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Hyperbolic distributions in finance

ERNST EBERLEIN and ULRICH KELLER
Instinue fiir Mathematische Stochastik, Universitdt Freiburg, Hebelstrasse 27, 79104 Freiburg, Germany

Distributional assumptions for the returns on the underlying assets play a key role in valuation theories for
derivative securities. Based on a data set consisting of daily prices of the 30 DAX shares over a three-year
period, we investigate the distributional form of compound returns. After performing a number of statistical
tests, it becomes clear that some of the standard assumptions cannot be justified. Instead, we introduce the class
of hyperbolic distributions which can be fitted to the empirical returns with high accuracy. Two models based
on hyperbolic Lévy motion are discussed. By studying the Esscher transform of the process with hyperbolic
returns, we derive a valuation formula for derivative securities. The result suggests a correction of standard
Black—Scholes pricing, especially for options close to expiration.

Keywords: absclute continuous change of measure; hyperbolic distributions; hyperbolic Lévy motion; option
pricing; statistical analysis of stock price data

1. Introduction

In valuation theories for derivative securities as well as in other questions in finance the
distributional form of the returns on the underlying assets plays a key role. In this paper, after
investigating classical assumptions, in particular the normality hypothesis, we introduce a modei
which fits the data with high accuracy and draw some conclusions concerning option pricing.

Let (P,);»o denote the price process of a security, in particular of a stock. In order to allow
comparison of investments in different securities, we shall investigate the rates of return defined by

X, =logP ~logP_;. (1)

Like most authors, we prefer these rates, which correspond to continuous compounding, to the
alternative

Yo =(P — P })/Py. (2}
The reason for this is that the return over n periods, for example n days, is then just the sum
X+ o+ Xy =108 Py —logP_|. (31

This does not hold for ¥,. Another aspect we have in mind is that the underlying price process is a
continuous-time process from which discrete time series are drawn at equidistant time-points. But
for continuous-time processes returns with continuous compeunding are the natural choice. The
fact that the underlying process is a continucus-time process led us to use 7 both as a continuous and
as a discrete parameter. What is actually meant should be ciear from the context. Numerically the
diﬂ'crenceobetween X,and ¥, is negligible since ¥, — X, = %XE + %X,’ +...and X, is typically of the
order 107°.
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The standard continuous-time mode} for stock prices is the geometric Brownian motion:

P, = Poexp{(u - 0°/2)1 + 0B} (4)
which solves the stochastic differential equation
dP, = uPdt+oPdB, (5)

where o > 0 and g are constant coefficients denoting volatility and drift and (B,),»o is a standard
Brownian motion. It is the modei underlying the Black—Schoies formula (Biack and Scholes 1973).
Often the model itself is called the Black—Scholes model, although it goes back to Samuelson (1965)
who improved on Bachelier’s (1900) ingenious introduction of Brownian motion. Its key properties
are that it is multiplicative and complete. The latter allows duplication of the cash flow of derivative
securities and thus the valuation of these products by arbitrage (see, for example, Harrison and
Pliska 1981). We do not discuss the vast literature where this model has been generalized (see, for
example, the discussion in Aase 1984). Instead, we will concentrate on an empirical study and try to
identify the correct distributions for the returns. Among the many models which have been
investigated besides the normal distribution, et us mention in particular the stable Pareto
distribution (to be discussed later), the Student distribution (see, for example, Blattberg and
Gonedes 1974) and finite discrete mixtures of normals (see, for example, Kon 1984). But it is the
class of hyperbolic distributions which will turn out to be an excellent candidate and which will
provide a more realistic model. This ciass of distributions was introduced by Barndorfi-Nielsen
(1977), and we are indebted to him for the hint to explore this class after we had presented resuits on
stock returns. Hyperbolic distributions have been used in various scientific fields. One area is the
modelling of the distribution of particle size from aeolian sand deposits. An excellent reference for
this project is Barndorfl-Nielsen ez al. (1985). Other areas to be mentioned are the modelling of
turbulence (see, for exampie Barndorfi-Nielsen ez al. 1989) and the use of hyperbolic distributions in
statistical physics.

