state.

In [70], [3], HRI was defined in terms of operator’s cog-

nitive effort akin to computational complexity. If a group of

homogeneous robots are performing independent activities, the

operator can devote the same attention to each in turn, resulting

in a complexity of order n, written O(n), because each of

the n robots requires the same set of operator interaction

with it. Thus the total operator effort/attention is linearly

related to the number of robots. Applications of this O(n)
interaction complexity are search and rescue when the area has

been divided in regions that are searched by robots operating

independently of one another, and authentication of weapons

release where the operator must authenticate each release

sequentially, etc. A benefit of this independence is that more

robots can be controlled simply by adding more operators in a

linear manner. Indeed, the fan-out model proposed in [71] to

estimate the number of robots an operator can control within

some time interval is a special case of the cognitive complexity

of control scheme proposed by Lewis [70], [3]. The fan-out

model makes the assumption of Neglect Tolerance, namely

that a robot’s performance will degrade if the robot is left

unattended by the operator for some time (neglect time) and

that some interaction time must be periodically devoted to the

robot by the operator. More sophisticated formal schemes for

scheduling operator attention have been recently developed

[72], [73] as well as human studies to determine operator

behavior under those scheduling schemes [74], [75], [76].

A different form of control, such as designating a region to

be searched by drawing it on a map, can command an arbitrary

number of robots with a single operator action, as long as the

interactions between the robots (such as preventing collisions)

can be handled autonomously. In this case the number of

actions the operator must take are independent of the number

of robots, and thus control is O(1), allowing one (or a

fixed number of) human operator(s) to control any number

of robots. Given a robotic swarm where the members are

coordinating autonomously to provide useful behaviors, such

as flocking and rendezvous, control of the swarm can be O(1),
thus making swarms a desirable multi-robot organizational

scheme, where the operator need only focus on the goal of

the swarm overall. This, in effect, means that the operator

can treat the swarm as a single entity much of the time, and

multiple robots can be added or removed without impacting

the cognitive burden of the human operator. However, in cases

where the operator must divide the swarm, or issue separate

commands to different sub-swarms, control complexity may

more realistically lie between O(1) and O(n), or potentially

worse.

In contrast to the above two scenarios, there also exist tasks

where robot to robot interaction is not handled autonomously,

yet the robots must coordinate to perform some common task,

such as box pushing with robots controlled by an operator [77].

Such a scenario would have super-linear command complexity,

O(> n), because dependencies between robots create cascad-

ing demands as the number of robots grows. See Figure 2 for

a graphical illustration of these concepts.

The primary purpose of the cognitive complexity scheme

is to emphasize the effort of the human operator required to

control a multi-robot system, and as such the basic notion is
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Cognitive limit

O(> n)

O(n)

O(1)

Operator Resources

Number of Robots

Figure 2: Graphical illustration of the concept of control

complexity in a human-multi-robot system.

applicable to swarms as well, and contextualises human-swarm

interaction. The notion and scheme of cognitive complexity is

useful in human-swarm interaction in that it can be used to

guide development of algorithms that remove the necessity to

manage inter-dependencies between robots in the swarm. The

overall cognitive difficulty for swarm control is, however, also

determined by the parts of the control loop detailed in the

following sections and is not always O(1).

B. Communication

The majority of research on HSI has focused on remote

interactions (i.e., when the human operates separately from

outside the swarm). For such interactions, the dominating

issue is that of communication, usually with an operator at

a computer terminal. Communication is also one of the main

challenges in swarm robotics in general, in particular with re-

gard to the topology of the swarm network. As briefly noted in

Section II, most proofs of guarantees for swarm behaviors have

to carefully take into account changes in the communication

topology, as these are influenced by robot motion, which in

turn depends on inputs that may change when the topology

changes. The difficulty here lies primarily in guaranteeing

certain properties of the evolution of the communication

topology that hold regardless of how they influence swarm

motion. Fragmentation of a swarm into multiple connected

components is a particular concern. A human operator will

likely have to account for these communication difficulties

as well. In addition, a remote swarm operator needs remote

access to relevant information about the swarm, a problem

that an autonomous distributed control algorithm does not

face since it runs directly on the robots. Some challenges

regarding communicating this information to an operator and

the effect of resulting uncertainty from incomplete information

are briefly discussed in [78].

Proximal interactions, on the other hand, assume that oper-

ators and swarms are in shared environment. Such interactions

are suitable to support local interactions between swarms and

operators and generally do not require a communication in-

frastructure. Multiple operators can easily be distributed across

the swarm and environment. Some swarm robotics surveys that

discuss the need for HSI research [6], [5] desire such a local

interaction scheme in order not to interfere with the distributed

design of swarms. In the following we discuss communication

issues related to remote and proximal interaction schemes.

1) Remote Interaction

Despite the difficulties mentioned above, remote interaction

is likely to be the default option for swarms that are entering

otherwise inaccessible or dangerous areas. In fact, one of the

key motivations for using swarms in real world applications is

their ability to be deployed in exactly such areas. Hence, one of

the primary challenges of HSI is to reconcile the distributed

nature of swarms with a central human element of control

and the ability to collect information about the swarm and

environment. Part of this is a technical challenge, addressed

in the study of sensor networks [79], [80] and mobile adhoc

networks [81], [82]. It is noteworthy that swarm methods and

algorithms are also used to manage networks, e.g., they are

used in [83] to improve bandwidth and latency and in [84] to

design routing protocols.

There may still be individual robots that are capable of

global communication with an operator. An operator might

also be able to broadcast a command to an entire swarm.

So we can have global one-to-one or global one-directional

one-to-many communication. For example, underwater gliders

that resurface to establish a brief satellite connection and then

return to the swarm enable one-to-one global communication.

An example of a distributed swarm network that is con-

trolled by a central operator is found in [85]. Therein the

authors address a number of practical challenges for main-

taining a swarm with 112 robots. A so called gateway robot

receives new software and broadcasts it into the swarm to

enable the programming of these robots. A centralized user

interface allows an operator to receive data from the gateway

robot about the swarm state.

