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Oxygen (O2) is an essential substrate in cellular metabolism, bioenergetics, and

signaling and as such linked to the survival and normal function of all metazoans.

Low O2 tension (hypoxia) is a fundamental feature of physiological processes as

well as pathophysiological conditions such as cancer and ischemic diseases. Central

to the molecular mechanisms underlying O2 homeostasis are the hypoxia-inducible

factors-1 and -2 alpha (HIF-1α and EPAS1/HIF-2α) that function as master regulators

of the adaptive response to hypoxia. HIF-induced genes promote characteristic tumor

behaviors, including angiogenesis and metabolic reprogramming. The aim of this review

is to critically explore current knowledge of how HIF-α signaling regulates the abundance

and function of major O2-consuming organelles. Abundant evidence suggests key roles

for HIF-1α in the regulation of mitochondrial homeostasis. An essential adaptation to

sustained hypoxia is repression of mitochondrial respiration and induction of glycolysis.

HIF-1α activates several genes that trigger mitophagy and represses regulators of

mitochondrial biogenesis. Several lines of evidence point to a strong relationship

between hypoxia, the accumulation of misfolded proteins in the endoplasmic reticulum,

and activation of the unfolded protein response. Surprisingly, although peroxisomes

depend highly on molecular O2 for their function, there has been no evidence linking

HIF signaling to peroxisomes. We discuss our recent findings that establish HIF-2α

as a negative regulator of peroxisome abundance and suggest a mechanism by

which cells attune peroxisomal function with O2 availability. HIF-2α activation augments

peroxisome turnover by pexophagy and thereby changes lipid composition reminiscent

of peroxisomal disorders. We discuss potential mechanisms by which HIF-2α might

trigger pexophagy and place special emphasis on the potential pathological implications

of HIF-2α-mediated pexophagy for human health.

Keywords: endoplasmic reticulum, ER stress, hypoxia, HIF-α, mitochondria, mitophagy, peroxisomes, pexophagy

Introduction

Life with oxygen (O2) began around 2.4 billion years ago, when photosynthetic organisms
prospered and multiplied, leading to a progressive increase of atmospheric O2. O2-related
organelles, such as mitochondria, peroxisomes, and plastids, must have been acquired after that
date (De Duve, 2007; Semenza, 2007). The appearance of O2 was one of the defining moments in
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evolution, as it offered organisms the advantage of generating
energy more efficiently. Because of the high energy potential of
O2, aerobic organisms have become dependent on this gas for
their performance and survival. O2 is an essential substrate in
cellular metabolism, bioenergetics, and signaling and as such
inseparably linked to the survival and normal function of all
metazoans. Hence, aerobic species developed mechanisms to
sense O2 levels and regulate O2 consumption, in order to cope
with conditions of insufficient O2 supply. This Review focuses on
the role of hypoxia-inducible factors (HIFs) as master regulators
of O2 homeostasis and, in particular, on recent advances in
understanding their roles in regulating major O2-consuming
organelles, namely mitochondria, the endoplasmic reticulum
(ER), and peroxisomes.

Regulation of HIFs

Central to the molecular mechanisms underlying O2 homeostasis
are HIF-1α and HIF-2α that function as master regulators of
the adaptive response to hypoxia. HIFs form a heterodimer
consisting of a constitutively expressed ARNT/HIF-1β subunit
and O2-regulated α subunits (HIF-1α or EPAS1/HIF-2α)
(Majmundar et al., 2010; Keith et al., 2012). A third HIF-α
subunit (HIF-3α) has also been described. HIF3A mRNA is
differentially spliced to produce multiple HIF-3α isoforms that
either promote or inhibit the activity of other HIF complexes
(Keith et al., 2012). Under normoxia, HIF-α subunits are
hydroxylated by prolyl hydroxylases (PHD1-3) and recognized
and targeted for proteasomal degradation by the von Hippel-
Lindau (VHL) E3 ubiquitin ligase complex (Figure 1A). PHD
enzymes are 2-oxoglutarate- and iron-dependent dioxygenases,
whose activity is absolutely dependent on O2. Hence, the rate
of HIF-α hydroxylation is suppressed under hypoxia. Hypoxia

Abbreviations: ALFY, autophagy-linked FYVE protein; ALOX15, 15-
lipoxygenase-1; ATF, activating transcription factor; Atg, autophagy-related
protein; BNIP3, Bcl-2 and adenovirus E1B 19-kDa-interacting protein 3;
BNIP3L/NIX, BNIP3-like; ccRCC, clear cell renal cell carcinoma; CHO, Chinese
hamster ovary; CHOP, C/EBP homologous protein; CK2, casein kinase 2; COX,
cytochrome c oxidase; DAO, D-amino acid oxidase; DHA, docosahexaenoic
acid; ER, endoplasmic reticulum; ERAD, ER-associated degradation; ERR,
estrogen-related receptor; FA, fatty acid; FOXO3a, forkhead-box protein O3a;
FUNDC1, FUN14 domain containing 1; GABARAP, γ-aminobutyric acid-
receptor-associated protein; GADD34, growth arrest DNA-inducible gene 34;
GLUT, glucose transporter; GRP, glucose-regulated protein; HIF, hypoxia-
inducible factor; HTT, Huntingtin; IRE1, inositol-requiring protein 1; LC3,
microtubule-associated protein-1 light chain 3; LDHA, lactate dehydrogenase
A; LIR, LC3-interacting region; LONP, Lon protease; MAX, MYC-associated
factor X; MCT4, monocarboxylate transporter 4; mtROS, mitochondrial reactive
oxygen species; MXI1, MAX-interacting protein 1; NBR1, neighbor of BRCA1
gene; NRF, nuclear respiratory factor; OMM, outer mitochondrial membrane;
OxPhos/ETC, oxidative phosphorylation and electron transport chain; PDH,
pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PERK, protein
kinase RNA-like ER kinase; PEX, peroxin; PGAM5, phosphoglycerate mutase
family member 5; PHD, prolyl hydroxylase; PGC-1, PPARγ coactivator 1; PINK1,
PTEN-induced putative protein kinase 1; PMP, peroxisomal membrane protein;
PPAR, peroxisome proliferator-activated receptor; PTEN, phosphatase and tensin
homolog; PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; RPC,
receptor protein complex; SQSTM1/p62, sequestosome 1; TNBC, triple-negative
breast cancer; ULK1, UNC51-like kinase 1; UOX, urate oxidase; UPR, unfolded
protein response; VDAC, voltage-dependent anion channel; VEGF, vascular
endothelial growth factor; VHL, von Hippel-Lindau; VLC, very long-chain; XBP1,
X-box-binding protein 1.

or loss of functional VHL stabilizes HIF-α subunits. HIF-α
either dimerizes with HIF-1β and binds to hypoxia-responsive
elements in promoters of target genes to promote a concerted
transcriptional response (Keith et al., 2012) (Figure 1A) or it
physically interacts with other non-HIF proteins (Uniacke et al.,
2012; Hubbi et al., 2013), enabling convergence of HIFO2 sensing
with other signaling pathways.

HIF-α subunits can also be stabilized under non-hypoxic
conditions, a phenomenon termed “pseudohypoxia.” In addition
to O2, PHDs are sensitive to changes in certain Krebs
cycle intermediates. Mutations in four genes involved in the
metabolism of citrate have the potential to stabilize HIF-α
by inhibiting HIF-α hydroxylation and are linked to various
tumors (Figure 1B) (Raimundo et al., 2011; Losman and
Kaelin, 2013). Succinate dehydrogenase and fumarate hydratase
deficiencies lead to accumulation of succinate and fumarate,
respectively, and these metabolites compete with 2-oxoglutarate
to inhibit PHDs. Mutations in isocitrate dehydrogenases 1 and
2 could promote HIF-α stabilization as a result of low levels
of 2-oxoglutarate, which is an essential co-substrate of PHDs
(Thompson, 2009). Tumor-associated isocitrate dehydrogenase
mutations cause a gain of function, leading to high-level
production of (R)-2-hydroxyglutarate and depletion of 2-
oxoglutarate (Losman and Kaelin, 2013). PHD enzymes were
initially reported to be inhibited by (R)-2-hydroxyglutarate (Zhao
et al., 2009). However, further studies have shown that (R)-
2-hydroxyglutarate potentiates PHD activity and blunts the
induction of HIF-α in response to hypoxia (Losman and Kaelin,
2013).