Figure 1 shows a typical path of geometric Brownian motion, where the parameters are Py = 100,
p= 0.5 and o = 0.08. Due to the self-similarity of Brownian motion (B,),., which enters as the
source of randomness, the gualitative picture does not change if we change the time-scale. In
contrast io this, real stock-price paths change drastically if we look at them on different time-scales.
Figure 2 shows daily stock prices of five major companies over a period of three years, while Fig. 3
shows a path if one goes down to the level of price changes during a single day. The picture shows
the price at which Siemens shares were traded on the Frankfurt Stock Exchange on 2 March 1992
from the opening at 10.30 a.m. to the close at 1.30 p.m. Comparing the model (Fig. 1) with reality
(Fig. 3). it becomes obvious that its paths are too erratic. One could say that at least locally model
{4} is too random. This justifies the introduction of discrete models, by which we mean models with
price changes at equidistant discrete time-points only. Their paths can be considered as a first
approximation of reality, where price changes occur at random time-points as can be seen in Fig. 3.
The interplay between discrete- and continuous-time models was investigated in Eberlein (1992) by
comparing them pathwise. Again for discrete models the question of the correct return distributions
arises.

The returns resulting from the geometric Brownian motion are increments of 2 Brownan motion
process, thus are independent and normally distributed. Tests applied to real data in the following
show the degree to which the assumption of normality fails. In contrast to this, hyperbolic
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Figure 1. Simulation of geometric Brownian motion
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Figure 2. Daily stock prices from October 1989 to September 1992
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Figure 3. Intraday value of Siemens shares. 2 March 1992

distributions can be fitted to the empirical distributions with high accuracy. The data we are
exploring are daily KASSA prices of 10 of the 30 stocks which compose the DAX, the German stock
index, during the three-year period from 2 October 1989 to 30 September 1992. This gives time series
of 745 data-points each for the returns. The data are corrected for dividend payouts, that is to say,
the returns on ex-dividend days are defined by

X, =log{P,+d)-logP,_,, {6)

where d, is the amount paid in dividend on day z. Note that dividends are patd only once a year for
German stocks. Two unusual price changes occurred in this period: the crash on 16 October 1989
and the drop as a consequence of the coup in Moscow on 19 August 1991. The latter can be seen as a
deep notch in Fig. 2. The 10 stocks considered here were chosen on account of their large trading
volume and also because of the specific activity of the company in order {0 get a reasonable
representation of the market. This choice has no influence on the conclusions.

2. Testing for classical assumptions

It is well known that the normal distribution is a poor model for stock returns. In this section we
show explicitly how large the discrepancy actually 1s. A qualitative yet very powerfui method for
testing the goodness of fit are quantile—quantile plots. Figure 4 shows normal QQ plots for the
returns of BASF and Deutsche Bank. The deviation from a straight line and thus from normaiity is
obvious. Also shown are the corresponding empirica] densities and the normal density. It is evident
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Figure 4. Normal QQ plots and density plois

that there is considerably more mass around the origin and in the tails than the standard normal
distribution can provide.

The order of magnitude of the deviation can be seen from Table 3 below. Counting the number of
returns in the interval (—ko, ko), for k < 5, we compare the relative frequencies which are given in
the first line for each stock with the expected normal frequencies which are given in the first line of
the table. The values for the 10 companies considered are quite uniform and differ from the normal
at the origin, that is to say, in the interval (—o, ¢) by 0.1. In particular, note that the empirical
distributions have rough!y 5000 times the mass of the normai distribution in the tails starting at 5¢.

