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Gene transcription in bacteria is carried out by the multisubunit RNA polymerase (RNAP), 

which is composed of a catalytic core enzyme and a promoter-recognizing σ factor. RNAP core 

enzyme comprises two α subunits, one β subunit, one β΄ subunit, and one ω (omega) subunit. 

Across multiple bacterial taxa, the RNAP ω subunit plays critical roles in the assembly of RNAP 

core enzyme and in other cellular functions, including regulation of bacterial growth, stress 

response, and biofilm formation. However, for several intracellular bacterium, including the 

obligate intracellular bacterium Chlamydia, no RNAP ω subunit previously has been identified. 

Here, we report the identification of Chlamydia trachomatis hypothetical protein CTL0286 as 

the chlamydial RNAP ω ortholog, based on sequence, synteny, and AlphaFold and 

AlphaFold-Multimer three-dimensional-structure predictions. We conclude that CTL0286 

functions as the previously missing chlamydial ω ortholog. Extensions of our analysis indicate 

that all obligate intracellular bacteria have ω orthologs.  

IMPORTANCE 

Chlamydiae are common mammalian pathogens. Chlamydiae have a unique developmental cycle 

characterized with an infectious but nondividing elementary body (EB), which can temporarily 

survive outside host cells, and a noninfectious reticulate body (RB), which replicates only 

intracellularly. Chlamydial development inside host cells can be arrested during persistence in 

response to adverse environmental conditions. Transcription plays a central role in the 

progression of the chlamydial developmental cycle as well as entry into and recovery from 

persistence. The identification of the elusive ω subunit of chlamydial RNAP makes possible 

future study of its regulatory roles in gene expression during chlamydial growth, development, 
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and stress responses. This discovery also paves the way to prepare and study the intact 

chlamydial RNAP and its interactions with inhibitors in vitro. 
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RNA synthesis in bacteria is carried by a single RNA polymerase (RNAP). The bacterial RNAP 

is a multisubunit enzyme (1). In almost all bacteria, the catalytic core enzyme of the RNAP 

(RNAP core) is composed of two α subunits, one β subunit, one β’ subunit, and one ω subunit (1, 

2). Association of a σ factor to the core enzyme results in the formation of the RNAP 

holoenzyme (1). In the context of the holoenzyme, the σ factor is the primary determinant of 

promoter recognition and binding, and the RNAP core catalyzes the initiation and elongation of 

RNA synthesis using DNA as template (2-4). 

The RNAP ω subunit, a protein of only about 10 kDa, initially was thought to be a contaminant 

in purified RNAP preparations (5-7). This view was prompted by the observation that ω-free 

RNAP preparations were active in transcription assays (8). However, the observation of 

increased transcription-initiation activity by an RNAP derivatives having ω fused to DNA-

binding domains indicated ω was an integral component of RNAP (9). Further studies showed 

that ω is critical for the folding of the RNAP β’ subunit and the for the assembly and stability of 

RNAP core enzyme (10-14). Studies using ω-deficient bacteria showed that ω is important for 

response to amino acid starvation, thermal and CO2 acclimation, biofilm formation, and 

antibiotic production, and also affects growth under standard culture conditions (15-20). It was 

also shown that ω regulates the association of principal and alternative σ factors by the RNAP 

core enzyme and thus can affect promoter-recognition selectivity (21-23). Taken together, these 

and other studies suggest that ω serves as an important component of the bacterial RNAP 

holoenzyme and is required for numerous physiological functions [for review, see (24-26)]. 
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ω has been found in all free-living bacteria and in some obligate intracellular bacteria (24, 25). ω 

also is present in some eukaryotic chloroplasts (27). An ortholog of ω, termed RpoK, is present 

in archaeal RNAP (28), and an ortholog of ω, termed RPB6, is present in eukaryotic RNAP I, II, 

and III (29). 

Chlamydiae are intracellular bacteria that replicate only inside eukaryotic host cells (30, 31). 