HIF-1α is expressed ubiquitously, whereas HIF-2α is
selectively expressed in distinct cell populations of most
organs (Majmundar et al., 2010). HIF-1α and HIF-2α have
both overlapping and distinct target genes (Keith et al., 2012)
and they are differentially regulated in various physiological
settings (e.g., embryonic development) and function in
pathophysiological conditions such as cancer and ischemic
diseases (Semenza, 2012). They have also different roles in
tumorigenesis dependent on specific tumor microenvironments
(Majmundar et al., 2010; Keith et al., 2012). HIF-induced
transcription promotes angiogenesis, erythropoiesis, metastasis
and metabolic reprogramming, such as shifting cell metabolism
from oxidative phosphorylation to glycolysis. HIF activation
due to hypoxia or loss of VHL function also reprograms lipid
metabolism leading to lipid accumulation (Huss et al., 2001;
Boström et al., 2006; Rankin et al., 2009; Kucejova et al., 2011;
Qu et al., 2011; Walter et al., 2014).

Mitochondria and HIF-α

Mitochondria, metabolism, and O2 are inextricably intertwined.
In the following sections we will discuss the numerous
mechanisms by which HIF signaling can affect mitochondrial
function.

HIF-dependent Regulation of Mitochondrial
Metabolism
The hypoxia-dependent increase in the abundance and activity of
HIF-1α and the HIF-1α-dependent transcriptional program have
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FIGURE 1 | Regulation of HIF-α subunits. (A) Hypoxia-inducible

factors (HIFs) are transcription factors composed of O2-regulated α

subunits (HIF-1α or HIF-2α) and a constitutively expressed HIF-1β

subunit. Together these subunits bind hypoxia response elements (HRE)

to mediate adaptive responses to hypoxia. HIF-α activity is directly

linked to oxygen partial pressure. Under normoxia, HIF-α is hydroxylated

by prolyl hydroxylase domain protein (PHD) and targeted for

proteasomal degradation by the von Hippel-Lindau (VHL) E3 ubiquitin

ligase complex. Under hypoxia, hydroxylation is inhibited and HIF-α is

stabilized, it dimerizes with HIF-1β and enters the nucleus to induce

target gene transcription. (B) HIF-α can be stabilized irrespective of O2

tension due to inhibition of PHDs, a state defined as pseudohypoxia.

Mutations in the Krebs cycle enzymes succinate dehydrogenase (SDH)

and fumarate hydratase (FH) lead to accumulation of succinate and

fumarate, respectively, whereas mutations in isocitrate dehydrogenases

1/2 (IDH1 and IDH2) lead to low levels of 2-oxoglutarate. Succinate and

fumarate inhibit PHDs, while low levels of the co-substrate

2-oxoglutarate decrease the activity of PHDs. Decreased activity of

PHDs leads to a low rate of HIF-α hydroxylation under normoxic

conditions and stabilization of HIF-α.

three major effects on metabolism that serve to equilibrate O2

consumption with O2 supply. First, HIF-1α promotes glycolytic
energy production by inducing genes that encode glucose
transporters (e.g., GLUT1, GLUT3) and glycolytic enzymes
(Figure 2A) (Semenza, 2010). HIF-1α also upregulates lactate
dehydrogenase A (LDHA), which converts pyruvate to lactate
and regenerates NAD+ for continuous supply for glycolysis, and

monocarboxylate transporter 4 (MCT4), which transports lactate
out of the cell (Figure 2A).

Second, HIF-1α suppresses both the Krebs cycle and oxidative
phosphorylation within mitochondria. HIF-1α induces pyruvate
dehydrogenase kinase 1 (PDK1), which phosphorylates and
inactivates the mitochondrial enzyme pyruvate dehydrogenase
that catalyzes the conversion of pyruvate to acetyl-CoA, thereby
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FIGURE 2 | Regulation of mitochondrial function and abundance by

HIF-α. (A) To adapt to low oxygen tension, cells undergo two

HIF-1α-mediated alterations of cellular metabolism: O2-independent ATP

production and reduction of mitochondrial O2 consumption. HIF-1α signaling

also contributes to the Warburg effect of aerobic glycolysis—that is, an

uncoupling of glycolysis from O2 levels—by stimulating the expression of the

glucose transporter GLUT1 and glycolytic enzymes. Increased glycolysis

generates increased levels of pyruvate, which is largely converted to lactate

by HIF-inducible lactate dehydrogenase A (LDHA) and removed from the cell

by the monocarboxylate transporter 4 (MCT4). HIF-1α induces pyruvate

dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase

(PDH) and blocks conversion of pyruvate to acetyl-CoA, resulting in

decreased flux through the tricarboxylic acid (TCA) cycle. Decreased TCA

cycle activity attenuates oxidative phosphorylation and excessive

mitochondrial ROS production. Under normoxia, COX4-1 is the predominant

isoform of COX4 present in complex IV of the electron transport chain, which

transfers electrons to O2. Under hypoxia, HIF-1α upregulates the expression

of COX4-2 and the mitochondrial protease LONP1, which in turn degrades

COX4-1. COX4-2 is more efficient at facilitating the electron transfer to O2

and thereby protects the cell from oxidative damage during hypoxia. (B)

Control of mitochondrial biogenesis by HIF-α. HIF-1α induces the expression

of MAX-interacting protein 1 (MXI1), a repressor of MYC activity, and thereby

represses a subset of MYC target genes such as PGC-1β.

HIF-1α-dependent activation of FOXO3a inhibits MYC activity by reducing

MYC protein stability. Interaction between PGC-1 and transcription factors

such as PPARα, ERR, and NRF-1/2 orchestrates the major functions of

mitochondria. HIF-1α-mediated inhibition of MYC and PGC-1 results in

reduced mitochondrial biogenesis.

shunting pyruvate away from mitochondria and diminishing
hypoxic mitochondrial respiration (Kim et al., 2006; Papandreou
et al., 2006). A benefit of attenuating mitochondrial respiration
under hypoxia is reducing the amount of toxic mitochondrial
reactive oxygen species (mtROS) generated by inefficient
respiration. Mouse embryonic fibroblasts lacking Hif1α undergo
cell death as a result of excess mtROS production due to a
failure of PDK1 induction (Kim et al., 2006). HIF-1α also reduces
mtROS production under hypoxic conditions by optimizing
respiration efficiency through inducing cytochrome c oxidase
(COX) subunit IV isoform 2 (COX4-2) and the mitochondrial
protease LONP1, which degrades the less efficient COX4-1
(Fukuda et al., 2007). Mitochondrial ROS also modulate cell

signaling through stabilization of HIF-1α, due to PHD inhibition
(Sena and Chandel, 2012). Cells utilize an acute increase in
mtROS to stabilize HIF under hypoxia and subsequently restrain
ROS production under chronic hypoxia to avoid cellular damage.
ROS have a relatively short diffusion distance and thus, mtROS
signalingmay rely on proximity of ROS-producingmitochondria
to their sites of action. Intriguingly, perinuclear clustering
of mitochondria triggered by hypoxia is accompanied by the
accumulation of nuclear ROS and required for maximal HIF-1α
binding to the VEGF promoter and VEGF expression (Al-Mehdi
et al., 2012).

Third, hypoxia shifts mitochondrial glutamine metabolism
from oxidation to reductive carboxylation (Sun and Denko,
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2014). The activity of the α-ketoglutarate dehydrogenase
complex is decreased under hypoxia, since HIF-1α induces
the E3 ubiquitin ligase SIAH2 that mediates the proteasomal
degradation of the E1 subunit of α-ketoglutarate dehydrogenase.
Increased α-ketoglutarate levels drive the reverse reaction at
isocitrate dehydrogenase, and the glutamine-derived citrate can
be transported to the cytoplasm in order to generate acetyl-CoA
for anabolic processes under hypoxia.

Cancer cells exhibit a high rate of glycolysis even in the
presence of O2, a phenomenon known as aerobic glycolysis or the
“Warburg effect” (Vander Heiden et al., 2009). HIF-1α activation
as a result of VHL loss or pseudohypoxia contributes also to the
development of the Warburg effect. Furthermore, although the
shift from oxidative phosphorylation to glycolysis is attributed to
the activity of HIF-1α, at least in the liver HIF-2α induces the
same genes involved in this metabolic adaptation (Rankin et al.,
2009; Walter et al., 2014).

Mitochondrial Biogenesis and HIF-α
A second key remodeling of mitochondria in hypoxia
is suppression of mitochondrial biogenesis to decrease
mitochondrial mass and O2 consumption. Mitochondrial
biogenesis involves replication of the mitochondrial genome and
coordinated expression of nuclear- and mitochondrial-encoded
gene products. It depends upon the activity of a hierarchy
of nuclear transcription factors that includes the peroxisome
proliferator-activated receptor (PPAR) γ coactivator 1 family
of transcriptional coactivators [PGC-1α, PGC-1β, and the
PGC-related coactivator (PRC)], the nuclear respiratory factors
(NRF1 and NRF2), and estrogen-related receptors (ERRα, ERRβ,
and ERRγ) (Figure 2B) (Scarpulla et al., 2012). PGC-1α is the
master regulator of all aspects of mitochondrial biogenesis,
including activation of respiratory chain and fatty acid oxidation
genes, increased mitochondrial number, mtDNA replication, and
augmentation of mitochondrial respiratory capacity. It exerts
these effects through direct interaction with and coactivation of
PPARs, NRFs, and ERRs (Scarpulla et al., 2012). Nutrient supply
and cellular energy balance regulate the activity of PGC-1α at
both the transcriptional and posttranslational level (Dominy
et al., 2010; Scarpulla et al., 2012). PGC-1β and PRC interact with
and coactivate many of the same transcription factors as PGC-1α
to promote mitochondrial biogenesis (Scarpulla et al., 2012).

