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Abstract

Background: The Gene Ontology (GO) is a community-based bioinformatics resource that employs ontologies to

represent biological knowledge and describes information about gene and gene product function. GO includes three

independent categories: molecular function, biological process and cellular component. For better biological

reasoning, identifying the biological relationships between terms in different categories are important.

However, the existing measurements to calculate similarity between terms in different categories are either

developed by using the GO data only or only take part of combined gene co-function network information.

Results: We propose an iterative ranking-based method called CroGO2 to measure the cross-categories GO term

similarities by incorporating level information of GO terms with both direct and indirect interactions in the gene

co-function network.

Conclusions: The evaluation test shows that CroGO2 performs better than the existing methods. A genome-specific

term association network for yeast is also generated by connecting terms with the high confidence score. The

linkages in the term association network could be supported by the literature. Given a gene set, the related terms

identified by using the association network have overlap with the related terms identified by GO enrichment analysis.
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Background

The Gene Ontology (GO) is a community-based bioin-

formatics resource that employs ontologies to represent

biological knowledge and describes information about

gene and gene product function [1]. It is widely used to

infer functional information for gene products, such as

gene function enrichment [2], protein function prediction

[3, 4], disease association analysis [5–7]. GO contains

three key categories: cellular component (CC; where gene

products are active), molecular function (MF; the bio-

logical function of gene or gene product) and biological

process (BP; pathways or larger processes that multi-

ple gene products involved in). Comparing the similarity

betweenGO terms is an important basic for theGO-based
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application. The methods of measuring term similarities

have been extensively studied in last decade [8–19]. How-

ever, most of existing methods focus on measuring the

similarity in the same GO category and cannot calculate

the semantic similarities between GO terms belonging to

different GO categories.

AlthoughGO is originally constructed as three indepen-

dent categories, identifying their biological relationships

may be helpful to understand the biological mechanism

and infer gene function [20]. Furthermore, identifying

relationships between terms in different categories may

provide evidence for biological reasoning and hypothe-

ses. For example, anaphase-promoting complex plays an

important role in anaphase inhibitory protein degra-

dation and mitotic cyclins, which can be revealed by

discovering the relationship betweenMF term “anaphase-

promoting complex binding” and BP term “activation of
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anaphase-promoting complex activity involved in meiotic

cell cycle” [21].

Several methods are proposed to calculate the similar-

ities between terms across GO categories. Let t1 and t2
be two terms belonging to two different GO categories.

Association rule mining (ASR), which is a well-known

data mining algorithm, was used to calculate the sim-

ilarity of t1 and t2, labeled as SimASR(t1, t2) [22, 23].

By combining the ASR approach and text mining-based

method, Myhre et al. generated a ready-for-use cross-

category GO structure. The limitation of the ASR-based

approach is that “shallow annotation” problem is ignored

[24]. Specifically, let t1 and t2 be two terms in different cat-

egories C1 and C2. If both t1 and t2 are high-level terms

that are near to the root terms of C1 and C2, the similarity

between t1 and t2 may be high no matter whether t1 and

t2 are biologically related. The reason is that the high-level

terms may annotate almost all genes involved in a GO cat-

egory after propagation [25]. Consequently, term pairs at

high levels can have high similarity, which may not reflect

the biological relationship between the terms.

To solve the “shallow annotation” problem, a Vector

Space Model (VSM)-based approach was developed

by Bodenreidar et al.. This method takes the semantic

information of genes into account to avoid “shallow

annotation” problem. VSM is a classical method, which

is widely used to calculate the similarities between docu-

ments that can be represented as vectors [23]. Specifically,

each term is considered as a vector, which length is the

same as all the genes involved in GO. Each element in a

vector is a binary value. If there is association between a

term and a gene, the binary value is 1, otherwise 0 [26].

The similarity of t1 and t2 in different categories can be

measured with weighted cosine similarity. The VSM-

based approach is based on the interaction of the gene

sets annotated by t1 and t2. Therefore, the result heavily

relies on the quality and coverage of G annotation data.

Unfortunately, the gene annotations are far from com-

plete currently [27], which may lead to inaccurate term

similarity scores.

To avoid the data availability problem, inspiring from

existing integration methods, a novel method CroGO

was proposed to calculate the similarity between two

GO terms in different categories in our previous work

[21]. CroGo incorporate gene co-function network data

and gene ontology data to calculate the cross-categories

GO term similarities. The experiment result shows that

CroGO outperforms the aforementioned methods. How-

ever, only part of the information in gene co-function

network was used by CroGO, since it only took the direct

link in the network into account. Other than the directly

connected gene pairs, the indirect gene-gene interactions

contained in the gene co-function network should also be

considered.