Chlamydiae and Chlamydia-like organisms have been isolated from a wide range of hosts (32-

46). Significantly, Chlamydia trachomatis is the number one sexually transmitted bacterial 

pathogen globally, and also is a major cause of preventable blindness in developing countries 

(47-49), and C. pneumoniae is a common respiratory pathogen (50-54). Several animal 

Chlamydia species are zoonotic pathogens (55-64). Waddlia chondrophila is one of several 

Chlamydia-like organisms, termed environmental chlamydiae, typically found in lower 

eukaryotes, such as amoebae, but can infect, and induce abortion in, vertebrates, including 

humans (65). 

Chlamydiae are characterized by a unique developmental cycle consisting of two distinct cellular 

forms. The infectious but non-proliferative elementary body (EB) is capable of temporarily 

surviving in extracellular environments and invading host cells. Following invasion of host cells 

and entry into cytoplasmic vacuoles, EBs differentiate into proliferative reticulate bodies (RBs). 

Following multiple rounds of replication, RBs convert back into EBs, which then exit host cells 

(66-68). In addition to this "productive" chlamydial developmental cycle, under unfavorable 

environmental conditions (e.g., nutrient/mineral starvation, increased temperature, or exposure to 

inhibitory antibiotics, or cytokines), chlamydiae can enter into a "persistent" state characterized 
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by aberrant RBs inside infected cells,  and, when environmental conditions improve, the aberrant 

RBs can exit the persistent state and resume production of EBs, (69-75). 

Both the productive chlamydial developmental cycle and persistent infection are controlled by 

gene transcription (69, 71, 75-77). The chlamydial genome encodes three σ factors (σ66, σ28 and 

σ54), as well as the α, β and β΄ subunits of the core enzyme (78, 79). Surprisingly, it previously 

has not been possible to identify a candidate gene encoding the ω subunit in any chlamydial 

genome [e.g., (80-83)]. In principle, the chlamydial rpoZ gene may have been lost in the 

evolutionary process during which Chlamydia reduced its genome size to adapt to its unique 

developmental cycle. Alternatively, in principle, the chlamydial ω protein may have gone 

undetected due to low sequence homology with known bacterial and chloroplast ω factors. 

 Here, we report the identification of chlamydial ω, based on conserved amino-acid sequence, 

conserved synteny, and AlphaFold-predicted conserved three-dimensional structure and 

interactions. In addition, we also present an AlphaFold-Multimer model of the three-dimensional 

structure of a complex composed of the chlamydial RNAP β, β’, and ω subunits. The 

identification of the previously elusive chlamydial ω sets the stage for investigation of its roles in 

regulation of gene expression during chlamydial growth, development, and stress responses. Our 

findings also set the stage to reconstitute the intact cRNAP from recombinant subunits in vitro, 

for future structural studies and for discovery and development of small-molecule inhibitors as 

possible anti-chlamydial drugs. 
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METHODS 106 

107 BlastP analysis 

Web-based BlastP was performed at https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins 

using default settings (84). Multiple protein sequence alignment was performed with ClustalX2 

on a Windows computer on PC (85) or Clustal Omega at 

108 
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https://www.ebi.ac.uk/Tools/msa/clustalo/ using default settings (86, 87).  111 

112 
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Three-dimensional-structure prediction 

AlphaFold version 2.2.0 (88) was installed locally and run using the reduced database option 

with a maximum template date of November 1, 2021 and the multimer preset enabled for the 

cRNAP β’-CTL0286 and cRNAP β-β’-CTL0286 complex predictions. The multimer predictions 

were run with the default pre-trained AlphaFold-Multimer models (89), and the ranked 0 

predictions (i.e., with lowest predicted local distance difference test [pLDDT] scores) were used 

for the figures for each complex. The CTL0286 monomer structure prediction was performed 

with the default monomer preset and the full database option and used the original CASP14 

monomer models without ensembling. Model prediction and amber relaxation were performed 

for all predictions using a single NVIDIA Tesla V100 Volta GPU with 16GB of memory. Since 

the total sequence lengths significantly increase the space complexity, forced unified memory 

was enabled, and the XLA memory fraction environmental variable was set to 4.0 to avoid out of 

memory errors during runtime.  
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Three-dimensional-structure similarity analysis 125 
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Structural homology search for AlphaFold model of CTL0286 was performed using the Dali 

server heuristic PDB Search option (90, 91) available at 

http://ekhidna2.biocenter.helsinki.fi/dali/. A PDB90 non-redundant subset at 90% sequence 

identity was used.  