The oncogenic transcription factor MYC promotes
mitochondrial biogenesis through activation of PGC-1β (Li
et al., 2005; Zhang et al., 2007). MYC dimerizes with MYC-
associated factor X (MAX) and binds specific E-box sequences
in target gene promoters to activate transcription. Heterodimers
of MAX with MAX-interacting protein 1 (MXI1) antagonize
MYC function and repress transcription by binding to the same
promoter regions of MYC target genes. Cross-talk between HIF
and MYC has been defined at a number of levels, however,
HIF-1α and HIF-2α exert opposing roles on MYC interaction
with its transcription cofactors (Dang et al., 2008; Keith et al.,
2012). HIF-1α activation inhibits mitochondrial biogenesis
by promoting MYC degradation and by inducing MXI1
expression (Zhang et al., 2007). This inhibition is mediated by
the transcription factor FOXO3a (Forkhead-box protein O3a)

which is activated in hypoxia downstream of HIF-1α (Peck et al.,
2013). FOXO3a can also inhibit MYC activity by reducing MYC
protein stability and by increasing the expression of miRNAs
that perturb the translation of MYC mRNA (Peck et al., 2013).
Huang et al. (2014) reported that HIF-1α, but not HIF-2α,
represses MYC in human hepatoma cells and thereby decreases
PGC-1β expression, leading to decreased expression of medium-
and long-chain acyl-CoA dehydrogenases and subsequent
inhibition of mitochondrial fatty acid β-oxidation. It has not
been addressed if HIF-1α-mediated downregulation of PGC-1β
also affects mitochondrial biogenesis and mass in hepatoma
cells. HIF-2α actually enhances MYC transcriptional activity by
binding to and stabilizing the MAX-MYC heterodimer (Gordan
et al., 2007, 2008). The cooperation of HIF-2α with MYC
increases MYC effects on various cell cycle regulators and drives
tumorigenesis. Given the opposite effects of HIF-1α and HIF-2α
on MYC, it remains to be established how MYC is modulated in
cells that express both HIF isoforms.

However, with the exception of HIF-1α-mediated inhibition
of PGC-1β, data about HIF-α mediated regulation of PGC-
1α, the master regulator of mitochondrial biogenesis and
function, are relatively scarce. Several studies demonstrated
an induction of PGC-1α by hypoxia independently of HIF-
1α activity (Shoag and Arany, 2010). Overexpression of PGC-
1α under normoxia induces mitochondrial biogenesis which
increases O2 consumption and decreases intracellular O2 levels,
leading to HIF-1α protein stabilization and activation of HIF-
1α target genes (O’Hagan et al., 2009). ROS accumulation in
hypoxic cancer cells induces expression of PGC-1α/β to promote
detoxification through induction of antioxidative enzymes
(Austin and St-Pierre, 2012). The precise relationship between
the PGC-1α and HIF-α pathways with respect to mitochondrial
biogenesis obviously needs further clarification.

HIF-dependent Regulation of Mitophagy
The third mechanism by which HIF-α controls mitochondrial
function is selective mitochondrial autophagy (mitophagy).
Autophagy is an evolutionary conserved catabolic process for
degradation of macromolecules and organelles. Both non-
selective “bulk” autophagy and selective autophagy of specific
proteins or organelles have been described (Mizushima et al.,
2011; Schreiber and Peter, 2014). Selective and non-selective
autophagy share a set of autophagy-related (Atg) proteins
referred to as the core autophagic machinery (Stolz et al., 2014).
Yeast Atg8 and its mammalian homologs of the microtubule-
associated protein-1 light chain 3 family (LC3A, LC3B, LC3C)
and γ-aminobutyric acid-receptor-associated (GABARAP,
GABARAPL1, GABARAPL2) proteins are covalently conjugated
to the lipid phosphatidylethanolamine upon induction of
autophagy. Besides playing a pivotal role in different steps
of autophagosome biogenesis, the LC3 family members are
important for target recognition during selective autophagy.
Selective autophagy requires specific receptors, which recognize
cargo tagged with degradation signals, connect it to the
autophagosomal membrane through their LC3-interacting
regions (LIR), and are degraded together with their cargo within
autolysosomes (Stolz et al., 2014).
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Mitophagy can be initiated in several ways to arbitrate
mitochondrial quality control via the selective removal of
superfluous or damaged mitochondria. The best-studied
mechanism for mitophagy in mammalian cells is the PINK1-
Parkin-mediated pathway, which is elegantly reviewed elsewhere
(Scarffe et al., 2014). Briefly, phosphatase and tensin homolog
(PTEN)-induced putative protein kinase (PINK1), which
is rapidly degraded in healthy mitochondria, accumulates
upon mitochondrial membrane depolarization at the outer
membrane, leading to the recruitment of the E3 ubiquitin
ligase Parkin to mitochondria and ubiquitination of several
outer mitochondrial membrane (OMM) proteins (Winklhofer,
2014). The recruitment of ubiquitinated mitochondria to
autophagic structures is mediated by LC3 family members
and ubiquitin-binding adaptor proteins such as sequestosome
1 (SQSTM1/p62), NBR1 (neighbor of BRCA1 gene 1), and
optineurin (Rogov et al., 2014).

Although mitophagy has been extensively studied in
mammals, mitophagy-specific factors still remain controversial.
In yeast Atg32 has been identified as receptor protein for
mitophagy (Kanki et al., 2009, 2015; Okamoto et al., 2009). Atg32
localizes to the OMM, harbors a classical LIR consensus sequence
and interacts with Atg8 and the scaffold protein Atg11 to enable
the assembly of the core autophagy machinery around the
cargo (Figure 3A). Casein kinase 2 (CK2) regulates mitophagy
by phosphorylating Atg32, which stabilizes the Atg32-Atg11
interaction and promotes mitophagy. So far no mammalian
homolog has been identified for Atg32.

Similar to Atg32 in yeast, themammalianmitophagy receptors
BNIP3 (Bcl-2 and adenovirus E1B 19-kDa-interacting protein
3), BNIP3-like (BNIP3L/NIX), and FUNDC1 (FUN14 domain
containing 1) are OMM proteins which can directly bind to
LC3 via their LIR motifs (Figures 3B,C). BNIP3 and NIX were
originally thought to promote apoptosis or programmed necrosis
(Zhang and Ney, 2009). They can activate autophagy by binding
to Bcl-2 and thereby disrupting the interaction between Beclin-
1 and Blc-2/Bcl-XL (Bellot et al., 2009; Boland et al., 2013).
BNIP3 and NIX are hypoxia-inducible HIF-α target genes and
it has been suggested that they act either in hypoxia-induced
macroautophagy or mitophagy (Sowter et al., 2001; Tracy et al.,
2007; Zhang et al., 2008; Bellot et al., 2009). While BH3 domains
of BNIP3 and NIX are sufficient to induce the general autophagy
response (Bellot et al., 2009), induction of mitophagy requires
the LIR domain of NIX (Novak et al., 2010) and BNIP3 (Hanna
et al., 2012; Zhu et al., 2013). Phosphorylation of BNIP3 at
serines flanking its LIR domain promotes binding to LC3 family
members and thereby increases mitophagy (Zhu et al., 2013),
however, involved kinases are unknown (Figure 3B). It is not
clear how phosphorylation of BNIP3 is regulated under hypoxia
and if phosphorylation regulates NIX.

Recently, FUNDC1 has been implicated in mediating
hypoxia-induced mitophagy (Liu et al., 2012). FUNDC1-
mediated mitophagy is regulated at the posttranslational level
by reversible phosphorylation. Under normal physiological
conditions FUNDC1 is phosphorylated by Src kinase at Tyr18,
which is located in the LIR motif, and at Ser13 by CK2
(Figure 3C) (Chen et al., 2014a). In response to hypoxia or loss of

mitochondrial membrane potential the mitochondrially localized
phosphoglycerate mutase family member 5 (PGAM5), a Ser/Thr
phosphatase, dephosphorylates FUNDC1 at Ser13, whereas
Tyr18 phosphorylation seems to be prevented before mitophagy-
induction due to inactivation of Src kinase (Figure 3C) (Chen
et al., 2014a). Dephosphorylated FUNDC1 displays a higher
binding affinity to LC3, resulting in selective autophagosome
incorporation and autophagic degradation of mitochondria
(Liu et al., 2012; Chen et al., 2014a). Moreover, a study
showed that hypoxia ormitochondrial uncouplers elevate protein
levels of the autophagy-initiating kinase ULK1 (UNC51-like
kinase 1) and target ULK1 to damaged mitochondria where
it phosphorylates FUNDC1 at Ser17 and thereby enhances
FUNDC1 binding to LC3 (Figure 3C) (Wu et al., 2014).
However, it remains to be determined how BNIP3, NIX and
FUNDC1 are interconnected or even needed during hypoxia-
induced mitophagy.