The important practical problems facing a swarm operator

are latency, bandwidth, and asynchrony. From the existing

swarm literature, one can draw the conclusion that for swarm

systems bandwidth is more limited and latency and asyn-

chrony higher than in other types of systems. There are few

experiments regarding the impact of bandwidth limitations

on human-swarm interaction though. One first attempt was

made in [86] by exploring three bandwidth conditions in a

foraging task. In the low bandwidth condition, the operator

only receives a location update from a single robot per time

step. In the medium bandwidth condition, the swarm utilizes

local bandwidth to estimate the swarm centroid and average

orientation, which is then transmitted to the operator. In the

high bandwidth condition, all swarm robots communicated

their location to the operator at every time step. The per-

formance of operators in the medium and high bandwidth

conditions was statistically indistinguishable, suggesting that

not all position data from each robot in a moving swarm is

necessary for proper control. The effect of latency on human

control of a foraging swarm was investigated in [87]. Increase

in latency was associated with deteriorating performance,

however a predictive display that took into account swarm

dynamics helped to lessen the negative effects of latency.
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2) Proximal Interaction

Proximal interactions with a swarm enable an operator to

observe the whole or part of a swarm directly and interact

in a shared environment. In cases when the swarm can sense

the operator, the latter can act as a special swarm member

and thereby influence the behavior of the swarm through local

interactions. This also opens the possibility for having multiple

human operators who can influence and control the swarm in

a distributed manner.

Most of the research on proximal swarm interactions has

focused on enabling the interaction through gesture recogni-

tion [88], [89], [90] as well as face engagement and speech

[91]. The distributed gesture recognition presented in [88]

and [90] facilitates the communication of a wide range of

instructions to all swarm robots within sight. The human wears

an orange glove that is easily recognizable by the cameras

on board the robots. The robots that can see the glove then

participate in a consensus protocol to determine the meaning

of the gesture. Line of sight is also required for the face

engagement and speech approach used in [91]. Therein the

operator can select one or multiple robots via face engagement,

which is detected via a camera on each robot, and speech

commands. With speech commands the operator can add or

remove engaged robots to a group or trigger a desired behavior.

Both mechanisms would, in theory, enable the integration of

multiple operators into a swarm, although such experiments

have not been carried out yet. Proximal interactions were

envisioned in the GUARDIANS project [92] as beneficial for

firefighters in a rescue scenario, and in [93] the human operator

interacted with the swarm as a special swarm member that

acted as an attractor.

Proximal interactions with a swarm that actively engage an

operator, such as speech or gestures, are similar to proximal

interactions with other robot systems [94] or interactions in

the context of peer-to-peer teaming [95]. The added difficulty

for swarms results primarily from limited sensing and compu-

tational power on individual robots. Distributed methods may

mitigate this shortcoming and additionally benefit from multi-

ple sensor estimates (e.g., multiple perspectives for cameras).

Proximal interactions that treat the operator as an ordinary or

special swarm member are usually not found in other human-

robot systems. However, such passive proximal interactions

have received little to no attention in the literature so far and

it is not clear how one would utilize them for controlling large

swarms.

C. Swarm State Estimation and Visualization

Proper supervision of a semi-autonomous swarm requires

the human operator to be able to observe the state and motion

of the swarm, as well as predict its future state to within

some reasonable accuracy. How good the prediction must be

depends on the scenario, but there must be some ability to

forecast future behavior in order to relate to the effects of

control inputs. A key distinction between swarms and multi-

robot systems is a focus on the swarm as a single entity rather

than multiple individual robots.

An important function of the human operator is to estimate

the state of the swarm over time so as to be able to provide

appropriate control inputs. The main difficulty here is not

only to visualize the swarm state but also to facilitate the

understanding of swarm dynamics as well as the impact of

control inputs. The swarm models, i.e., bio-inspired, control

theoretic, amorphous computing, and physics-inspired models,

may offer suitable metaphors for this problem. For example,

a visualization of forces might aid comprehension for an

operator familiar with attractive and repulsive forces. Very

little research, however, has investigated these ideas.

State visualization is particularly difficult for the operator

in situations with incomplete information. Such situations

arise in the real world from constraints on bandwidth and

communication latency that arise in operations taking place

in remote locations as well as sensing errors and uncertainty.

Several recent studies explored how different types of displays

could help the operator effectively visualize the state of the

swarm. In [86], the authors show that when information is

restricted to just the swarm centroid and standard deviation

of positions, human performance on a target search and

navigation task was unhindered, despite localization errors

of individual robots. Similarly, in [87], the authors focus on

latency in the communication channel between the swarm and

human. This also mimics similar scenarios to the bandwidth

case, where a human operator may be controlling a swarm

that is far away, or in an environment difficult for radio waves

to penetrate. Here, the authors, found that even a simple pre-

dictive display was beneficial to operators performing a target

searching task. These early studies indicate that simplifying the

large state of a swarm to a lower dimensional representation

can be beneficial to control. Other researchers [96] have shown

that small samples of angular velocities and concentration of

neighbors can be sufficient to classify the behavior of a swarm

following a common flocking algorithm [97] as either flocking

(moving in a common direction) or torus (moving in a circle).

Reducing the amount of noise and aggregating and fusing

information to simplify the problem of determining a swarm’s

state are promising research areas.

Besides displays, multimodal feedback to the operator has

also been investigated [98]. Here, the authors used a poten-

tial field approach for controlling the swarm for a convoy

protection scenario, and designed an interface that provides

feedback regarding the swarm speed, strength, capability, and

dispersion. The feedback was presented as visual, auditory and

tactile or a combination thereof. A study with 16 participants

was carried out in which operators had to respond to swarm

feedback with lower response times in the multi-modal feed-

back conditions.

Besides the aspect of designing appropriate algorithms that

provide aids to humans for swarm state estimation, there is the

very important issue of whether humans may be able to learn

to understand swarm dynamics, given appropriate feedback.

This question has hardly been investigated, and is essential

for operators that wish to change or properly assess swarm

behavior. In [99], the authors investigate whether human

operators can learn to predict the effects of different input

behaviors to a simulated swarm. The authors use a two-choice

control task, whereby operators choose either a dispersion or a

rendezvous algorithm for a swarm randomly distributed in an
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environment with obstacles. The goal was to cover as much

of the environment as possible in each trial. Results from

the experiments showed that human performance increased

over the 50 trials from an average of 60% to 80% correct,

thus indicating that humans could learn to estimate the results

of deploying a particular behavior on task performance. The

results of this study are interesting from another perspective

as well, because they were used to create a computational

cognitive model of the human operator that mimicked the

human performance [100]. To our knowledge, this is the only

study using a cognitive architecture to model human operators

in an HSI task.