We continue with X tests for normality. To avoid any problems arising from partition sensitivity.
three different estimation procedures were considered. Let %? denote the test statistic computed with
cells of equal probability (1/k), while 23 is used for cells of equal width. The second cell structure
was modified by collapsing outer cells, such that the expected value of observations becomes greater
than 5. The third procedure is very much the same as the second, but starting with k = 40 instead of
k = 22. For all stocks the null hypothesis is rejected at the level & = 0.01. As an example we cite the
corresponding values for the Jtwo stocks considered above. Full- length tables are available in

Eberlein and Keller (1994). xi_,000 denotes the 0.99 quantile of the x’ distribution with k — 1
degrees of freedom.
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el Xk-1099 3 Xt- 1090 3 Xe—1:099
BASF 104.02 38.93 62.54 18.48 93.74 27.69
Deutsche Bank 88.02 38.93 55.88 18.48 87.92 30.58

Another standard method of testing for normality is to compute certain functions of the moments
of the sample data and to compare them with the expected values for a normal popualation. We use
two such tests which, moreover, have the favourable feature of scale and location invariance, so we
are able to test the composite hypothesis by means of these tests. If we denote by
me=n -1 Z,_ {x;— x) the sample momment of order %, then the test statistics are given by
K=my/m}—3and § =m; /’"z , measuring kurtosis and skewness of the sample, which should
both be zero under the assumption of normality. Again for brevity’s sake we mention the results for
BASF and Deutsche Bank. For the former the skewness is 0.52 and the kurtosis 7.40, while for the
latter we got 1.40 and 16.88. For ali stocks the hypothesis is rejected at the 1% level, Finally, because
of the long tails which we observe for financial data, the range xp,, — Xm:, of the sample should be a
good indicator for non-normality. Indeed the studentized range test turned out to be another useful
tool. The corresponding statistic is given by

Xmax — Xmin
I & .
n_lg(xf—x)

itis 12.59 and 14.56 for the two stocks considered above, which means rejection at the smaljest level
o = 0,005 which can be found in the tables in David ez al. (1954).

We will now discuss briefly another class of distributions proposed by Mandelbrot (1963), the
stable Pareto distributions with characteristic exponent o, denoted by SP{a). In the symmetric case
stable Pareto distributions are defined by the log-characteristic function

log ¢(1) = 161 — (et} (7)

where § denotes the location parameter, ¢ the scale parameter and « the characteristic exponent,
defined in the interval 0 < & < 2, For & = 2 it coincides with the normal distribution, for o = 1 it
gives the Cauchy distribution. As an immediate consequence, one sees that if (X)), are
independent SP{a)-distributed variables, then X = S0, 4.X; is again SP(c)-distributed. This
means that the class is stable with respect to building portfolios of independent components, which
was also a desirable property of models with normal components. For a < 2 stable distributions are
more peaked around the centre than the normai ones and have arbitrarily heavy tails. In some sense
this rules them out from the beginning: for o < 2 the variance is infinite and for o < 1 even the first
moment does not exist. It is obvious that models of stock returns at least for biue chips, that is, the
major stocks traded at the exchange, should have finite moments. The price changes observed from
one day 10 the next are less than 20% for these stocks. Therefore the variables are bounded.
Several authors have so far rejected the stable hypothesis for American stocks (see, for example,
Barnea and Downes 1973; Hagerman 1978). Because of the analytic difficulties with this class of
distributions the stability-under-addition property is often used to test the stabie hypothesis.
Assuming independence of the returns of a security, one should again get SP{a)-distributed

I}:




Hyperbolic distributions in finance 287

variabies — with the same a — if one considers sums. A technique for estimating the characteristic
exponent « has been developed by Fama and Roll (1968; 1971). They propose a fractile estimator
given by

fopay = 0827 LT 095 < £ <097, (8)
Xf=0.72 — Xr=072%

where x; denotes the f-quantile of the sampie data and the corresponding SP{a)-fractile is given in
their paper. For the test the return values are split into groups of increasing size and each group is
summed. Then the characteristic exponent is estimated for each resulting distribution. If the value of
& increases with increasing sum size we have to reject the stable hypothesis. To overcome the
problem of serial correlation between successive returns, which has been discussed by many authors.
we are following a method proposed by Fielitz and Rozelle (1983). For this data are randomized
before building groups. Tabie I gives the results of the estimation procedure for our data set and
leads to rejection of the stable hypothesis. We do not report the results for the originai data, which
show a similar behaviour for ¢, but the tendency to approach 2 is not as strong as in Tabie |. So we
conclude that the presence of serial correlation induces a higher kurtosis of monthly returns. As
Barnea and Downes (1973) showed, a finite mixture of non-Gaussian stable laws with varying scale
parameters will also exhibit the tendency for o to increase, but with a limiting value of « less than 2.
Since in our case the value of & reaches 2 or at least comes close to 2 for most of the shares, we are
additionaliy led to conclude that for monthly returns a Gaussian distribution is appropriate, This
was indeed suggested earlier by many authors (see, for example, Officer 1972; Kon 1984) and
supports our thesis that for different time-scales different classes of distributions have t¢ be