Hepatic HIF-α Signaling and Mitochondrial
Abundance
We examined the effect of HIF-α signaling on hepatic
mitochondrial abundance in control and liver-specific Vhl−/−,
Vhl−/−/Hif1α−/−, and Vhl−/−/Hif2α−/− mice. Mitochondrial
protein levels are similar in control and knockout livers (Walter
et al., 2014), suggesting that constitutive HIF-α signaling does
not affect hepatic mitochondrial mass. However, subcellular
fractionation of livers from control and Vhl−/− mice shows
that mitochondrial protein levels are decreased in the heavy
mitochondrial fraction of Vhl−/− livers compared with controls,
whereas their levels are increased in the light mitochondrial
fraction (Walter et al., 2014). Further purification of the light
mitochondrial fraction by density gradient centrifugation and
immunoblots of gradient fractions show that the OMM protein
VDAC shifts toward lower density fractions. In summary, HIF-
α signaling in the liver alters the ratio between heavy and
light mitochondria, whereas mitochondrial protein levels are
not changed in whole liver homogenates. It remains to be
clarified if and how hepatic HIF-α signaling affects mitochondrial
size, ultrastructure and function. Mitochondrial morphology and
ultrastructure depend on mitochondria-shaping proteins that
regulate organellar fusion and fission (Mishra and Chan, 2014).
Rates of mitochondrial fission and fusion respond to changes in
metabolism, andmitochondria regulate their shape to adjust their
activity with metabolic conditions (Mannella, 2006).

Endoplasmic Reticulum and Hypoxia

ER Stress and Hypoxia
The ER is an extensive intracellular membrane network that
extends throughout the cytoplasm and is essential for the
translation and folding of membrane and secretory proteins
(Gidalevitz et al., 2013). It is also a critical site of lipid and
glucose metabolism, calcium homeostasis, and detoxification of
drugs and metabolic byproducts. A biochemical process that is
crucial for ER protein homeostasis is the formation of disulfide
bridges, which is referred to as oxidative protein folding (Eletto
et al., 2014). Disulfide bond generation by ER-localized protein
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FIGURE 3 | Receptor-mediated mitophagy. (A) Atg32-mediated

mitophagy in S. cerevisiae. Atg32 is an outer mitochondrial membrane

protein whose expression is induced upon mitophagy-inducing

conditions. Atg32 interacts with Atg8 and Atg11 via distinct domains.

Casein kinase 2 (CK2) phosphorylates Atg32 upon mitophagy-inducing

conditions, which is essential for the Atg11 interaction without affecting

Atg32-Atg8 binding. (B) NIX/BNIP3-mediated mitophagy in mammalian

cells. NIX and BNIP3 are outer mitochondrial membrane proteins that

interact with LC3 through LIR motifs in their N-terminal region. Upon

hypoxia, NIX and BNIP3 are transcriptionally induced in a

HIF-α-dependent manner. Phosphorylation of BNIP3 promotes its binding

to LC3 and subsequent mitophagy. The kinase for BNIP3

phosphorylation is unknown. (C) FUNDC1-mediated mitophagy in

mammalian cells. FUNDC1 is an outer mitochondrial membrane protein

that interacts with LC3 through a LIR domain at its cytosol-exposed

N-terminus. Under normal physiological conditions, FUNDC1 is

phosphorylated by SRC and CK2, thereby preventing LC3 binding.

Upon hypoxia or loss of mitochondrial membrane potential (1ψm), the

expression of SRC is strongly suppressed and PGAM5

dephosphorylates FUNDC1. Dephosphorylation of FUNDC1 enhances the

interaction between FUNDC1 and LC3 and promotes mitophagy.

Phosphorylation of FUNDC1 by ULK1 enhances its binding to LC3.

disulfide isomerases is an oxidative process, and molecular O2

and H2O2 are the principal electron acceptors for oxidative
folding in the ER (Eletto et al., 2014). Protein disulfide isomerases
catalyze oxidation by coupling de novo disulfide formation to the
reduction of O2 to H2O2.

The term “endoplasmic reticulum stress” defines any
perturbation that compromises the protein folding functionality
of the ER (Walter and Ron, 2011). A number of biochemical and
physiologic stimuli, such as perturbation in calcium homeostasis
or redox status, elevated secretory protein synthesis, expression
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of misfolded proteins, glucose deprivation, altered glycosylation,
viral infection, and excess lipids can disrupt ER homeostasis and
impose stress to the ER. These disturbances trigger an adaptive
signaling pathway known as the unfolded protein response
(UPR) that aims to restore ER homeostasis and function.
Hypoxia is a physiologically important ER stress common
to solid tumors. Several lines of evidence point to a strong
relationship between hypoxia and the accumulation of misfolded
proteins in the ER (Koumenis et al., 2007). In tumors, hypoxia
is also associated with other conditions that can cause ER stress,
such as glucose and amino acid deprivation, and oxidative stress.

The Unfolded Protein Response Signaling
Pathways
Activation of the three canonical branches of the UPR is
mediated by three stress-sensing ER transmembrane proteins:
protein kinase RNA-like ER kinase (PERK), inositol-requiring
protein 1α (IRE1α), and activating transcription factor 6 (ATF6)
(Figure 4) (Walter and Ron, 2011; Faust and Kovacs, 2014). In
a stress-free ER, these sensors are bound by the ER-resident
chaperone glucose-regulated protein of 78 kDa (GRP78) in their
intraluminal domains and rendered inactive. Upon ER stress,
GRP78 dissociates from PERK, IRE1, and ATF6, leading to their
activation (Bertolotti et al., 2000; Shen et al., 2002).

IRE1 is a serine-threonine kinase and endoribonuclease,
which catalyzes the splicing of full-length XBP1 (X-box-binding
protein 1) mRNA to generate an active transcription factor,
termed spliced XBP1s. XBP1s activates genes encoding proteins
involved in protein folding, ER-associated degradation (ERAD)
of misfolded ER proteins, and lipid synthesis.

ATF6 is comprised of two isoforms, ATF6α and ATF6β, and
resides as transcriptionally inactive precursor protein in the ER
membrane. ER stress leads to ATF6 translocation from the ER
to the Golgi apparatus where it is cleaved sequentially by Site-
1 and Site-2 proteases to produce an active transcription factor.
ATF6 induces XBP1 and genes mainly encoding ER chaperones
and proteins involved in ERAD.

Dissociation of GRP78 from PERK leads to its
homodimerization and activating autophosphorylation. PERK
phosphorylates the α-subunit of the eukaryotic translation
initiation factor 2 (eIF2α) on serine 51. This phosphorylation
event attenuates general translation, resulting in a reduced
protein folding load of the ER (Baird and Wek, 2012), but it
stimulates selective translation of the activating transcription
factor 4 (ATF4), which plays a crucial role for the adaptation
to stress. ATF4 target genes are involved in protein folding
and assembly, metabolism, nutrient uptake, gene expression,
alleviation of oxidative stress, autophagy, and the regulation
of apoptosis. In addition to PERK, three other kinases induce
eIF2α phosphorylation and preferential translation of ATF4:
GCN2 (general control non-derepressible kinase 2), PKR
(double-stranded RNA-activated protein kinase), and HRI
(heme-regulated inhibitor kinase) (Baird and Wek, 2012). The
PERK-eIF2α-ATF4 pathway is referred to as the integrated stress
response (ISR), because divergent signals activate the four eIF2α
kinases and the ISR, which seeks to remediate stress and restore
cellular homeostasis.

Hypoxia and the Unfolded Protein Response
As protein synthesis and O2-dependent protein folding are
energy-intensive processes and chronic hypoxia markedly
reduces intracellular ATP levels (Kim et al., 2006; Liu et al.,
2006), control of mRNA translation is an important cellular
response to hypoxia. Hypoxia activates PERK and thereby leads
to eIF2α phosphorylation and global translation inhibition,
whereas translation of ATF4 is increased in a PERK/eIF2α-
dependent manner (Koumenis et al., 2002, 2007; Blais et al., 2004;
Bi et al., 2005; Koritzinsky et al., 2006; Wouters and Koritzinsky,
2008). This is a rapid HIF-1α-independent response, occurring
within minutes when cells are exposed to anoxic conditions
and somewhat more slowly during moderate hypoxia. eIF2α
phosphorylation is transient due to the negative feedback loop
initiated by ATF4-dependent upregulation of GADD34 (growth
arrest DNA-inducible gene 34), which dephosphorylates eIF2α
(Figure 4).