128 
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Synteny analysis 

CSBFinder-S (v0.6.3) (92) was used with the default settings to find the gmk-rpoZ synteny 

across 23,517 fully sequenced bacterial genomes downloaded from the NCBI genome database. 

DeepNOG (v1.2.3) (93) was run using the default setting to obtain the COG (Clusters of 

Orthologous Genes) ID for each gene. Strand information was obtained from the corresponding 

genomic.gff file for every genome downloaded. The gmk-rpoZ synteny was identified by finding 

COG0194 (gmk) and COG1758 (rpoZ) together within the CSBFinder-S output. 
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Identification of chlamydial ω: sequence similarity 

Although ω has not been detected in Chlamydiae, ω had been detected in two other intracellular 

bacteria: Rickettsia and Coxiella (94, 95). Therefore, as a starting point to determine if 

chlamydiae encode an ω subunit, we performed BlastP analysis for chlamydial genomes using 

the amino-acid sequences of R. rickettsii ω and C. burnettii ω (94, 95) as queries. Using default 

parameters (84), the analysis did not detect sequence homolog to the R. rickettsii ω;  in 

chlamydiae. However, the analysis did detect a possible sequence homolog of C. burnettii ω:  

Wcw_0707, a hypothetical protein encoded by the genome of the Chlamydia-like organism W. 

chondrophila (82) (Fig. 1A). Analysis of the sequence of Wcw_0707 revealed two features 

consistent with Wcw_0707 being an ω ortholog. First, Wcw_0707 is 107 amino acids long, 

similar in size to ω (~100 amino acids). Second, the Wcw_0707 N-terminal region (residues 7-

62) exhibits strong sequence similarity to the C. burnettii ω (Fig. 1A) and Escherichia coli ω N-

terminal regions (Fig. 1B), which are known to be responsible for binding to the RNAP β΄ 

subunit and for facilitating the folding of β' (96). We hypothesized that Wcw_0707 may be the ω 

subunit in W. chondrophila.  

Given our primarily interest in transcriptional regulation by the human sexually transmitted 

pathogen C. trachomatis, we next used Wcw_0707 as the query to search for a putative ω gene 

in the C. trachomatis genome. The search revealed a strong sequence similarity between the N-

terminal region of hypothetical protein CTL0286 of C. trachomatis serovar L2 and the N-

terminal region of Wcw_0707 of W. chondrophila (Fig. 1C). CTL0286 is a small protein of 100 
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amino acids , similar in length to previously reported RNAP ω subunits and similar in length to 

Wcw_0707, (81). Notably, although CTL0286 exhibits only low overall sequence similarity to 

other reported bacterial ω subunits, it contains a key conserved set of amino acids found in ω 

subunits of a broad range of bacterial taxa (Fig. 1D). Additional BlastP analysis of CTL0286 

identified CTL0286 orthologs in all vertebrate chlamydiae (Fig. 2). These findings support the 

hypothesis that Wcw_0707 is the ω subunit in W. chondrophila and enable the hypothesis that 

CTL0286 and its orthologs are ω subunits in C. trachomatis and other vertebrate chlamydiae.  

Identification of chlamydial ω: synteny 

Upon manual examination of rpoZ in 10 bacterial genomes, we noted that the rpoZ gene always 

is located immediately downstream of the gmk gene, which encodes guanylate kinase (Table 1). 

An in silico analysis identified gmk-rpoZ synteny in 18302 of 23517 fully-sequenced bacterial 

genomes. The conservation of gmk-rpoZ synteny across a majority of bacteria taxa suggests that 

there likely is an adaptive advantage to gmk-rpoZ synteny, although the character of the adaptive 

advantage is not readily clear. Interestingly, in W. chondrophila, the wcw_0707 gene is located 

immediately downstream of the gmk gene, and, in all vertebrate chlamydiae species, the ctl0286 

gene and its orthologs are also located immediately downstream of gmk (Table 1). This 

conserved gene order provides further support for the hypothesis that CTL0286 and its orthologs 

are chlamydial ω subunits. 