In [101] the authors investigate whether human operators

can acquire enough understanding of swarm dynamics to

estimate the effects of the timing of their control input. In

this study, operators were tasked with observing a swarm

moving from a random initial state to some first formation,

and determining the optimal time to give an input signaling

the swarm to move to a second, goal formation. The operators

had to give the input at the time that would minimize the

convergence time to the second formation. However, due to

the phenomenon of neglect benevolence (see Section III-F),

the optimal input time was not necessarily as early as possible.

The argument in [101] is that an aided display is important

in such cases because it is difficult to perceive the optimal

input time by simply looking at the emergent behavior of the

swarm. An aided display, informed by the control algorithm,

seemed to help operators overcome this issue.

D. Control Methods - Conveying Operator Intent to the Swarm

We will now focus on the other side of the control loop:

how to properly convey input from the operator to the swarm.

Due to the fact the human control of swarms is desired to be

O(1), it stands to reason that in many cases a swarm can be

viewed as a single entity, much as a system with one robot and

one human would be, except that the properties and behavior

of this system would be very different than that of a single

robot. This may not always hold, as some swarms contain

heterogeneous members, and some will require splitting into

disconnected parts, or giving different members of a swarm

different commands. Therefore, there is a need to operational-

ize the types of control an operator can exert on the swarm.

We identify the following types:

1) switching between algorithms that implement desired

swarm behaviors,

2) changing parameters of a swarm control algorithm,

3) indirect control of the swarm via environmental influ-

ences, and

4) control through selected swarm members, typically called

leaders.

Within these swarm-specific types of control, we will

sometimes distinguish between discrete and continuous inputs.

For example, leader-based influence can be achieved with a

continuous input to a leader (teleoperation) or with a discrete

input. The above types are not mutually exclusive, interact

with other properties of the human-swarm system such as the

communication scheme (proximal or remote), and they impose

varying constraints on the swarm.

1) Algorithm and Behavior Selection

Control via algorithm and behavior selection assumes that

the human operator is giving control inputs at discrete time

points by selecting a specific swarm algorithm, such as those

discussed in Section II-B. It also presupposes that operators

have at their disposal a library of algorithms that implement

different swarm behaviors. By choosing different algorithms,

human control is akin to controlling hybrid systems with the

human acting as a switch. During the time that a behavior is

active an algorithm, usually a local control law, implements

the behavior autonomously. A comparison between behavior

selection and environmental influence in [102] indicated su-

perior performance for behavior selection for novice opera-

tors. Behavior selection was also used in [103] and [104].

Successful control with behavior selection also presupposes

that the operator can develop an understanding and has access

to an appropriate visualization of the swarm dynamics [101],

discussed earlier in Section III-C.

Overall, control via algorithm/behavior selection appears to

be an effective method of swarm control when the robots

have a high degree of autonomy and can operate largely

without error or human oversight in between human inputs.

Once instructed to execute a certain behavior, an operator

relies on the autonomy of the swarm as well as the auton-

omy of individual robots to deal with obstacle avoidance,

robot-to-robot communication, and local coordination. The

transmission of commands from the operator for this type of

control does generally not pose significant constraints on the

communication network. The greater challenges here relate

to the selection of the right behavior, input timing, and state

estimation—the operator needs to understand what different

swarm behaviors look like in order to employ proper selection

and switching.

2) Control via Parameter Setting

Most systems depend on a set of parameters for their

operations, and so can many swarm algorithms. The values

for these parameters offer a clear avenue for control and

influence for an operator, in both discrete and continuous input

settings. The key difference for swarms is that parameters do

not directly influence the behavior, but rather have indirect

effects through behaviors emerging from interactions within

the swarm and its environment.

In [24] the wide range of behaviors that can be generated

with a simple flocking algorithm given different parameters

is presented in great detail. These insights have not yet lead

to a human controlled transition between emergent behaviors

by changing the parameters of the system, however. One of

the few studies that considered the setting of parameters is

found in [105], yet it focused on indirect parameter setting

aided by an autonomous algorithm rather than allowing an

operator to directly modify parameters. Therein, Kira and

Potter present preliminary work for a top down and bottom up

approach for physicomimetic swarm control. For the top down

approach, an operator can set desired global characteristics,

such as swarm radius and maximum inter-agent distance (i.e.,

a parameter setting interaction). For the bottom up approach,

virtual agents (point particles) are placed in the swarm and
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interact with it via simulated gravitational forces. Evolutionary

computation is then used to learn an appropriate placement

and parametrization of these virtual agents to bring about a

particular behavior (e.g., a split into two groups). Placement

of the virtual particles resembles an environmental interaction

(see Section III-D3). The algorithms were tested on a “defend

a resource” scenario first in simulation with one resource, six

agents, and three virtual particles and also on six Pioneer

robotic platforms in the lab. No experiments with human

subjects have been reported regarding the effectiveness of this

approach.

Another example of parameter setting to control a swarm

is found in [106]. Therein, an operator controls a swarm of

UAVs, in simulation, by setting the parameters for the “per-

sonality” of UAVs, defined by four characteristics: conformity,

sociability, dedication, disposition. These relate to thresholds

in a target assignment and bidding process. In addition, the

operator can designate regions in the environment as either

hot or cold. Hot regions are suggestions to nearby UAVs that

this region will contain targets while cold regions suggest

the opposite. Whether a UAV incorporates the operator’s

suggestion depends on its conformity. There were no user

studies carried out in [106], nor any results presented. Some

results for a similar system are found [107], but are also

lacking user studies.

Despite the examples shown above, parameter setting is

most often done during the design state of the swarm, and

particular parameters that enable an operator to generate

multiple emergent behaviors are often desired. An example

of this is found in [108]. Therein, the authors investigate the

parameter space for a flocking algorithm to determine a set

of parameters that allows flocking and torus formations to

emerge. An operator then influences a subset of the swarm via

teleoperation to switch between flocks and torus formations.

The results in [108] indicate that it is easier for an operator

to switch from a torus to a flock when the teleoperated

robots influence the rest of the swarm via their orientation.

These results were obtained using simulation runs in a “Oz of

Wizard” style study [109], i.e., with simulated human input.