Hypoxia increases intracellular ROS production in various
cells to stimulatemultiple biological responses, andmitochondria
appear to be the primary source of hypoxic ROS (Liu et al.,
2008). Mitochondrial hypoxic ROS activate the ISR to promote
energy and redox homeostasis and to constitute an early adaptive
response to hypoxia. Enzymatic antioxidants such as catalase and
glutathione peroxidase reduce eIF2α phosphorylation caused by
hypoxia, suggesting that H2O2 is a key biologically active form of
ROS during hypoxia (Liu et al., 2008). ATF4 augments HIF-1α-
mediated upregulation of its downstream targets to promote cell
survival (Pereira et al., 2014).

Transient exposure to ER stress can condition and prepare
cells for survival during a subsequent, more severe stress. This
preconditioning is likely due to induction of pro-survival genes,
and the ISR is an important prosurvival mechanism under
hypoxia. Tumor cells in the primary tumor are exposed to
hypoxia and might be preconditioned to survive the subsequent
metastatic process. Indeed, cells with compromised PERK-eIF2α-
ATF4 signaling are more sensitive to hypoxic stress in vitro
and they form slower growing tumors in vivo, indicating that
the PERK-eIF2α-ATF4 pathway confers a survival advantage for
tumor cells under hypoxia (Fels and Koumenis, 2006). Severe
hypoxia (<0.01%) and ER stress induce in cancer cells the
transcription of ULK1, LC3B, and ATG5 through the activity of
ATF4 (Rouschop et al., 2010; Pike et al., 2013), and this up-
regulation is crucial formaintaining high levels of autophagic flux
to survive intratumoral hypoxia, metabolic stress, and starvation.

Analysis of gene expression changes during hypoxia indicated
that UPR genes, including genes specifically regulated by XBP1,
were most robustly induced during severe hypoxia/anoxia
(Romero-Ramirez et al., 2004). Hypoxia induced in a HIF-1α-
independent manner XBP1 expression and activated splicing
of its mRNA, resulting in increased levels of XBP1s (Romero-
Ramirez et al., 2004). XBP1s colocalizes with hypoxia markers in
tumors, and loss of XBP1 increases the sensitivity of transformed
cells to hypoxia-induced apoptosis and inhibits tumor growth
(Wouters and Koritzinsky, 2008; Spiotto et al., 2010).

XBP1 is activated in triple-negative breast cancer (TNBC)—a
type of breast cancer that does not have estrogen, progesterone
andHER2 receptors—and has a pivotal role in the tumorigenicity
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FIGURE 4 | Model illustrating the relationship between hypoxia, ER

stress, and activation of the unfolded protein response. Severe hypoxic

stress perturbs and reduces O2-dependent protein folding capacity, resulting

in the accumulation and aggregation of misfolded proteins in the ER lumen.

Hypoxia increases intracellular ROS production and ROS stimulate multiple

biological responses during O2 deprivation. Unfolded proteins and hypoxic

ROS trigger ER stress which leads to HIF-α-independent activation of the

UPR. The UPR is initiated by the stress-sensing ER transmembrane proteins

PERK, IRE1, and ATF6. The chaperone GRP78 is normally bound to these

ER stress sensors and keeps them inactive, but dissociates from them under

ER stress conditions. This dissociation leads to the activation of the three

UPR pathways. GRP78 dissociation allows PERK to homodimerize, which

facilitates autotransphosphorylation and kinase domain activation. Activated

PERK phosphorylates eIF2α which decreases general translation while

increasing the preferential translation of specific proteins, such as the

transcription factor ATF4. ATF4 triggers the activation of a gene expression

program referred to as the integrated stress response. ATF4 induces the

expression of GADD34, which acts as a negative regulator of the PERK

pathway by dephosphorylating eIF2α. The integrated stress response

promotes energy and redox homeostasis and is an important prosurvival

mechanism under moderate hypoxia. IRE1 homodimerization, followed by

autotransphosphorylation, triggers its RNase activity. IRE1-mediated splicing

of full-length XBP1 mRNA generates XBP1s, which encodes an active

transcription factor. ER stress leads to the translocation of ATF6 to the Golgi,

where it is cleaved by regulated intramembrane proteolysis to produce the

active transcription factor. Modified from Faust and Kovacs (2014).
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and progression of TNBC (Chen et al., 2014b). HIF-1α is
hyperactivated in TNBCs, but XBP1 splicing is not directly
regulated by HIF-1α. XBP1 drives TNBC tumorigenicity by
assembling a transcriptional complex with HIF-1α that augments
HIF-1α activity and regulates the HIF-1α transcriptional
program, and XBP1 knockdown reduces mammosphere
formation in hypoxic conditions (Chen et al., 2014b). The XBP1
gene expression signature of TNBC patients correlates with
HIF-1α and hypoxia-driven signatures and is associated with
poor prognosis.

Although it is expected, a connection between ATF6
and hypoxia has not been reported yet and remains largely
unexplored. One study showed that ATF6 is activated
independently of HIF-1α by simulated ischemia (0.1% O2)
in a primary cardiac myocyte model system and inactivated upon
reperfusion (Doroudgar et al., 2009). The absence of HIF-1α
activation at 0.1% O2 is consistent with other studies showing
that HIF-α activation is maximal at 0.5% O2 but decreases
to nearly basal levels at lower O2 concentrations (Jiang et al.,
1996). Furthermore, while PERK and XBP1 activation occur in a
HIF-1α-independent manner, a possible involvement of HIF-2α
in UPR activation has not been addressed yet.

Peroxisomes and HIF Signaling

Peroxisomal Metabolism and Oxygen
Peroxisomes are ubiquitous and highly dynamic organelles
whose number, size, and function are dependent on cell type
and metabolic needs. They play key roles in the degradation of
fatty acids [i.e., very long-chain fatty acids (VLCFAs), branched-
chain FAs, polyunsaturated FAs (PUFAs)], ether lipid synthesis,
cholesterol and bile acid synthesis, and metabolism of ROS
(Figure 5A) (Van Veldhoven, 2010; Fransen et al., 2012; Faust
and Kovacs, 2014). They also act as intracellular signaling
platforms in redox, lipid, inflammatory, and innate immunity
signaling (Dixit et al., 2010; Nordgren and Fransen, 2014;
Odendall et al., 2014). The importance of peroxisomes for cellular
metabolism is illustrated by the marked abnormalities in brain
and systemic organs in peroxisome biogenesis disorders of the
Zellweger spectrum in which functional peroxisomes are absent
and disorders caused by single peroxisomal enzyme deficiencies
(Raymond et al., 2009). Lack of peroxisomal metabolism creates
severe biochemical abnormalities, leading to a variety of clinical
symptoms both in patients with peroxisomal disorders as well as
peroxisome-deficient mice (Kovacs et al., 2002; Raymond et al.,
2009; Baes and Van Veldhoven, 2012; Faust and Kovacs, 2014).

Peroxisomal function depends highly on molecular O2

due to its oxidative type of metabolism (Figure 5A). In fact,
peroxisomes may be responsible for as much as 20% of
O2 consumption and 35% of H2O2 production in tissues
such as the liver (Fransen et al., 2012). The number of
peroxisomes is approximately 10–15 times less than that of
mitochondria (De Duve and Baudhuin, 1966); therefore, on
a per unit basis, peroxisomes may consume a significant
amount of O2 as compared to mitochondria. However,
so far there has been no evidence linking HIF signaling
to peroxisomes. We hypothesized that to minimize O2

consumption under hypoxic conditions, HIF-α signaling may
inhibit O2-dependent peroxisomal metabolism and/or decrease
peroxisome abundance. Since peroxisomes are highly abundant
in the liver and liver-specific loss of Vhl causes severe lipid
accumulation, we investigated peroxisome homeostasis and
metabolism in the liver of control and liver-specific Vhl,
Vhl/Hif1α, and Vhl/Hif2α knockout mice and explored the role
of HIF-1α and HIF-2α in this context.