Identification of chlamydial ω: predicted three-dimensional structural similarity 

AlphaFold has recently become an indispensable resource for predicting the three-dimensional 

structures of proteins and protein complexes (88, 89). We first used AlphaFold to predict three-
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dimensional structure of CTL0286. In the resulting predicted structure for CTL0286, the N-

terminal region (residues 1-58) contains three α helices (α1, residues 9-15 residues; α2, residues 

19-36; and α3, residues 44-55) that correspond to three α-helices present in all structurally 

characterized ω subunits (26, 97, 98), and the C-terminal region (residues 58-100) are mostly 

disordered, similar to in structurally characterized ω subunits having lengths greater ~60 amino 

acids (26, 97, 98). Three-dimensional-structure similarity searches of the AlphaFold prediction 

for full-length CTL0286, performed on the DALI server (90, 91), identified bacterial ω subunits 

as the three top hits, with Z-scores of 3.8, 3.4, and 3.1, for RNAP ω subunits of Clostridium 

difficile (99), Mycobacterium tuberculosis (100), and Bacillus subtilis (101), respectively (Table 

2). Three-dimensional-structure similarity searches of the AlphaFold prediction for the N-

terminal region of CTL0286 (residues 1-62), performed on the DALI server (90, 91), identified 

bacterial ω subunits as the three top hits, with Z-scores of 5.2, 5.1, and 4.9 for RNAP ω subunits 

of Escherichia coli (102), Mycobacterium tuberculosis (103), and Bacillus subtilis (104), 

respectively (Table 2).  

We next used AlphaFold-Multimer (89) to predict the three-dimensional structure of a complex 

of CTL0286 and the C. trachomatis RNAP β’ subunit (Fig. 4A). The resulting predicted three-

dimensional structure of CTL0286-β' was superimposable, with an rmsd of 2.2 Å for CTL0286 

and an rmsd of 4.0 Å for C. trachomatis RNAP β’on a crystal structure of the ω-β’ subcomplex 

of E. coli RNAP holoenzyme (PDB 6ALH) (97) (Fig. 4B).  Significantly, the predicted three-

dimensional structure of CTL0286-β' includes interactions that bridge the RNAP β'-subunit N- 

and C-termini (Fig. 4C) as observed in experimental structures of ω-containing RNAP and 

RNAP complexes (97, 105, 106), where they are believed to reduce configurational entropy of 
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partly folded and folded states of the nearly 1400-residue RNAP β' subunits, and thereby to 

facilitate RNAP assembly and enhance RNAP stability (10, 12, 14). We further used AlphaFold-

Multimer to predict the three-dimensional structure of a heterotrimeric protein complex 

comprising CTL0286, C. trachomatis RNAP β', and C. trachomatis RNAP β (Fig. 5A). The 

resulting predicted three-dimensional structure of CTL0286-β' was superimposable, with rmsd of 

2.2 Å for CTL0286 and 2.7 Å for C. trachomatis RNAP β, and β, on a crystal structure of the ω-

β’-β subcomplex of E. coli RNAP holoenzyme (PDB 6ALH) (97) (Fig. 5B) and includes 

interactions that bridge the N- and C-termini of β' (Fig. 5C).  

Taken together, these findings provide further support for our hypothesis that CTL0286 and its 

orthologs are bona fide chlamydial ω subunits. 

Identification of ω in other obligate intracellular bacteria 

After successful identification of RNAP ω subunit in chlamydiae, we next determined if ω is 

present in other obligate intracellular bacterial taxa beside rickettsiae. NCBI searches identified 

annotated ω orthologs in the proteomes of Anaplasma, Ehrlichia, Orientia, Wolbachia and 

Candidatus Midichloria. Pre-generated AlphaFold structural models of Anaplasma, Ehrlichia, 

Orentia, and Wolbachia ω orthologs at www.uniprot.org (107) show three-dimensional strctural 

similarity to experimentally determined structures of bacterial ω subunits, indicating that the 

annotations likely are correct. No pre-generated AlphaFold structural model of the annotated 