3) Environmental Influence

One of the distinctly “swarmish” interaction types is to in-

fluence a swarm through environmental factors. Environmental

influence involves altering part of the environment, usually

virtually, but sometimes physically, to influence the behavior

of a swarm within that part. Environmental influence has

been implemented as a variety of constructs, including virtual

pheromones, virtual beacons, and amorphous computing. The

key characteristics of this interaction type is that it is location-

dependent and persistent through time (or slowly vanishing in

the case of pheromones). Behavior selection in contrast sends

a single instruction that can be independent of location and

affects robots when it is received and subsequently propagated.

Environmental influence on the swarm is mediated via direct

or virtual sensing of environmental changes. Robots in the

swarm continue to operate under the same rules they were

deployed with and interact with the environment in a consistent

manner throughout their operation. It may be argued this is

a more suitable way to control the swarm, as it does not

directly interfere with the autonomous emergence of different

swarm behaviors, i.e., if it can be guaranteed that a behavior

will emerge, environmental control should not necessarily

affect that guarantee. This, however, depends on the type

of environmental influence available, particularly when using

virtual pheromones and beacons, and whether the emergent

properties are guaranteed in the particular environment.

An example of environmental influence is found in [110].

Therein, the authors use the analogy of a digital display to

represent a swarm of robots, whereby each robot represents a

“pixel” in the environment, and gives information only from its

local environment and neighboring robots to a human operator.

The example they give is that of a search and rescue scenario

inside a building, where a deployed swarm can spread out

and, once a victim is identified, the robot viewing them can

propagate its information back through the swarm via virtual

pheromones to the human operator. In their case, the rescuers

can then view the combined information from all nearby

robots on a head-mounted display as they travel through the

environment looking for the victims. Furthermore, the human

operator can influence the swarm by injecting pheromone

information to nearby robots via a handheld display. Another

example of virtual pheromones is given in [111], wherein

operators demonstrate the ability to use virtual pheromones

to control up to 50,000 robots in simulation. Another example

of environmental influence is given in [112] and [102], where

the authors use simulated beacons that can be placed by an

operator and signal to nearby robots to execute a certain

behavior. A set of seven different behaviors are implemented.

The beacons can be placed anywhere in the environment to

allow the operator to modify the overall swarm behavior via

the perceived environment as he or she sees fit. Experimental

results indicate, however, that behavior selection for the same

set of behaviors leads to superior performance, as compared

to placing beacons, for untrained operators on a foraging task.

Environmental interactions are also a natural type of interac-

tion mode for amorphous computing algorithms, discussed in

more detail in Section II-A3. The advantage that an amorphous

computing paradigm provides lies primarily in the enforce-

ment of a local context when writing swarm programs. It also

eases the maintenance of a set of variables that requires dis-

tributed computation across the swarm medium. In principle,

this could enable all types of human-swarm interaction, but is

ideally suited for environmental influence due to its in-built

emphasis on spatial distribution. Yet, no studies investigating

human control of swarms based on amorphous computing

principles have been carried out. The emphasis on expressive

instructions that depend on and persist with regard to time and

location suggest that there is ample room for investigation.

4) Leader Selection

One method to deal with the complexity of controlling a

swarm is to allow an operator to select and control a subset of

the swarm, thereby reducing the number of robots that have to

be considered simultaneously. Individuals or groups of robots

selected by an operator are frequently denoted as leaders since

they are expected to influence and lead the remaining swarm,
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as a proxy for the operator. The selection of a small set of

individual robots as leaders opens up the possibility for more

engaging forms of control that are also used for single and

multi-robot systems, such as teleoperation. The key difference

between swarms controlled via leaders and other systems is

that leaders have an influence that propagates through the

swarm, and an operator should attempt to control the entire

swarm via this propagated influence. The main questions for

leader-based control are (a) how to best select the leader,

(b) whether a selected leader remains a leader through out a

scenario or whether leadership is transient, (c) how to control

for propagation effects on the remaining swarm and (d), how

leaders should interact with nearby swarm members.

Persistent Influence via Leaders: In cases where more

precise control over a swarm’s operation is needed, or when a

desired emergent behavior cannot be generated autonomously

and without significant human influence, continuous inputs

may be given by a human operator. These continuous inputs

will have a persistent influence on selected leaders and indi-

rectly on the swarm, and such situations require significantly

more training and attention on the part of the operator. In

its basic form, persistent influence is akin to teleoperation.

It generally involves some notion of the state of the system

fed back to the operator who can then modify the inputs

accordingly. Such control usually requires a tight feedback

loop with low latency and a representation of the system state

that is interpretable for the operator. But proximal interactions

are also conducive to continuous control since the human can

always be sensed by the robots continuously and can direct

them much like a leader robot, and thus any movement of

the operator is potentially an input to the swarm. In Section

III-C we briefly discussed the difficulties of estimating and

visualizing the state of a swarm. For controlling motion of

single and multi-robot systems, visual and haptic feedback has

been used predominantly, and these do not easily translate to

swarms. The selection of swarm leaders, however, can enable

such control. In this case, the control of a single leader or

a group of leaders is similar to single robot or multi-robot

teleoperation. The key difference is the influence of the motion

of swarm leader on the remaining swarm that has to be taken

into account.

In [113] a leader robot in the swarm is teleoperated in order

to aid in the localization of a radiation source. The swarm is

influenced indirectly through the motion of the teleoperated

robot. The influence is determined by the mode of the robot

and can “push” other robots or direct them into one of four

directions (up, down, left, right). Once deselected the robot can

be instructed to maintain its mode and thereby its influence on

neighboring robots. Results of a small user study indicated that

human-operated swarms were significantly better than a fully

autonomous swarm at finding the radiation sources within the

environment. Goodrich et al. [114], [115], [116], [25] have

also worked extensively on leader-based control of swarms

that follow Couzin’s control laws [24]. Therein, the authors

investigate using teleoperated leaders, which will either attract

or repel neighboring robots, to allow a human operator to

control the swarm. The authors also consider swarm members,

so called stakeholders, that are influenced by the operator as

well as other swarm members in contrast to the teleoperated

leaders (also called predators in the case of repelling leaders).

An emphasis is placed on determining under what conditions

operator influence can lead to different emergent behaviors

and formations. In [117], the authors implement a leader-

based model both in simulation and on real robots, using

both virtual agents and a human operator as leaders in a

swarm, and found that this method scales reasonably well to

larger swarm sizes in an information foraging task without

obstacles, i.e., it is reasonably close to O(1) type control.