Peroxisome Biogenesis and Hepatic HIF-α
Signaling
Peroxisome homeostasis is maintained by balancing biogenesis
and degradation of peroxisomes. Peroxisomes can eithermultiply
by growth and fission of pre-existing ones (Schrader et al.,
2012) or develop de novo from the ER (Tabak et al., 2013).
Proteins involved in peroxisome biogenesis, the peroxins, are
encoded by PEX genes (Hasan et al., 2013; Smith and Aitchison,
2013). In mammalian cells, peroxisome proliferation is triggered
by lipids which are substrates of peroxisomal metabolism and
ligands of PPARα (Schrader et al., 2012). The majority of
peroxins is not induced transcriptionally through peroxisome
proliferators. The peroxins PEX11α, β, and γ are involved in
the regulation of peroxisome size and number in mammalian
cells (Schrader et al., 2012), but only PEX11α is a PPARα target
gene. Their overexpression increases peroxisome number in the
absence of extracellular stimuli or peroxisome metabolism (Li
and Gould, 2002; Schrader et al., 2012). Recently, we showed
that activation of HIF-α signaling in the liver does not affect the
expression of Pex genes (Walter et al., 2014). Pex11α is the only
peroxin that is transcriptionally induced in response to HIF-2α
activation in Vhl−/− and Vhl−/−/Hif1α−/− livers (Walter et al.,
2014). The peroxisome biogenesis machinery in Vhl−/− livers is
functional, because peroxisome proliferation can be induced by
treatment with PPARα-dependent and -independent peroxisome
proliferators. However, HIF-2α signaling has a repressive effect
on ligand- and fasting-induced PPARα activation (Figure 5B)
(Walter et al., 2014).

Pexophagy
Three mechanisms for mammalian peroxisome degradation have
been described, which include selective autophagy (pexophagy),
proteolysis by peroxisomal Lon protease 2 (LONP2), and 15-
lipoxygenase-1 (ALOX15)-mediated autolysis (Till et al., 2012).
Studies using liver-specific Atg7−/− mice suggest that 70–80%
of excess liver peroxisomes are degraded by pexophagy, while
the remaining 20–30% are degraded via the action of LONP2
and ALOX15 (Till et al., 2012). A general rule applicable for
both yeast andmammalian cells is that environmental conditions
that require peroxisomal metabolism lead to peroxisome
proliferation, followed by pexophagic degradation when the
organelles are no longer required (Iwata et al., 2006; Farré et al.,
2008; Motley et al., 2012).

The pexophagy receptors Atg30 and Atg36 were identified in
P. pastoris and S. cerevisiae, respectively, and their overexpression
stimulates pexophagy even under peroxisome-inducing
conditions (Farré et al., 2008; Motley et al., 2012). Their synthesis
is upregulated in peroxisome proliferation conditions, they
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FIGURE 5 | (A) The major metabolic pathways in peroxisomes of the

mammalian liver. Various lipids are transported by PMPs (e.g., the ABC

transporter proteins ABCD1, ABCD2, ABCD3) into the peroxisomal matrix,

where they are oxidized by the β-oxidation enzymes. The products of the

β-oxidation can serve as substrates for the biosynthesis of ether-linked

phospholipids, cholesterol and bile acids or may exit the peroxisome for

further oxidation in mitochondria. With regard to PUFAs, peroxisomes not

only degrade these compounds but are also involved in their formation

through retroconversion of PUFAs by catalyzing the chain-shortening steps.

Peroxisomal function depends highly on molecular O2 due to its oxidative

type of metabolism. Peroxisomal β-oxidation and the activity of other

peroxisomal oxidases (e.g., UOX, DAO) result in the production of H2O2,

which is decomposed by catalase. Modified from Schrader and Fahimi

(2008). (B) Model for HIF-2α-mediated decrease in peroxisome abundance.

Peroxisome homeostasis is achieved by balancing biogenesis and

degradation of peroxisomes. HIF-2α signaling promotes degradation of

peroxisomes by pexophagy. Reduced peroxisome abundance and the

ensuing deficiency in peroxisomal function leads to major changes in the lipid

profile, such as accumulation of VLCFAs. VLCFAs are activating ligands for

the transcription factor PPARα. HIF-2α represses ligand-induced

PPARα-mediated peroxisome proliferation and consequential restoration of

peroxisome homeostasis. Thus, by simultaneously inducing pexophagy and

counteracting PPARα, HIF-2α ensures efficient depletion of the

peroxisome pool.

localize to the peroxisome membrane and bind to Pex3, and
they depend on phosphoregulation for their interactions with
components of the autophagy machinery (i.e., Atg8, Atg11)
during pexophagy conditions (Farré et al., 2008, 2013). Pex3
acts as a docking station for several proteins involved in
peroxisomal biogenesis and its interaction with Atg30 regulates
the phosphorylation status of Atg30 by a yet unknown kinase
(Burnett et al., 2015). Atg30 interacts also with Pex14, the
scaffold protein Atg17, and the acyl-CoA binding protein
Atg37 (Nazarko et al., 2014). The human ortholog of Atg37,
acyl-CoA-binding domain containing protein 5 (ACBD5), is
also peroxisomal and required for pexophagy (Nazarko et al.,

2014). Despite their functional similarities Atg30 and Atg36
do not display any significant sequence homology and they are
conserved only among a few yeast species.

There are no orthologous genes of Atg30 and Atg36 in
mammals. Overexpression of NBR1 and SQSTM1, which are
autophagy receptors of ubiquitinated targets, induces clustering
and degradation of peroxisomes in cell lines (Deosaran
et al., 2013). SQSTM1 is not required for pexophagy when
NBR1 is in excess, but its binding to NBR1 increases the
efficiency of NBR1-mediated pexophagy (Deosaran et al.,
2013). Artificial mono-ubiquitination of peroxisomal membrane
proteins (PMPs) in mammalian cells causes peroxisome turnover
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by pexophagy in a SQSTM1-dependent manner (Kim et al.,
2008). However, it is unknown if a PMP is ubiquitinated
under pexophagy-inducing conditions and whether subsequent
interaction with NBR1 and/or SQSTM1 links ubiquitinated
peroxisomes to the autophagic machinery.

In Chinese hamster ovary (CHO) cells, it has been suggested
that under nutrient starvation PEX14 is involved in pexophagy by
interacting with the lipidated form of LC3 (Hara-Kuge and Fujiki,
2008). Cell-free synthesized lipidated LC3 interacts in an in vitro
assay with the transmembrane domain of recombinant PEX14,
although PEX14 does not contain a LIR sequence that could
ensure LC3 binding (Jiang et al., 2015). PEX14 is an essential
component of the peroxisomal translocon complex (Hasan et al.,
2013), and it has been proposed that the PEX14-LC3 and
PEX14-PEX5 interactions are mutually exclusive (Hara-Kuge
and Fujiki, 2008). This competitive interaction might ensure
functional segregation of metabolically active and degradation-
prone peroxisomes.

Overexpression of Pex3 in CHO cells and mouse embryonic
fibroblasts induced clustering of peroxisomes and NBR1-
mediated pexophagy, albeit no direct interaction between
PEX3 and NBR1 could be detected (Yamashita et al., 2014).
Interestingly, ubiquitin signals were observed on peroxisomes
upon Pex3 overexpression, suggesting that a currently
unidentified PMP is ubiquitinated in PEX3-mediated pexophagy
andmight function in NBR1 recruitment (Yamashita et al., 2014).

HIF-2α-Mediated Pexophagy in the Liver
We examined the effect of HIF-α signaling on hepatic
peroxisome abundance in control and liver-specific Vhl−/−,
Vhl−/−/Hif1α−/−, and Vhl−/−/Hif2α−/− mice. Peroxisome
abundance is significantly decreased in livers of Vhl−/− mice
(Walter et al., 2014). Reduction of peroxisome abundance is
mediated by HIF-2α, because, with respect to the peroxisomal
phenotype, we observe a striking rescue in Vhl−/−/Hif2α−/−

but not Vhl−/−/Hif1α−/− mice. HIF-2α promotes pexophagy
because peroxisome abundance is increased after inhibition
of autophagy with 3-methyladenine (3-MA) in Vhl−/− mice.
In addition, expression of a non-degradable active HIF-
2α variant fails to decrease peroxisome abundance in liver-
specific, autophagy-deficient Atg7−/− mice (Figure 5B) (Walter
et al., 2014). In support of this finding super-resolution
and electron microscopy demonstrated that both single and
multiple peroxisomes, but no other cytoplasmic organelles, are
sequestered in autophagosomes in Vhl−/− livers.

Peroxisome abundance and protein levels of NBR1 and
SQSTM1 are concomitantly decreased in Vhl−/− and
Vhl−/−/Hif1α−/− livers (Walter et al., 2014). Neither peroxisome
abundance nor NBR1 and SQSTM1 levels decline in 3-MA-
treated Vhl−/− mice, showing that the abundance of these
receptors and peroxisomes are interconnected. Expression of a
constitutively active HIF-2α variant results also in a concomitant
decrease of peroxisome abundance and NBR1 levels. NBR1
and SQSTM1 colocalize with peroxisomes in Vhl−/− livers, but
surprisingly NBR1 already localizes to peroxisomes in control
livers (Walter et al., 2014). An intriguing feature of autophagy
receptors is their tendency to oligomerize, which facilitates

sequestration and clustering of the autophagic cargo. Indeed,
treatment of Vhl−/− mice with 3-MA leads to a significant
clustering of NBR1- and SQSTM1-positive peroxisomes,
suggesting that binding of multiple NBR1 and SQSTM1 to
peroxisomes and oligomerization of these receptorsmight induce
peroxisome clustering and prime peroxisomes for pexophagy.