Candidatus Midichloria ω ortholog is available at 

217 

218 

219 

www.uniprot.org (107). However, generation 

of an AlphaFold structural model for the annotated Candidatus Midichloria ω ortholog (Fig. 6), 

followed by three-dimensional-structure similarity searches on the DALI server (90, 91) 

220 

221 

222 
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identified bacterial ω subunits as the three top hits, with Z-scores of 9.3, 8.6, and 8.6 for RNAP 

ω subunits of Pseudomonas Aeruginosa (108), Mycobacterium tuberculosis (100), and 

Xanthomonos oryzae (109), respectively, indicating that the annotation likely is correct (Table 

3). We conclude that Analplasma, Ehrlichia, Orientia, Wolbachia, and Candidatus Midichloria 

all possess RNAP ω subunits. 

Absence of ω in Mycoplasma and Ureaplasma 

We next extended our RNAP ω subunit search in the facultative intracellular bacterium 

Mycoplasma genitalium, whose 580-kb genome is the smallest known bacterial genome (110). 

NCBI search failed to identify an annotated rpoZ in M. genitalium. Interestingly, our search also 

failed to identify an annotated rpoZ in other Mycoplasma species, even though most have 

genome sizes comparable to that of Chlamydia. Our search also failed to identify an annotated 

rpoZ in Ureaplasma (111), which is phylogenetically closely related to Mycoplasma. To verify 

the absence of ω subunits in these organisms, we first checked the gene immediately downstream 

of the gmk gene in Mycoplasma for possible sequence similarity to rpoZ, and we found none 

(110, 111). We next performed AlphaFold modeling for all 68 hypothetical proteins of 

Mycoplasma pneumoniae having sizes comparable to bacterial ω subunits (i.e., sizes of 40-150 

amino acids) (112). AlphaFold predicted multi-α-helix folds for 26 of the 68 proteins. Three-

dimensional-structure similarity searches of these 26 AlphaFold predictions, performed on the 

DALI server (90, 91), failed to identify structures of experimentally determined bacterial ω 

subunits as possible matches. We infer that Mycoplasma and Ureaplasma are unlikely to have 

RNAP ω subunits.  
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In this report, we present multiple lines of evidence for the existence of an RNAP ω subunit in 

chlamydiae. Although a lack of strong, continuous sequence homology previously had precluded 

the identification of a chlamydial ω, a multi-step BlastP analysis led to the identification of 

CTL0286 as candidate (Fig. 1). Like rpoZ in the super majority of bacteria, ctl0286 is located 

immediately downstream of gmk (Table 2 and data not shown). AlphaFold-predicted three-

dimensional structures of CTL0286 exhibit strong similarities to experimental three-dimensional 

structures of ω subunits for a broad range of bacterial taxa (29, 101, 109, 113, 114). AlphaFold-

Multimer predicted three-dimensional structures of complexes of CTL0286, with C. trachomatis 

RNAP β' subunit, and of CTL0286 with C. trachomatis RNAP β' and β subunits, exhibit strong 

similarity to experimental three-dimensional structures of ω-β' and β'-β complexes [(Fig. 4, 5); 

(97, 98)]. The identification of CTL0286 as the C. trachomatis ω demonstrates the power of use 

of combinations of sequence-similarity analysis, synteny analysis, and AlphaFold and 

AlphaFold-Multimer analysis for identifying proteins "missing" from proteomes and for 

annotating functions of hypothetical proteins in proteomes.  

Our extended analysis further showed that like Chlamydia, other obligate intracellular bacteria 

(i.e., Rickettsia, Anaplasma, Ehrlichia, Orientia, Wolbachia and Candidatus Midichloria) also 

encode ω orthologs (Fig. 6 and data not shown), but facultative intracellular bacteria 

Mycoplasma and Ureaplasma do not. Together with previous findings demonstrating the 

existence of ω orthologs in archaea and eukaryotes (27-29), these findings suggest that all living 

organisms from bacteria to humans have omega orthologs, likely with Mycoplasma and 

Ureaplasma as only exceptions.   
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ω plays roles in σ-RNAP core enzyme association (21-23) and thereby influences promoter-

recognition selectivity (21-23). Chlamydiae possess a principal σ factor and two alternative σ 

factors (80, 81, 115).  The principal σfactor, σ66, is involved in transcription of most chlamydial 

genes throughout the developmental cycle; the alternative σ factors, σ28 and σ54, are required for 

expression of certain late genes (116-118). The different chlamydial σ factors also differentially 

affect response to stress conditions (71, 77). It would be equally interesting to investigate if and 

how the chlamydial ω regulates σ-RNAP core enzyme association in chlamydial developmental 

stages and in response to various stress condition. 