considered. See alse Fig. 7 in Section 3 in this context.
To demonstrate the extent of serial correlation Fig. 5 shows autocorrelations for Deutsche Bank
for time-lags (days) up to 30. Autocorrelation is present but of only moderate size. Because of the
current interest in autocorrelations of squared increments we added these for our data as weil. As

Table 1, Estimates of the characteristic exponent « for randomized data series

Sum length

i 2 3 5 10 15 20 25
BASF 1.44 1.56 1.58 1.47 1.60 2* 2* 2%
BMW 1.48 1.71 1.84 1.61 2* 1.92 2* 2*
Daimler Benz 1.57 1.60 1.8} 1.76 1.72 2* 2* 2*
Deutschre Bank 1.69 1.60 1.98 1.98 1.92 1.78 2+ 1.72
Dresdner Bank 1.50 1.82 1.92 1.95 175 2% 2* 2*
Hoechst 1.48 1.65 1.56 2% 1.63 3 2* 2+
Preussag 1.62 1.74 1.68 2* 2* 1.83 1.59 1.8
Siemens 1.60 1.66 1.76 1.68 1.77 2 2* 2*
Thyssen 1.66 1.77 1.90 1.96 1.40 1.97 2* 1.99
VW 1.71 1.60 1.65 2% 1.43 1.94 2* 2*

* These values are corrected to 2, because the estimation procedure resulted in 2 value a > 2 which is not in the
permitted domain. For sums of length 25 the resulting series have a length of only nas = 29 with our series of
r =745 data-points for each company. This may lead 10 considerable sampling errors.
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Figure 5. Autocorrelations

the picture shows, the autocorrelations of squared returns are not higher than those for the returns
themselves.

3. Hyperbolic distributions and financial data

Hyperbolic distributions are characterized by their log-density being a hyperbola. Recall that for
normal distributions the log-density is a parabola, so one can expect to obtain a reasonable
alternative for heavy tail distributions. The parametrization of the hyperbolic density, which we will
use later, is given by

= Vol — & —ar/ & Y _
hyp(x)—zaéKl(a\/mer( ay/ & + (x = u)° + Bx — p)). )

where K; denotes the modified Bessel function of the third kind with index 1. The first two of the
four parameters, namely o and 2 with o >0 and 0 € |3} < a, determine the shape of the
distribution, while the other two, & and pu, are scale and location parameters. With
E=(1+8/0a =Y and x =£B/a one gets a different parametrization hyp(x;x. &, 8, i),
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Table 2. Estimated parameters for the hyperbolic distribution

o 3 & 7}

BASF 108.82 1.3550 0.0014 —0.0005
BMW 89.72 47184 0.0009 —-0.0013
Daimler Benz 88.19 4.1713 0.0019 —0.0014
Deuische Bank 108.60 0.3972 0.0030 —0.00001
Dresdner Bank 110.94 -0.1123 0.0016 0.0002
Hoechst 104.78 2.8899 0.0020 —0.0007
Preussag 83.51 3.0702 0.0031 —0.0008
Siemens 112.65 6.4287 0.0033 -0.0011
Thyssen 9427 0.0792 0.0073 —0.0003
Vw 83.85 —4.0652 0.0077 0.0009

o _exponential Lapiace exponential
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Figure 6. The hyperbolic shape triangle. The jocation of the estimates for the invariant parameters (£, ¥ 3
is indicated by the numbers } to 10, where the numbers correspond to the order of the shares in Table 2.
The locations of the limits of hyperbotic distributions are indicated, where H(=) (or H( +)} means a
generalized inverse Gaussian distribution. The solid line marks the 95%-confidence region for the

estimates of VW (number 10)
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Table 3. Frequency distributions