In summary, by simultaneously inducing pexophagy and
counteracting PPARα, HIF-2α ensures efficient depletion of the
peroxisome pool (Figure 5B). Our data show that the autophagy
receptors NBR1 and SQSTM1 localize to peroxisomes and
are degraded together with peroxisomes by HIF-2α-mediated
pexophagy. However, it remains an open question how HIF-2α
induces pexophagy at the molecular level, but several possibilities
exist and are discussed below.

Peroxisome Abundance in Tumors
Peroxisome proliferation is a unique phenomenon generated by
a broad spectrum of structurally diverse compounds, such as
lipid-lowering drugs and plasticizers (Pyper et al., 2010; Misra
et al., 2013). These compounds induce peroxisome proliferation
in liver parenchymal cells of rodents, whereas no effects have
been observed in non-human primates and humans. Prolonged
exposure to peroxisome proliferators leads to the development
of hepatocellular carcinomas in rodents (Misra et al., 2013).
The mechanism(s) by which these non-mutagenic peroxisome
proliferators induce liver tumors remains controversial. Evidence
strongly implicates that hyperactivation of PPARα leads to
disproportionate large increases in H2O2-generating enzymes,
whereas the expression of H2O2-degrading enzymes is only
moderately increased (Pyper et al., 2010). This imbalance
increases the levels of H2O2 and other ROS in hepatocytes
and contributes to oxidative stress, lipid peroxidation, and
oxidative DNA damage (Pyper et al., 2010; Misra et al.,
2013).

Information on the role of peroxisomes in human tumor
development is scarce. It has been shown that the protein levels
of peroxisomal branched-chain FA β-oxidation enzymes (i.e., α-
methylacyl-CoA racemase, peroxisomal multifunctional protein
2) are upregulated in human prostate cancer (Zha et al., 2005)
and that this pathway is essential for optimal proliferation of
some prostate cancer cell lines (Zha et al., 2003). Recently, it
has been shown that monocarboxylate transporter 2 localizes
to peroxisomes in prostate cancer cells and that its expression
increases from non-malignant to malignant cells (Valença et al.,
2015). It would be important to know if these proteins are
selectively upregulated or if peroxisome abundance is also
increased in prostate cancer.

A decrease in peroxisome abundance has been observed in
various tumor cells, including hepatocellular carcinoma (Litwin
et al., 1999), colon carcinoma (Cable et al., 1992; Lauer et al.,
1999), breast cancer (el Bouhtoury et al., 1992; Keller et al.,
1993), and in renal cell carcinoma (Frederiks et al., 2010).
However, so far the mechanism leading to reduced peroxisome
abundance was unknown. We explored the relevance of HIF-2α-
dependent pexophagy in human clear cell renal cell carcinomas
(ccRCC), because loss of VHL function occurs in up to 90% of
sporadic human ccRCC and HIF-2α is considered to be a driver
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oncoprotein for ccRCC. Analysis of more than 200 ccRCC tissue
samples revealed that peroxisome abundance is reduced in VHL-
deficient ccRCC characterized by high HIF-2α levels (Walter
et al., 2014), suggesting that HIF-2α-mediated pexophagy is
relevant to human disease. Interestingly, peroxisome abundance
is reduced more frequently in well-differentiated tumors,
however, it remains to be determined if induction of pexophagy
and subsequent loss of peroxisomes promotes or slows down
tumor growth. Since HIF-2α stabilization is observed in the vast
majority of solid tumors (Franovic et al., 2009; Qing and Simon,
2009), we propose that in addition to ccRCC HIF-2α-mediated
pexophagy might also lead to reduced peroxisome abundance in
other cancer types.

Metabolic Consequences of Reduced
Peroxisome Abundance
Livers of Vhl−/− and Vhl−/−/Hif1α−/− mice are enlarged and
display severe steatosis (Rankin et al., 2009; Walter et al., 2014).
HIF-2α-mediated reduced peroxisome abundance leads to major
changes in the lipid profile of Vhl−/− and Vhl−/−/Hif1α−/−

livers, like accumulation of VLCFAs and VLC-PUFAs and
depletion of docosahexaenoic acid (DHA) and arachidonic acid
(Walter et al., 2014). Furthermore, the levels of the C27-bile acid
intermediates 3α,7α-dihydroxycholestanoic acid and 3α,7α,12α-
trihydroxycholestanoic acid are significantly increased in the
plasma of Vhl−/− and Vhl−/−/Hif1α−/− mice. These lipid
changes are characteristic features of human patients and mice
lacking peroxisomes (Raymond et al., 2009; Van Veldhoven,
2010; Wanders et al., 2010; Baes and Van Veldhoven, 2012).
β-oxidation of VLCFAs and C27-bile acid intermediates occurs
only in peroxisomes, peroxisomes play a role in synthesis
and degradation of PUFAs, and DHA synthesis requires one
cyle of peroxisomal β-oxidation (Van Veldhoven, 2010). Since
peroxisomes are essential for plasmalogen biosynthesis and
substrates for peroxisomal β-oxidation also include branched-
chain FAs, dicarboxylic FAs, and eicosanoids (Van Veldhoven,
2010), it is likely that additional changes in lipid metabolism
result from reduced peroxisome abundance in response to HIF-
2α activation.

Indirect consequences of reduced peroxisomal metabolism
like activation of ER stress pathways and mitochondrial
dysfunction might also contribute to alterations in lipid
metabolism (Baumgart et al., 2001; Dirkx et al., 2005;
Kovacs et al., 2009, 2012). Toxic effects of accumulation
of peroxisomal β-oxidation substrates might damage the
mitochondrial compartment by altering the lipid composition of
mitochondrial membranes. It is well-known that free fatty acids
act as potent detergents that can damage cellular membranes
(Ho et al., 1995). Membrane properties (e.g., acyl chain order,
fluidity, permeability, fusion events, lipid raft microdomains,
protein activity) are affected by changes in VLCFAs, VLC-
PUFAs, DHA, and plasmalogen levels, influencing secretory
and vesicular trafficking pathways (Whitcomb et al., 1988;
David et al., 1998; Gleissman et al., 2010; Obara et al., 2013).
Hypoxia or loss of VHL function has been shown to delay
endocytosis and thereby to enhance receptor tyrosine kinase-
mediated signaling (Wang et al., 2009). Thus, lipid alterations as

a result of HIF-2α-mediated pexophagy might affect endosomal
trafficking and signaling pathways downstream of membrane
receptors.

A hallmark of cancer is the reprogramming of metabolism,
and recent data suggest that alterations in lipid metabolism play
an important role in tumor development (Hirsch et al., 2010;
Santos and Schulze, 2012; Currie et al., 2013). Fatty acids support
cancer growth by providing substrates for energy production
or by generating building blocks for membranes and signaling
lipids in proliferating cells (Carracedo et al., 2013). VLC-PUFAs
could be converted to eicosanoids, biologically active lipids
involved in various pathological processes such as inflammation
and cancer. Eicosanoids are degraded in peroxisomes, and
loss of peroxisomes affects eicosanoid signaling. Peroxisomes
are essential for the synthesis of ether lipids, which represent
up to 20% of the total phospholipid mass in humans
(Braverman and Moser, 2012; Lodhi and Semenkovich, 2014).
Aggressive cancers have high levels of ether lipids, and the
expression of the peroxisomal ether lipid synthetic enzyme
alkylglyceronephosphate synthase (AGPS) is increased in various
cancer cell lines and primary tumors (Benjamin et al., 2013).
AGPS knockdown impairs cancer pathogenesis through not only
lowering the levels of ether lipids, but also by altering fatty acid,
eicosanoid, and glycerophospholipid metabolism, resulting in an
overall reduction in the levels of several oncogenic signaling
lipids (Benjamin et al., 2013).

Several environmental challenges including ischemia-
reperfusion injury, obstructive sleep apnea, viral hepatitis, and
alcohol-mediated liver injury are known to induce hepatic
hypoxia signaling and are associated with changes in lipid
metabolism (Nath and Szabo, 2012). It is tempting to speculate
that HIF-2α-mediated pexophagy contributes, at least in some
of these pathophysiological conditions, to alterations in lipid
metabolism. Decreased plasma and hepatic levels of arachidonic
acid and DHA have been observed in patients with non-alcoholic
fatty liver disease and non-alcoholic steatohepatitis (Puri et al.,
2007, 2009), suggesting impaired peroxisomal metabolism in
their pathogenesis. An increasing number of studies suggest that
peroxisome dysfunction may be a specific marker for Alzheimer
disease. Kou et al. (2011) noted extensive peroxisome-related
alterations in Alzheimer disease brains such as increased VLCFAs
and decreased plasmalogens containing PUFAs. The question
remains if the general loss of peroxisome functions in AD brains
is due to pexophagy.