In [118] the authors propose two methods for propagating

operator intent from a single leader to the rest of the swarm.

The first is explicit, where the leader can be distinguished

from other neighboring robots, and thus it’s neighbors can

explicitly follow the leader’s heading; and the second is tacit,

where the leaders are indistinguishable, and implicitly biases

the average speed and heading of neighboring robots. Here, the

authors found that the explicit method gave human operators

better control over the swarm, but hypothesized that the tacit

method could be more robust to sensing error if a larger

percentage of the swarm were leader robots, to allow for

faster propagation of used intent. In [119], [120], the authors

further this work by presenting an algorithm for selecting

multiple leaders dynamically in a swarm as the topology of

the communication graph changes. They found that, while the

explicit method of propagation was again superior overall, the

tacit method performed better under significant sensing error.

The selection of single leaders or small groups of leaders

has been the default choice for much of the work on HSI that

involves persistent and continuous influence. One of the few

exception is found in [121]. Therein operators used a haptic

joystick to give continuous inputs to the entire swarm during

a target searching-task. The human teleoperated the swarm via

broadcast commands by manipulating the joystick. The swarm

itself handled obstacle avoidance and maintenance of proper

robot-to-robot distances, but global goal direction and speed of

the robots was controlled by the human. The haptic feedback

given to the operator is computed as the average of all forces

exerted on all swarm robots resulting from repulsion from

obstacles, similar to the approach in [48]. The authors found

that giving continuous inputs with haptic feedback allowed for

superior control and more targets found.

In general, teleoperation of robots has been studied exten-

sively, but the primary emphasis has been on single robots.

Here we are going to review some of the work done for

bilateral teleoperation of multi-robot systems, for which there

is usually a master robot that a human uses to control a

slave robotic system. Information is fed back and forth (as

forces) between the human and the slave system through the

master robot or haptic device. Haptic feedback can be used

to augment existing methods like continuous visual feedback.

Recent efforts in this area are found in [122], [123], [124].

These can be broadly put in two categories depending on the

communication (and control) architecture between the master

and slave systems: (a) Centralized approaches - where each

robot communicates individually with the master system [122],

[123], [125] and (b) Decentralized approaches - where the

robots coordinate among themselves and only a single robot
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communicates with the master robot [124], [126], [127], [128].

Control and communication should ensure safety and stability,

i.e., avoid collision and track a desired reference trajectory

(e.g., maintaining a certain formation).

A decentralized strategy was proposed by Franchi et

al. [124] based on a leader-follower approach where the slaves

are assumed to have second order point mass dynamics [124].

The key contribution of [124] is to design a potential function

(and hence a control law) that ensures that the overall system is

passive. The controller has been tested with a human control-

ling a team of up to 6 simulated UAVs. Although the authors

allow the agents to make or break links, there is no guarantee

that the connectivity of the robotic network is maintained.

In [129] and [126], the authors have extended the work

from [124], [127] to ensure that the designed haptic control

laws ensure stability even in the presence of delays. Similar

techniques has also been used for haptic control of UAV

formation where the UAVs only use the bearing information

of their neighboring agents [128]. The above control schemes

have been limited to either formation control or target tracking.

Haptic control schemes for other multi-robot tasks (e.g., area

search and coverage, foraging, cooperative mapping, etc.) are

not available. To apply this work on teleoperation to a swarm,

in particular a selected subgroup of leaders in the swarm, the

repercussions and effects of the motion of this subgroup on

the overall swarm behavior and dynamics would need to be

integrated into the control scheme so that an operator can

control the subgroup while being aware of the implications

and compensating for the overall swarm behavior.

Discrete Influence via Leaders: Numerous works have im-

plemented discrete control systems in which the operator sends

messages to selected robots intermittently. This method is

easy to implement and requires little training for the human

operator. It is also well suited for both homogeneous and het-

erogeneous swarms, as different commands can be easily and

distinctly given to each type of robot. For example, in [104],

operators effectively deployed a heterogeneous swarm in an

ocean setting to test the viability of swarms in monitoring

data in waterways. The operators had sparse, intermittent com-

munication with the robots—being able to send and receive

data only when the robots surfaced, and sending commands

to correct errors in the robots’ trajectories due to sensing error

and ocean currents.

In [130] the authors present a method for the user to select

and assign tasks to a single leader robot out of many in an

indoor environment (with a distance between the human and

robot between 1 to 4 meters). Each robot first recognizes how

directly the human is looking at it through facial recognition. It

then uses a ring-based leader election algorithm to determine

the single robot with the highest face detection score. The

user then commands this robot with gestures. Pilot experiments

with human participants produced encouraging results, yet it

is not clear how the approach scales and how appropriate it

is for larger distances between user and robots. Also suitable

for discrete control inputs is the work presented in [88], [90]

and [91] which enables proximal interactions with operators

by transmitting commands to the swarm with gestures, face

engagement, and speech.

E. Levels of Autonomation in Human-Swarm Interaction

In [131], Sheridan proposes a 10-point level of automation

(LOA) scale to characterize the degrees of autonomy possible

for human-machine systems, ranging from a system where

the machine has full autonomy (10) to one where the human

controls everything (1). This scale has been used and modified

extensively to describe and evaluate levels of automation for

a number of supervisory control systems on differing robotic

platforms [132], [133], [134]. A human-swarm system would

fall high on the scale—greater than or equal to 7. This model

for levels of automation has been used in numerous works

studying human-robot and human-swarm interaction (see [103]

and [135] for recent examples).

One of the earlier discussion on LOAs in swarms is found

in [136]. In particular, the author distinguishes between levels

of automation within the swarm and levels of automation for

the decision making of the operator. Much of the autonomy

in a swarm serves the purpose to coordinate the entire system

and does not necessarily impact the amount of information an

operator has access to nor the level of involvement for certain

decisions. Yet, as pointed out in [136], the level of autonomy

for coordination does have an indirect impact on the situational

awareness of the operator.

In [135], the authors introduce the autonomy spectrum for

HSI, which extends the LOA model by allowing different

user-selectable modes at each control task corresponding to

different possible LOAs for each task. Furthermore, their

model includes predefined pathways between different LOA

combinations at each stage, corresponding to the different

possible methods of operation. The approach has been tested

with human operators in an elaborate application scenario

involving patrolling and pursuit. The primary conclusion is that

operators had some positive impact on system performance but

that much further work remains to be done to better integrate

human and swarm autonomy. Similarly, in [103] the authors

use two switchable modes of operation for a swarm to allow

the human operator to switch between high and low autonomy.