<lo <20 <3¢ <40 <5 >S50

Standard normal 0.683 0955 0997 1000 1.000 0.0000006
BASF 0.774 0944 0987 0596 0997 0.0026846 (2)
hyp (@ = 108.82. 3=1.36, 6 = 0.0014, u =0) 0.769 0948 0988 0997 0999 0.0006383 (0.5)
BMW 0.796 0949 0987 0996 0996 00040268 (3)
hyp (o = 89.72, 8=4.72,6 =0.0009, L =0) 0779 0951 0989 0998 0995 00005342 (0.4)
Daimier Benz 0785 0954 0987 0995 0999 0.0013423 (1)
hyp (o = 88.19. 3= 4.17, 6 = 0.0019, p=0) 0.774 0950 0989 0998 0999 00005826 (0.4)
Deutsche Bank 0.797 0964 0988 0993 0997 0.0026846 (2)
hyp (o = 108.60, 8= 0.38. 6 = 0.003, u =0}  0.777 0954 0990 0998 1.000 00004267 (0.3)
Dresdner Bank 0.807 0950 0588 0995 0997 00026846 (2)
hyp (o = 110.94, 8= —0.11, 6 = 0.0016, u=0) 0.78] 0953 0990 0998 1.000 0.0004497 (0.3)
Hoechst 0.785 0944 0989 0996 0997 00026846 (2)
hyp (o = 104,78, 3=2.89, 6 = 0.002, . =0)  0.771 0950 0.989 0998 0999 0.0005439 (0.4)
Preussag 0.792 0957 0991 0995 0997 00026846 (2)
hyp (o = 83.51, 8=3.07, 6§ =0.003}, z=0) 0778 0953 0990 0993 1.000 00004472 (0.3)
Siemens 0.792 0953 0989 0995 0997 0.0026846 (2)

hypla= 11265 3=643.6=00033, p=0) 0.768 0950 0989 0998 0999 00005139 (04)

Thyssen 0762 0960 0989 (993 099 0.0040268 (3)
hyp(a=9427,3=007.6=00073. o =0) 0.788 0957 0991 0998 1.000 0.0003547 (0.3)

VW 0772 0962 0991 0995 0997 0.0026846 (2)
hyp (o = 83.85, 6=—407. 6 =0.0077, p=0) 0741 0538 0984 0996 0999 0.0010790 (0.8)

Int the columns the relative frequencies of the returns in the interval {—ke, ko) are compared with the probabilities of the
fitted hyperbolic distributions. The tails starting at 5o are given in the column fabelied by > 5o, where the numbers in
brackets give the absolute frequencies found in this regton and the expected values for the corresponding hyperbolic
distribution.

which has the advantage that £ and y are invariant under transformations of scale and location. The
new invariant shape parameters vary in the triangie 0 < jx} < £ < 1, which was therefore called the
shape triangle by Barndorfi-Nielsen et al. {(1985). For £ — 0 the normal distribution is obtained as a
limiting case; for £ — 1 one gets the symmetric and asymmetric Laplace distribution; for y — £¢ it
is a generalized inverse Gaussian distribution (in fact, a distribution having density of the form (10));
and, finally, for jx| — 1 we will end up with an exponential distribution.

It was pointed out by Barndorfi-Nielsen (1977) that the hyperbolic distribution can be
represented as a normal variance-mean mixture where the mixing distribution is generalized
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Figure 7. Parameter estimates for the returns of Commerzbank as time-lags increase

inverse Gausstan with density

Vi

dig(x) =mexp{-—%(yx" +’i,f)x)}, x>0, (13)

Lety= § and w=0— ,83 and consider a normal distribution with mean p + ,302 and variance o~
such that ¢” is endowed with the distribution (10}. Then the mixture is a hyperbolic distribution with
density (9).