Models How HIF-2α Might Trigger Pexophagy
Since HIF-2α is a transcription factor, the most likely
possibility would be that HIF-2α induces the expression of an
autophagy receptor and subsequent clustering of peroxisomes via
oligomerization of receptor-bound organelles, however, neither
Nbr1 nor Sqstm1 are HIF-2α target genes (Walter et al.,
2014). Ubiquitination of cargo prone for selective autophagic
degradation is the most prevalent autophagy-targeting signal in
mammals, and most of the currently known autophagy receptors
harbor both ubiquitin-binding domains and LIRs (Kirkin et al.,
2009; Stolz et al., 2014). HIF-2α might induce an E3 ubiquitin
ligase that mediates the ubiquitination of a PMP (Figure 6A). We
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FIGURE 6 | Three alternative models illustrating how HIF-2α

might trigger pexophagy. (A) HIF-2α might induce an E3 ubiquitin

ligase that ubiquitinates a PMP that enhances the recruitment of the

autophagy receptor NBR1 to the peroxisome surface. Accumulation

of NBR1 on peroxisomes likely recruits SQSTM1, which was

suggested to act as pexophagy co-receptor, and subsequently leads

to clustering of peroxisomes via oligomerization of receptor-bound

organelles. Accumulation of a critical mass of autophagy receptors

might prime phagophore assembly at peroxisomes. (B) NBR1 could

be recruited to peroxisomes independently of ubiquitin via its

membrane-interacting amphipathic α-helical J domain. HIF-2α might

induce or inhibit a kinase/phosphatase that leads to a change in the

posttranslational modification of peroxisome-bound NBR1 and thereby

triggers recruitment of the autophagic machinery. (C)

HIF-2α-dependent activation of pexophagy might be a 2-step process

and HIF-2α functions as master regulator that combines two layers

of posttranslational modifications to trigger pexophagy. First, it induces

an E3 ubiquitin ligase leading to an increased ubiquitination of

PMP(s) and subsequent accumulation of NBR1 and SQSTM1 on

peroxisomes. Second, HIF-2α activates or inhibits a

kinase/phosphatase that leads to a change in the posttranslational

modification of peroxisome-bound NBR1 and thereby enhances its

binding affinity to a LC3 homolog that finally results in pexophagy.

Modified from Schönenberger et al. (2015).

propose that HIF-2α signaling increases in this manner NBR1
accumulation on peroxisomes, which in turn serves as a platform
for the recruitment of SQSTM1 to achieve a critical mass of
autophagy receptors on peroxisomes required for pexophagy

(Schönenberger et al., 2015). This might concentrate sufficient
ubiquitin-like modifiers (e.g., LC3 and GABARAPs) in close
proximity to peroxisomes to prime phagophore assembly. The
peroxisomal membrane harbors three E3 ligases (PEX2, PEX10,
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PEX12) that are essential for peroxisome biogenesis and involved
in PEX5 receptor ubiquitination. Their transcriptional induction
and concomitant increase of protein levels could increase their
ubiquitination capability leading to enhanced ubiquitination of
PMPs, but HIF-2α does not induce the expression of those E3
ligases (Walter et al., 2014). Thus, further studies are required to
identify and characterize putative E3 ligases involved in HIF-2α-
mediated pexophagy.

Why does NBR1 localize to peroxisomes in control livers
where pexophagy is not induced? In fact, yeast Atg30
and Atg36 also localize to peroxisomes under peroxisome
proliferation conditions, but they depend on phosphoregulation
for their interactions with components of the autophagy
machinery during pexophagy conditions (Farré et al., 2008,
2013). Posttranslational modifications (e.g., phosphorylation,
ubiquitination, acetylation) of autophagy proteins are crucial
for induction, inhibition, cargo-recognition, and fine-tuning of
autophagy. We propose that additional protein modifications are
very likely necessary to ultimately drive pexophagy by recruiting
and tailoring the autophagic machinery to peroxisomes. For
example, phosphorylation as an inducing event of autophagy is
conserved from yeast tomammals and has already been discussed
above in the context of pexophagy in yeast and mitophagy.
Phosphorylation of SQSTM1 and optineurin increases affinity
to ubiquitin chains and LC3 (Stolz et al., 2014), and NBR1
phosphorylation by glycogen synthase kinase 3 prevents
the aggregation of ubiquitinated proteins and their selective
autophagic degradation (Nicot et al., 2014). We propose that
HIF-2α governs pexophagy by promoting posttranslational
modifications of PMPs and/or autophagy receptors that enhance
interactions of receptor-labeled peroxisomes with the autophagic
machinery (Figure 6B) (Schönenberger et al., 2015).

Finally, one could envision that HIF-2α-dependent activation
of pexophagy is a 2-step process that involves interplay between
ubiquitination of a PMP(s) as well as phosphoregulation of
autophagy receptors or a PMP(s) as a trigger of pexophagy
(Figure 6C) (Schönenberger et al., 2015). Interestingly, a similar
interplay promotes PINK1-Parkin-mediated mitophagy whereby
phosphorylation of ubiquitin contributes to a feedforward
mechanism for ubiquitination events on dysfunctional
mitochondria (Ordureau et al., 2014).

A receptor protein complex (RPC) model has been proposed
that encompasses the receptor protein as the key player that
establishes interactions with ligands, scaffold, and phagophore
proteins (Nazarko et al., 2014). The question remains which
components of the RPC are involved in HIF-2α-driven
pexophagy. Is there an Atg11 homolog in the mammalian liver
that would act as a scaffold for HIF-2α-mediated pexophagy?
Little is known about mammalian autophagy adaptor proteins
that bind to LC3 family members and serve as an anchor point
to regulate autophagosome formation around the specific cargo
(Stolz et al., 2014). Similar to Atg11, ALFY (autophagy-linked
FYVE protein) is a scaffolding protein implicated in aggrephagy
that links cargo to the autophagic machinery (Isakson et al.,
2013). Moreover, Huntingtin (HTT) has been proposed to serve
as adaptor for any type of selective autophagy, because the
domain of HTT shares structure similarities and binding activity

with the yeast Atg11 protein and interacts with autophagic
effector proteins (Ochaba et al., 2014). It is tempting to speculate
that ALFY or HTT are part of the RPC mediating HIF-2α-
induced pexophagy and thus, functioning as scaffold protein(s).
In summary, the identification of HIF-2α as an inducer of
pexophagy opens new avenues for studying the underlying
molecular mechanism.

Concluding Remarks

We have described hypoxia signaling pathways that regulate
function and abundance of mitochondria, ER, and peroxisomes
under hypoxia or in response to loss of VHL function. There
is emerging evidence that these O2-related organelles exhibit a
close functional interplay, and peroxisomal alterations influence
mitochondrial and ER functions and vice versa. Although
peroxisomal function depends highly on molecular O2, there
has been no evidence linking their abundance to O2 availability
and HIF-α signaling. In a recent study we identified a unique
function of HIF-2α as promoter of pexophagy. An open question
that remains to be answered is how HIF-2α induces pexophagy,
and we discussed in this review alternative models for how
it might trigger pexophagy. Posttranslational modification of
autophagy-related proteins and receptors has emerged as an
essential regulatory mechanism of selective autophagy. Future
studies should address which posttranslational modifications
regulate HIF-2α-mediated pexophagy and which components of
the receptor protein complex are involved in HIF-2α-mediated
pexophagy. In addition, it remains to be determined how HIF-α
signaling affects mitochondrial size and ultrastructure and
consequently their activity. PPARα modulates metabolic and
inflammatory pathways by responding to nutritional signals
through ligand activation of transcription, and it is a target
of drugs in use and in development to treat diseases. We
showed that HIF-α signaling has a repressive effect on ligand-
dependent PPARα transcriptional activity, but the mechanism
by which HIF-α exerts its inhibitory effect requires further
studies. In the past the role of peroxisomes in the cell and
in human disease apart from peroxisomal disorders has been
grossly underestimated, but this might change given increasing
appreciation for the complexity of their interactions with
other organelles and the recent discovery of novel functions
for peroxisomes. Reduction in peroxisome abundance by
pexophagy might positively and negatively impact human
disorders including cancer, inflammation, metabolic and
neurodegenerative diseases. Along with mechanistic studies of
HIF-2α-dependent regulation of pexophagy, the identification
of pharmacological regulators of pexophagy might have practical
health benefits.
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