The high autonomy was captured via a dispersion algorithm

whereby the swarm members spread to cover the open space

in the environment, and the low autonomy mode allowed the

user to select subsections of the swarm to direct via waypoints.

Here, the authors found that operators found the most success

when using a mix of the two modes, instead of solely one or

the other.

Further work is needed before we are able to say properly

whether flexible levels of automation in HSI are beneficial,

however this preliminary work suggests it could be. Yet, one of

the unstudied issues is how humans react to flexible autonomy

with swarms. Because the emergent properties of swarms are

often unpredictable, and because we have little knowledge

of human operators’ understanding of swarms, it is possible

that introducing task switching between different levels of

automation may significantly degrade the situational awareness

of operators, and may interfere with their understanding,

leading to decreased performance. As this and other cases of

LOAs impact nearly all aspects of the control loop, they are

essential to investigate if we desire a true understanding of
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human-swarm systems.

F. Input Timing and Neglect Benevolence

Not only is the method of giving different commands of

concern to human operators and those designing the HSI

system, but also the timing of those commands. Since some

swarm algorithms require time to converge and stabilize after

an operator command is issued, it is possible for the same

types of commands to have different—sometimes adverse—

effects depending on the state of the swarm. To capture

the idea that humans may need to observe the evolution of

the swarm state and wait some time before acting, a novel

concept called neglect benevolence was investigated. This

concept is in some sense the converse to neglect tolerance

[137], [138] in human-robot interaction (HRI) of independent

and non-coordinating robots, where it is assumed that the

performance of an individual robot degrades with time, and

hence the attention of the operator needs to be scheduled so

that the time between servicing robots (the the neglect time)

is minimized [139].

Consider, for example, a generic flocking algorithm. One of

the issues that may occur for flocking is the fragmentation of

the swarm, and frequent instructions for changes in direction

of the flock may lead to such fragmentation, unless the swarm

regains its cohesion before the next instruction. The risk of

fragmentation is increased by delays in coordination, errors

in motion and sensing as well as external perturbations. In

[140], it was shown that improper timing of control input

could lead to swarm fragmentation. In [87], the authors show

evidence of neglect benevolence in swarms during a simple

target-searching task. They found that operators who issued

commands frequently showed lower levels of performance

than those who allowed the swarm to adjust between new

commands. This was the first study to give evidence to the

concept of neglect benevolence by showing that commands

given too frequently to a swarm exhibiting emergent behavior

could actually degrade performance.

Neglect benevolence formally defined in [140], where the

authors proved the existence of neglect benevolence for linear

time invariant systems, developed an algorithm to determine

the optimal input time for such a system. In [101] the authors

further investigate human performance in the face of neglect

benevolence and showed that human study participants learned

to approximate the optimal time over the course of the

experiment in a formation control task. Neglect benevolence

and optimal timing studies are just beginning to emerge and

they are an interesting area for future research. Additionally,

algorithms to determine optimal human timing could be in-

corporated to provide operator decision support.

IV. DISCUSSION

In the previous section we presented and discussed our

organizational structure from Fig. 1, centered around the

operator’s perspective and our set of research questions, and

reviewed existing HSI studies within this structure. We also

reviewed aspects of a human-swarm system that impact all

parts of the control loop (input timing and neglect benevolence

and levels of automation). Table I summarizes the key issues

for each topic including the context in which it was studied.

HSI research is still in its early stages, and identifying the

right context and methods for studies is still a challenge, but

a few themes have started to emerge. Here we will briefly

discuss these and how they relate to the problem of isolating

the various interacting components in complex swarm systems.

Our organization, illustrated in Fig. 1, emphasizes that levels

of automation and input timing and neglect benevolence may

interact with all components of the human-swarm control

loop. As such, they are studied in setups with specific control

algorithms, visualizations, swarms, and tasks. Also expressed

in our organization is the fact that the communication in-

frastructure, which supports the interface between human and

swarm, has significant influence on state estimation as well

as control methods. Hence, research on these two components

needs to clarify the underlying assumptions about the commu-

nication infrastructure and ideally deal with the implications of

limited reliability, connectivity, bandwidth and latency. State

estimation and control methods can be studied somewhat

independently, as prior work has demonstrated. In fact, many

of the studies to date have been concerned with the interactions

between the chain of components from the operator, control

methods, up to the swarm. The chain of components from

swarm to state estimation and visualization up to the operator

has received less attention, particularly how the estimation

relates to operator cognition.

Broadly speaking, HSI research has employed three basic

methods of inquiry. Theoretical analysis and models have

been proven useful to determine feasible and optimal control

inputs, e.g., with behavior selection [100] and investigating

neglect benevolence [101]. When closed form solutions are

not available simulations have proven useful, such as in [25].

Finally, user studies and prototype systems in simulation or

with real robots are used to address more complex scenarios

or verify theoretical insights.

One of the main problems tackled in much of the HSI

research is the large and divisible state space of swarms. This

problem is also at the core of our cognitive complexity per-

spective discussed in Section III-A. Consequently, in Section

III-D, we have presented control methods that aim to reduce

the complexity of controlling a swarm, namely behavior se-

lection, parameter setting, environmental and leader influence.

The aim for each of these methods is to enable interactions that

scale to large numbers of robots, i.e., O(1) style interactions.

All these methods, however, when integrated into complex

systems, involve some form of implicit or explicit selection

of robots. Leader influence is explicitly concerned with which

robots should be the gateways of information between the

swarm and operator. Environmental influence selects robots

implicitly by determining which robots can sense the real

or virtual change in the environment. Behavior selection and

parameter setting are swarm-wide controls, but in practice a

user often selects a sub-swarm to which to apply the desired

behavior or parameter (with the exception of a few studies).

Without selection these two methods do not allow fine-grained

control, which on the other hand makes them easier to model,

as in [100]. But even when using leader influence, current

methods do not allow the swarm to solve complex tasks and
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these will likely also involve a division into sub-swarms.

In fact, the formation of subgroups is a common feature

in studies with complex application scenarios as in [135],

[102], [103] and envisioned in [88], [90], [91]. Therefore,

it can be argued that the problem of dividing a swarm into

sub-swarms is superimposed over our control taxonomy and

that most operators are going to be confronted with the issue

of selecting and managing multiple groups of swarm robots.