In summary, we have identified the long-missing ω subunit of the cRNAP. As with most 

scientific studies, this discovery raises more questions than it answers. There is a need to 

determine whether the chlamydial ω plays solely a structural role in cRNAP assembly and 

stability, or whether it also functions in regulation of chlamydial growth, development, and stress 

response. 
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Fig. 1. Identification of cRNAP ω candidate by BlastP and sequence alignment. (A) BlastP-

detected sequence homology between Coxiella burnetii RNAP ω subunit and wcw_0707, a 

hypothetical protein of the Chlamydia-like organism Waddlia chondrophila. (B) BlastP-detected 

sequence homology between E. coli RNAP ω and wcw_0707. (C) BlastP-detected sequence 

homology between wcw_0707 and CTL0286 of Chlamydia trachomatis. (D) ClustalX2-detected 

amino acids conserved in CTL0286 of C. trachomatis, wcw_0707 of W. chondrophila, and ωs of 

a variety of bacteria.  

Fig. 2. Sequence conservation among ω candidates in all vertebrate chlamydiae. Alignment 

was performed using ClustalX2.   

Fig. 3. AlphaFold predictions for CTL0286. (A) Superimposition of AlphaFold prediction for 

full-length CTL0286 (red) on experimental structures of Clostridium difficile, Mycobacterium 

tuberculosis, and Bacillus subtilis RNAP ω (blue, cyan, and gray, respectively). (B) 

Superimposition of AlphaFold prediction for N-terminal region (residues 1-62) of CTL0286 

(red) on experimental structures of Escherichia coli, Mycobacterium tuberculosis, and Bacillus 

subtilis RNAP ω (blue, cyan, and gray, respectively).  

Fig. 4. AlphaFold-Multimer predictions for complex comprising CTL0286 and C. 

trachomatis RNAP β' subunit. Superimposition of AlphaFold-Multimer prediction for 

CTL0286-β' (red for CTL0286; pink for β') on experimental structure of E. coli RNAP (PDB 

6ALH; black for ω; light gray for β'). 
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Fig. 5. AlphaFold-Multimer predictions for complex comprising CTL0286 and C. 

trachomatis RNAP β' subunit, and β subunit. Superimposition of AlphaFold-Multimer 

prediction for CTL0286-β'-β (red for CTL0286; pink for β'; cyan for β) on experimental 

structure of E. coli RNAP (PDB 6ALH; black for ω; light gray for β'; dark gray for β). 

304 
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312 

Fig. 6. AlphaFold predictions for annotated ω of Candidatus Midichloria RNAP ω. 

Superimposition of AlphaFold prediction for Candidatus Midichloria RNAP ω (red) on 

experimental structures of Pseudomonas aeruginosa, M. tuberculosis, and Xanthomonas oryzae 

RNAP ω (blue, cyan, and gray, respectively). 
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 312 

313 Table 1. Conserved gmk-rpoZ linkage in bacterial genomes. 

Bacterium Gram-stain Upstream 
gene 

rpoZ or 
equivalence 

Downstream 
gene 

Bacillus anthracis  Positive gmk rpoZ coaBC 

Clostridium difficile Positive gmk rpoZ coaBC 

Lactobacillus acidophilus Positive gmk rpoZ priA 

Staphylococcus epidermidis Positive gmk rpoZ SE0887 

Coxiella burnetii Negative gmk rpoZ spoT 

Escherichia coli Negative gmk rpoZ spoT 

Haemohilus influenzae Negative gmk rpoZ spoT 

Vibrio cholerae Negative gmk rpoZ spoT 

Gardnerella vaginalis Variable gmk rpoZ dfp 

Mycobacterium tuberculosis Variable gmk rpoZ metK 

Waddlia chondrophila Negative gmk wcw_0707 wcw_0708 

Chlamydia trachomatis Negative gmk ctl0286 metG 
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315 
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Table 2. Proteins with structural homology to AlphaFold models of full-length CTL0286 

(Fl-CTL0286) or N-terminus of CTL0286 (1-62). Z-score is an optimized similarity score 

defined as the sum of equivalent residue-wise C α -C α distances among two proteins. 