To estimate the parameters of the hyperbolic distribution given by (9) we used a computer
program described in Blmsild and Serensen (1992). Assuming independent and identicallv
distributed variables, a maximum likelihood estimation is performed by the program and the
results for our data set are given in Table 2.

Figure 6 shows the estimates (£, x) which are all towards the top of the triangle, thus far from
normality. They are well centred. which means that the distributions are nearly symmetric.
Moreover, the indicated 95% confidence region for the estinates of VW gives first evidence that
hyperbolic distributions are appropriate for daily returns. To assess the goodness of fit, in Table 3
we provide the frequency distributions in the same form as in Section 2 {see also Fama 1965).
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For a quantitative analysis we will again make use of x* tests with the same estimation procedures
mentioned above (see Section 2 for a closer description). In this case it is correct to accept the
hypothesis of a hyperbolic distribution at significance level o whenever %7 < x}_1_41-a. i = 1,2,3,
since we were estimating the four parameters of the distributions. For all stocks the hypothesis of a
hyperbolic distribution is accepted at the level o = 0.01. We give the explicit values for two cases.

X XE-5099 3 Xe-5:099 G Xi-5:099
BASF 26 33.41 545 13.28 10.7 26.22
Deutsche Bank 17.5 33.41 9.27 13.28 15.94 26.22

Kolmogorov—Smirnov test values vary between 0.70 and 1.20 for all shares and are well below 1.63.
representing a lower bound for the 1% level for this number of observations. Let us also note that
the values for the normal distribution are, with one exception, all above 1.8.

Using a larger data set, namely stock prices from 1 Januvary 1988 to 24 May 1994, we also applied
the fitting procedure to returns for time-lags of 1,4, 7. ..., 22 trading days. The resulting estimates
for x and £ for the data for Commerzbank are given in the shape triangle in Fig. 7. It is striking how
the parameters tend to the normal distribution limit as the lags increase.

Finally, we return to the graphical methods used above to underline our conclusion, In Figs 8 and
9 we see the QQ plots for two of the shares. Because of the strong effect outliers have on QQ plots.
for these plots the two outliers produced by the crash in October 1989 and by the Moscow coup were
removed. To stay consistent we did the same for the density pictures and the piots of Fig. 4 in
Section 2, although there is no effect as far as the density plots are concerned.

Figures 8 and 9 show an excellent fit. Comparison with Fig. 4 suggests a strong preference for this
model over the classical one. So we arrive at the conclusion that daily stock returns should be
modelled by hyperboiic distributions.

4. Hyperbolic Lévy motion

Hyperbolic distributions are infinitely divisible. This was shown by Barndorff-Nielsen and Halgreen
(1977) by proving infinite divisibility of the generalized inverse Gaussian distribution, which is used
in the representation of the hyperbolic distribution as a mixture of normals. Given the empirical
findings on stock returns in the previous section we concentrate now on the symmetric centred case.
that is, where 8 = g = 0. This means also x = 0 in the second parametrization mentioned above.
Consequently in the symmetric centred case, using ( = £ — | for notational convenience, the
density (9) can be written as

hype5(x) = mm{p (—c I+ @3) (11

Let (Z%* Je>0 be the Lévy process defined by the infinitely divisible hyperbolic law with density hypc,..
that is, the process with stationary independent increments such that Za'é =0 and .‘Z’(Zf“s) has



294 E. Eberlein and U. Keller

1.4

12

)
08

0.6

04

0.2

Figure 10. Convolution semigroup densities

density hyp, ;- We cali (Zf‘é)fzo hyperbolic Lévy motion. Since (Z,C’é),z{, is a process with centred
independent increments it is a martingale. By stationarity and independence the second moments
are given by E{(Z¢*)?} = 1E{(Z}*)'} < oo with

E{(Z{)) = 52% %% (12)

As we will see later, all moments of (Z5%),5, exist, therefore (Z-%),5, is in fact an L”-martingale
(pz1)

Using the mixture representation, one can easily compute the characteristic function of the
hyperbolic distribution given by hyp, 5, namely