Once operator-controlled selection of robots is permitted,

in the best case, n swarm robots become k independently

operating swarms and their management would be O(k). In

this case, the multi-robot concept of neglect tolerance and fan-

out models would apply. In the worst case, robots in different

sub-swarms continue to interact and interfere with each other

and management becomes O(> k). Now, k may not depend

on n, but instead on the task at hand, e.g., when viewing the

swarm as an approximation of a continuous medium while

using environmental influence.

At this point it becomes important how a control method

performs when it controls a sub-swarm that is embedded

in a larger swarm. In particular, one should determine the

consequences of interactions between multiple sub-swarms.

This sort of investigation is very much needed for future work.

Each individual interaction should be still be an O(1) style

interaction within an overall system that may become more

complex. Our presented framework also provides the means to

study the individual methods in isolation and generalize to the

broader context. For example, one can investigate the neglect

benevolence and neglect tolerance properties of a particular

interaction method, such as a particular behavior selection

scheme, and then study the consequence of embedding said

scheme into a larger system that allows multiple sub-swarms.

At this point, methods from human interaction with multi-

robot systems could be applied to e.g. schedule the operator’s

attention to individual sub-swarms appropriately. The study

of individiual interaction schemes for behavior selection and

leader influence has potentially progressed to a stage where

such investigations and experiments are made possible. More-

over, we conjecture that leader influence methods will likely

lead to fewer interferences between sub-swarms but will also

be less powerful within a larger system and suffer more from

neglect tolerance. Behavior selection on the other hand will

lead to larger interference between sub-swarms, may suffer

due to high neglect benevolence, but will likely scale better to

many sub-swarms and benefit from better neglect tolerance.

The management of multiple sub-swarms also offers an

insight into the qualitative differences within our control

taxonomy. Behavior selection influences all members of a

sub-swarm, leader influence only a few, and environmental

influence implicitly creates and influences new sub-swarms.

Hence, environmental influence interacts differently with the

problem of sub-swarms, and has the potential to deal di-

rectly with sub-swarm hierarchies due to its implicit selection

mechanism. Because there are few studies using this control

approach, we believe more are needed before we can really

make determinations about the interaction between multiple

sub-swarms using environmental influence.

V. FUTURE WORK AND CONCLUSION

This review is meant for researchers that are attempting to

further the field of human-swarm interaction. Hence, we gave

a brief introduction to swarm robotics to provide an overview

of the kinds of properties one should expect of swarm sys-

tems, as well as an introduction to human-swarm interaction

structured and centered around the operator. This we began

with a discussion on cognitive complexity, and then with an

examination of the control loop, with particular attention to

communication, perceiving the swarm, and exerting control.

Finally, we discussed some overarching issues that pertain to

the entire control loop in sections on levels of automation

as well as input timing and neglect benevolence. Throughout

we have noted a number of challenges, in our discussion as

well as within each specific category, some of which have

been addressed but most of which remain unsolved. Here we

briefly summarize what we envision as the main challenges,

in addition to the management of sub-swarms discussed in

the previous section, that HSI research can address in the

near future based on the current state of HSI research. These

are related to the three main sources of difficulty in swarm

control: tasks, communication, and uncertainty and size of the

state space. Some of the resulting challenges can be addressed

fairly independently of each other and were also discussed in

the previous sections.

Suitability of Control Type Relative to Task and Envi-

ronment: A set of important research questions for HSI relates

to the characteristics of the control types. It is essential to

determine which general types and their various implementa-

tions are suitable for what kinds of tasks, environments, com-

munication and timing constraints, and other swarm-specific

circumstances. In addition, when multiple types are suitable

one should attempt to compare effectiveness, scope and impact

of these control types, i.e., how many robots they affect

directly and indirectly. In addition, entirely novel interaction

techniques, beyond those we presented in this paper, may also

have to be investigated when the existing types fall short.

What we know so far about the characteristics of the control

types is fairly limited. Behavior selection is perhaps a natural

choice for many swarm applications, suitable for untrained

operators and shown to be superior to environmental control,

particularly when existing behaviors already solve the tasks.

Yet, it is likely to be more affected by neglect benevolence,

depending on the behaviors available. As a consequence, it

benefits strongly from predictive displays that aid the operator

in determining the effects of commands. On the other hand it

may well be more robust to communication issues, i.e., latency,

bandwidth, and asynchrony.

Environmental interactions, however, appear to be a par-

ticularly swarm-like type of interaction. This becomes more

apparent when considering a swarm as an approximation of

an amorphous medium. The complexity of controlling it does

not scale with the number of robots but rather the size of the

medium and environment. Regarding this type of interaction,

little work has been done so far, yet it seems a fruitful

area for further HSI research. It may well be that effective

environmental interactions require operator training and more
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Cognitive complexity X - X - X - - - - - X i.e.: studied with remote interactions & behavior selection through user studies

A general framework [70], [3] for scalable human control to deal with large state spaces and complex dynamics; basic
swarm control schemes aim to be O(1); extensions to other cognitive factors have been considered in the context of
remote interactions and behavior selection with formal models of cognition [99], [100];

Proximal Interactions - X - - X - - X - - -

Largely studied with real robots and focused on enabling any interaction at all; current results enable relaying of instructions
[130], [88], [89], [90], [91]; a key challenge is to scale these to multiple operators, large environments and swarms, as
well as to conduct comprehensive user studies;

Remote Interactions - - X X X - - - - - X

Most user studies assume remote interactions; latency [87] and bandwidth [86] limitations have been investigated in the
context of behavior selection; connectivity maintenance and loss was possible in [102]; communication constraints can
require the use of aggregate statistic that may be sufficient for effective control [96]; adaptive networks still have to be
investigated; the key challenge to reconcile a distributed remote network with a central operator underlies many HSI issues.

State Estimation/Visualization - X X X X - - X X X X

Key issues are predicting consequences of control actions, understanding of swarm dynamics as well as aggregate statistics;
studied in a number of contexts such as communication constraints, leader influence, and behavior selection [96], [87], [86];
predictive displays have been proven useful for behavior selection [87], [101]; aggregate state descriptions can be sufficient
in some scenarios; no work on general human perception of swarms, e.g., involving Gestalt principles, is available.