Abbreviation: RMSD, Root-mean-square deviation of atomic positions. 

315 

316 

317 

318 

Model Rank # PDB structure 

(reference) 

Protein Bacterium Z-value RMSD 

1 7L7B (99) RNAP ω Clostridium difficile 3.8 3.9 

2 6BZO (100) RNAP ω Mycobacterium tuberculosis 3.4 3.1 

Fl-

CTL0286 

3 7CKQ (101) RNAP ω Bacillus subtilis 3.1 3.0 

       

1 5TJG (102) RNAP ω Escherichia coli 5.2 2.1 

2 6KOP (103) RNAP ω Mycobacterium tuberculosis 5.1 3.1 

CTL0286 

(1-62) 

3 7F75 (104) RNAP ω Bacillus subtilis 4.9 2.8 
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320 
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Table 3. Proteins with structural homology to AlphaFold model of annotated Candidatus 

Midichloria RNAP ω.  

320 

321 

322  
Rank # PDB structure 

(reference) 

Protein Bacterium Z-value RMSD 

1 7XL3 (108) RNAP ω Pseudomonas aeruginosa 9.3 2.7 

2 7L7B (100) RNAP ω Mycobacterium tuberculosis 8.6 3.0 

3 6J9E (109) RNAP ω Xanthomonos oryzae 8.6 3.7 

323 
324 
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Fig. 1. Identification of cRNAP ω subunit candidate by BlastP and sequence alignments. (A)
BlastP-detected sequence homology between Coxiella burnetii RNAP ω subunit and wcw_0707, a
hypothetical protein of the Chlamydia-like organism Waddlia chondrophila. (B) BlastP-detected
sequence homology between E. coli RNAP ω and wcw_0707. (C) BlastP-detected sequence homology
between wcw_0707 and CTL0286 of Chlamydia trachomatis. (D) ClustalX2-detected amino acids
conserved in CTL0286 of C. trachomatis, wcw_0707 of W. chondrophila, and ωs of a variety of
bacteria.
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Fig. 2. A high degree of sequence conservation among candidate ω subunits in all vertebrate
chlamydiae. Alignment was performed using ClustalX2.
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Fig. 3. AlphaFold predictions for CTL0286. (A) Superimposition of AlphaFold prediction for full-length
CTL0286 (red) on experimental structures of Clostridium difficile, Mycobacterium tuberculosis, and
Bacillus subtilis RNAP ω (blue, cyan, and gray, respectively). (B) Superimposition of AlphaFold prediction
for N-terminal region (residues 1-62) of CTL0286 (red) on experimental structures of Escherichia coli,
Mycobacterium tuberculosis, and Bacillus subtilis RNAP ω (blue, cyan, and gray, respectively).
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Fig. 4. AlphaFold-Multimer predictions for complex comprising CTL0286 and C. trachomatis RNAP β'
subunit. Superimposition of AlphaFold-Multimer prediction for CTL0286-β' (red for CTL0286; pink for β’)
on experimental structure of E. coli RNAP (PDB 6ALH; black for ω; light gray for β’).
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Fig. 5. AlphaFold-Multimer predictions for complex comprising CTL0286 and C. trachomatis RNAP β' 
subunit, and β subunit. Superimposition of AlphaFold-Multimer prediction for CTL0286-β'-β (red for 
CTL0286; pink for β'; cyan for β) on experimental structure of E. coli RNAP (PDB 6ALH; black for ω; light 
gray for β'; dark gray for β).
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Fig. 6. AlphaFold predictions for annotated ω of Candidatus Midichloria RNAP ω.
Superimposition of AlphaFold prediction for Candidatus Midichloria RNAP ω (red) on
experimental structures of Pseudomonas aeruginosa, M. tuberculosis, and Xanthomonas
oryzae RNAP ω (blue, cyan, and gray, respectively).
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