¢ K(VE +6407)
K Jo+&s
so one can see that hyperbolic distributions are not closed under convolution. By construction it

foliows that E(eZ" ) = ¢,{u; ¢, 8) = {¢{u: ¢, 6)} fort 2 0. Therefore the density of .?(Zf‘é) is given
by the Fourier inversion formula

P{u: ¢, 8) = (13)

£ = 3| costux)o i, By (14)

The integral on the right-hand side can be computed numerically. The resuits are shown in Fig, 10,
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where the densities of the convolution semigroup are represented for values of ¢ varying between 0.2
and 2. The shape and the scale parameters were chosen as ( =46 = 1.

From the explicit form of ¢ one can derive the fact that the process (Zf‘(’),zg does not have a
Gaussian part, since the first cumulant of the characteristic function given by (13} ts asymptotically
hinear in u. Therefore it is a purely discontinuous process. We can choose a cadlag version. The
process can be represented in the form

t
zi'= J J x(# (-, du, dx) — du v{dx)), (15)
0 Jm\{0)
where u? is the random measure of jumps
1 (w, dr,dx) = Z L{az, ()0} €50z, oy (dE, dx) (16)
520

associated with the process (Z+%),5q. Its compensator du v(dx) contains the Lévy measure v of the
distribution given by hyp, 5. Note that the compensator is deterministic, because of the indepen-
dence of the increments. Deriving the Lévy—~Khinchine formula for (zt );>0, the density g(x; ¢, 6} of
the Lévy measure v can be computed as follows. Again from the representation of hyp.; as a

mixture of normals one gets
#uln) = exp{m (“3) } an

where «(s) = log E{exp(—sY}} and Y is an inverse Gaussian variable with density given by (10).
Using the integral representation (5) given in Halgreen (1979) and a modified expansion for
log(1 + #/2) given on p. 16 of the same paper, which in our case is writien

e 8 eiu — 1 — fux —I|x;
—log(l+—j—) ~J_'DC_13C|—-——€ dx (]8)
one gets
A\
i3 =J e — 1 —iux)g(x; ¢, 6)dx. (19)

This is in view of (17) the Lévy—Khinchine representation for the integrable process (15) with

g(x:¢,6) =

]

! J“exp(-*i2}‘+(C/‘5f)d,+exp(—|x|)
o WG/ + Y6V W

Here J; and ¥, are the Bessel functions of the first and second kind, respectively. Using well-known
asymptotic relations about J; and Y, (see formulae 9.1.7, 9 and 9.2.1, 2 in Abramowitz and Stegun
1968) the denominater of the integrand is asymptotically equivaient to a constant for y — 0 and to
¥7* for y — oo, Therefore, one can deduce that g(x) behaves like 1/x” at the origin, which means
that there is an infinite number of small jumps in every finite time-interval.

As a model for stock prices the natural candidate is now the process driven by a hyperbotic Lévy

(20)
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motion (Zf“s)eo
dY, = p¥,-dt + Y,-dZ¢°. (21)

This can also be written in the form d ¥, = Y,-dX, with X, = 2% + pr. The solution of this equation
is the Doléans-Dade exponential

Y, = Yoexp(Z¢ + pr) T] (1 + AZEHe 2%, (22)

[V

If [X]° denotes the continuous part of the quadratic variation [¥] of X, note that [X]° = [Z*° = 0
since (Zf"s),zo is a purely discontinuous process. Therefore the term [X]° does not appear in the
exponential above and the quadratic variation process is given by

& a2 | 220 du
2 =3z < | | ) 23)

sET 6

Note also that ¥, > 0 only for AZ%® > —1, so bankruptcy by means of crash is included in this
model. To avoid problems, we have to consider the process ¥, = ¥,1,. with a stopping time T
given by T = inf{r > 0]AZ%¢ < —1}.

Looking at the returns of this price process, one has not only the hyperbolic increment
(2% — Z*%)) coming from the exponent in (22), but in addition the log of the product. Regarding
only small jumps, this is approximately given by - 15" _; ;. (AZSY = = 1((Z4%, — (2%%],.,).