Behavior Selection - - X - X - - X X - X

The simplest form of swarm control, behavior selection has been considered in a number of contexts [113], [112], [102],
[103]; a comparison between behavior selection and environmental influence revealed superior performance and significant
differences in the strategies employed by operators [102]; a crucial consideration is the timing of instructions, time to
convergence of emergent behaviors, and whether subgroups of robots are permitted to run different algorithms leading to
heterogeneous swarms, causing a possible increase in cognitive complexity.

Parameter Setting - - X - - X - - - - -

A form of swarm control not investigated in detail in user studies, but typically used during the design stage [25] or with
automation [105], [106], [107];

Environmental Control - - X X X - X - - - X

Swarm control via real or virtual changes in the environment sensed by the swarm; first studies in [102] revealed this
form of control to be more difficult for novice operators than behavior selection; [135] also reports difficulties interacting
with pheromone controlled swarms; also used in [110], [111] with visualizations of pheromones but generally less studied
than behavior selection and leader influence; potentially a suitable control method for the problem of controlling many
sub-swarms;

Leader Influence - - X - - - - X - - X

Control complexity is reduced by controlling leaders that influence the swarm; key questions are the selection of leaders
and propagation of influence; a comparison between strong or weak influence is found in [118]; algorithmic dynamic
selection of leaders improves control over the swarm [120], [119]; swarms with parameters optimized for allowing human
controlled transitions between emergent behaviors are used in [25], [117], [108]; Teleoperation of selected leader groups
in simulated and real swarms is feasible and enabled by [123], [124], [125], [126], [127], [128].

Levels of automony - - X - X X - X X - X

First mentioned for swarms in [136]; introduction of autonomy spectrum in [135] which connects levels of automation to
task sequences; results are focused on performance in a specific application scenario with the conclusion that more HSI
research is warranted to close the representation gap between swarm and operator intelligence; [103] suggests that levels
of automation should be dependent on environmental conditions; despite the high reliance of swarms on autonomy the
impact of varying levels of automation has not been studied extensively;

Neglect benevolence - - X - X - - X - X X

Neglect benevolence is a swarm-specific concept that is concerned with input timing and the resulting impact on the swarm
state; Potentially disturbances of stable states and emergent behaviors by poorly timed human inputs are at the core; Neglect
benevolence was first observed in [87] and analyzed in more detail in [140]; user studies showed that operators are able to
approximate optimal input timing [101]; neglect benevolence is a useful concept for swarms to reinforce the importance
of temporal dynamics for HSI designers.

Table I: A summary table for our section organization, including the contexts in which HSI topics are studied.
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advanced interfaces than the simpler interaction types.

Another difficulty in swarm control that has not received

much attention is how to enable effective leader-based con-

trol. Predicting, limiting, or correcting for leader propagated

influence is one immediate issue. In addition, direct control of

leaders requires a low latency network. As such it is a more

difficult type of control to implement reliably for swarms and

no studies have been carried out with real swarms.

Swarm Visualization and Understanding of Dynamics:

Humans are structured to find groups and patterns in everyday

life, and these skills could potentially be applied to swarms as

well. Because swarms often operate under emergent behaviors,

and large-scale group patterns that come from local interac-

tions, humans may be uniquely suited to identify, categorize,

and alter the global swarm behavior. It is an open research

area whether it is possible to design algorithms having in

mind human undestandability of their results. Some work,

discussed in Section III-C, has been carried out to investigate

visualization of swarm states and behavior, but little is known

with regard to general principles of swarm visualization and

perception by operators, particularly for noisy or partially

accessible states. This is especially important for an operator’s

understanding of swarm dynamics that unfold over time and

therefore provide a further challenge for visualization. Exactly

what information an operator needs access to and how it

should be visualized for the various swarm algorithms and

tasks is therefore an important question for swarms, particu-

larly if (a) it can reduce the amount of state information that

the swarm needs to communicate to the operator and (b) aid

in human understandability of swarm dynamics.

Input timing and Neglect Benevolence: We have discussed

the issue of input timing and the resulting concept of neglect

benevolence in some detail in Section III-F. A few studies

have begun to emerge that approached the issue from a formal

perspective as well as from an experimental perspective, albeit

in simulation. Neglect benevolence and optimal input timing

seem to be particularly relevant for swarms and may well be

exhibited by many of the algorithms currently envisioned for

use in real swarm applications. In particular, for control with

behavior selection the dominating issue becomes input timing

and the prediction of swarm dynamics. Further studies are

required to determine under which conditions human operators

can learn to time their inputs optimally.

Cognitive Complexity and Levels of Automation: In the

existing human-interaction literature cognitive complexity was

primarily considered in terms of cognitive effort in relation

to the number of robots. Task difficulty was primarily dealt

with when considering workload, fatigue and other human

factors issues while levels of automation dealt with access

to information and decision-making roles. Rarely are these

three issues considered jointly, and swarms present a suitable

context in which to investigate the interactions between these

as well as novel notions of cognitive complexity that take into

account system size, task difficulty, levels of automation, and

their respective interactions. One early study that points in the

right direction is conducted in [135], subsequently extended

in [103], and has been discussed in prior sections. This is

clearly an area that warrants further work to move towards

real swarms solving more complex missions and tasks.

Swarm Metrics and Experiments: Most of the guar-

antees and metrics that have been developed thus far are

concerned with convergences to an emergent goal behavior for

a particular task under specific assumptions. Reliable metrics

regarding the performance of a swarm in real applications are

not available, apart from some early results in [141], [142],

and their general need is identified in several swarm surveys

[5], [6], [7]. From the perspective of HSI, this is a promising

area of research, and when monitoring swarms, operators

can greatly benefit from such metrics, e.g., when managing

competing tasks while monitoring the quality of service in

the communication network. These metrics can also help by

overcoming the problem with running HSI studies in practice,

particularly the lack of studies with real robot systems. Mea-

suring and monitoring the behavior of real swarms will also

enable the reproduction of more realistic swarm behavior in

simulation. On the other hand, it is also desirable to have more

studies with real robots and real human operators to provide

a firm foundation for HSI studies.

In this paper we have attempted to draw the outlines of HSI

research, a young sub-discipline and one not yet well under-

stood. Experimental studies in cooperation with researchers

in swarm robotics and the anticipated development of swarms

outside the confines of laboratories will inevitably shed further

light onto the topic.
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