The model which produces exactly hyperbolic returns along time-intervais of length 1 is

S, = Spexp(Z:?). (24)

Like (22) this model is not complete. There is no unique equivalent martingale measure, that is, an
equivalent measure such that the discounted process (e™"'S,),», is a martingale. Here r denotes the
(daily) interest rate. But following an idea of Gerber and Shiu (1995), for (S,},5 it is easy to
compute explicitly at least one equivalent martingale measure. This can be used for the valuation of
derivative securities. One must be aware that this valuation cannot be justified as in the case of
unicity.

Let /5 be the density of £(Z+%). For some real number & we can define a new density

) -

j e 1S8(v)dy

Under the corresponding probability P’ the process is again a Lévy process, which is called the
Esscher transform of the original process. From another point of view, all processes that are Lévy
processes under a certain P for 8 € © = {# & R| [e™dP,(x) < o, V¢ > 0} form an exponential
class of processes with

ff’é(x; ) = .ﬂ& (25)

dPl(x) = EXNP((&-% dp,(x) (26)

where N{(§) = [¢™dP,(x). It turns out that © = (~a, &) for the hyperbolic Lévy motion and P{ is a
member of the skewed hyperbolic distributions, where 8 corresponds to the skewness parameter.
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Table 4. Option prices for Dentsche Bank

Time 10 expiration Share value  Hyperbolic price Black—Scholes price

T=2 650 0.01 0.00
700 5.28 5.56
750 50.46 50.43
T=15 650 0.10 0.06
700 8.82 9.00
750 51.24 51.20
=10 630 0.65 0.58
700 12.94 13.07
750 52.87 52.82
=30 650 5.25 5.26
700 2400 24.09
750 60.63 60.65

These are the prices for a European call option with an assumed strike of I' = 700 and an
assumed interest rate of r = 0.08 (p.a.). The values for { and the volatility o are the
estimates described above.

Now we choose & by
Sy =eEX(S,). (27)

such that ge‘”s,),zo is a martingale.
Let M“*(u, 1) = E{exp(«Z¢®)} denote the moment generating function of the hyperbolic Lévy
motion indexed by ¢ and é and consider

MY, 1:0) = r e FH0 x; B)dx, (28)

the corresponding function under P’. Since by stationarity M“(u, 1;60) = M (1, 1;6)', from (27)
we get

MY +1,1)
r_ pg6d O = :
e = M**(1,1;8) ) (29)
As the characteristic function (13), M“%(x, 1) is easy to compute:
4 il 5..’ 7
Mc‘é(ﬁ,l)'_ ( 1( C i ) g. (30)

TK(©G &R b < é

Introducing this in (29) we get the value #* which defines the martingale measure as the solution of

2—629 2 _)
K (VG - 86 20 G-

By numerical methods we can find a solution for 8 given the (daily) interest rate r and the parameters

r=1In
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& and ¢. If the derivative secunty is, for example, a Evropean cail option with exercise price I' and
time to expiration 7, the value at time 0 is given by

EP e (S, — ). (32)
where x, denotes max(x, 0). This expectation under P can be written as
So r Fo¥x:g" + dx—e™'T J S8 (x, 6" )d (33)
I [

where ¢ = In(I'/ ;). Sinceff‘a(x; ") is related to the original density £%(x) by (25), whereff"s(x) is
given by (14), this value can be computed numerically (see Table 4).

Some practitioners might prefer to see the volatility o as an explicit parameter, although § is the
more natural parameter here. By (12), 0% = §°K3(¢)/¢X;(¢). Thus for

_ 3 5_1_@ 1/2
s=rtc= (28 9

we get a process (Zf),zo = (Zf‘é‘),zo with E{(Zf)z} = 1. Now one can replace (Z,C"s),zu by the
process (chf)Qo. For example, equation (21) reads

dY, = p¥,_dt + 0¥, dZ}, (35)

where o denotes the daily volatility. In order to get 8" from (31) one has to replace § by o6, in that .
formula, and the same remark holds for the pricing formula (33).
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