In this paper, we developed a novel approach, CroGO2,

to measure the cross-categories GO term similarities

by incorporating both direct and indirect interactions

in the gene co-function network. Comparing with

the existing approaches, CroGO2 has the following

advantages:

• Comparing with the state-of-art methods, CroGO2

performs better than existing methods by taking the

global interactions in the gene co-functional network

into account. It proves that gene co-functional

network could be a good complement to GO for

cross-categories term similarity calculation.
• A novel iterative ranking-based method is developed

to measure the relationship between two gene sets

based on the gene co-functional network.
• A cross-categories term association network was

constructed by selecting the term-pairs with high

similarity score calculated by CroGO2. Applying

CroGO2 to identify the highly related terms between

BP and MF category has discovered term pairs with

solid supports from literature.

Methods

We proposes CroGO2 to measure the relationships

between genes based on the global feature of a gene

network and then measure the similarity between GO

terms in different categories. To measure the similarity

of t1 and t2 in different categories, CroGO2 consists of

three steps. First, it measures the interaction between

genes based on the gene network. Second, it calculates

the similarity between two gene sets annotated by t1
and t2 based on gene-gene associations from last step.

Third, it combines the network-based gene set similarities

and the level information of t1 and t2 in GO to calculate

the similarity between t1 and t2. The diagram of the whole

process of CroGO2 is shown in Fig. 1.

Fig. 1 The workflow of CroGO2
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Step 1. measuring the network-based association between

two genes

In this step, we use both the direct and indirect interac-

tions between genes in the gene co-functional network

to measure the association between two genes. A gene

network includes not only the direct interaction between

genes but also the global view of associations among

genes, which are not connected directly. In this step, we

adopted the iterative ranking (IR) [28] algorithm to mea-

sure the association between two genes. The basic idea is

that the

Figure 2 is an illustration example of our basic idea.

Given a gene co-functional network G(V ,E), the asso-

ciation score between gene gz and gi is determined

by two types of information: the direct link between

gz and gi, (gz, gi); the indirect link between gz and gi,

{(gz, gj),(gj, gi)}, {(gz, gj+1), (gj+1, gi)}, {(gz, gj+2), (gj+2, gj+3),

(gj+3, gi)}. Mathematically, we calculate the IR score in

the following steps.

First, a normalized adjacent matrix is generated by using

the weighted average of neighbors, labeled as U. Given

a gene gi and gj, a normalize association score in U is

calculated as follows.

uij =
eij

∑

k∈V ,(i.k)∈E eik
(1)

Second, given a gene gz, its association with gi is defined

in terms of gj, we update the score iteratively. At each iter-

ation t, the algorithm considers information from neigh-

bors at path length=t (Eq. 2).

rt+1
i = αoi + (1 − α)uijr

t
i (2)

where oi represents the original association score between

gz and gi, α is a weight parameter between 0 and 1.We can

Fig. 2 Illustration example for iterative ranking based association

score. The nodes and edges represent genes and their interactions

respectively

extend the Eq. 2 to calculate the iterative ranking-based

association score for the whole network.

Rt+1 = αO + (1 − α)URt (3)

where O is the adjacent matrix containing the original

gene-gene relations in the input gene co-function net-

work, Rt and Rt+1 are adjacent matrices saving iterative

gene association score in iterative t and t+1. The stopping

criterion of the iterative process is defined as follows.

θ =
∥

∥Rt+1 − Rt
∥

∥

1
= max

j
�n

i=1

∣

∣(Rt+1 − Rt)i,j
∣

∣ (4)

where n is the number of nodes involved in the net-

work. The iteration stops until θ is smaller than a given

threshold. The pseudo-code of the algorithm is shown in

Algorithm 1.

Algorithm 1 Iterative Ranking algorithm

Input: Gene function network matrix O;

Output: Iterative gene network Y ;

1: initialize δ and matrix O

2: uij =
wij

∑

(i,j)∈E

wij

3: while δ > threshold do

4: Temp = Y

5: Y = αO + (1 − α)U × Y

6: δ =‖ Y − Temp ‖1
7: end while

8: return Y ;

Step 2. calculating the similarity between two gene sets

Given two terms t1 and t2 in different GO categories C1

and C2, let G1 and G2 be gene set annotated by t1 and t2.

Based on the global association score between genes cal-

culated in last step, the association score of the two gene

sets is calculated in this step. Given an adjacent matrix

R, which includes the iterative ranking-based associa-

tion scores between genes, the network-based similarity

between t1 and t2 is defined based on their annotation sets

as follows.

Simnet(t1, t2) =
|G1 ∪ G2| − |G1 − G2| − |G2 − G1|

|G1 ∪ G2|

(5)

where G1 and G2 represent the gene sets annotated to

t1 and t2 respectively, |X| is the number of genes in set

X, G1 ∪ G2 is union of set G1 and G2. Noted that we

re-defined |G1 − G2| in our method as follows:

|G1 − G2| = |G1| −
∑

gi∈G1

⎛

⎝1 −
∏

gj∈G2

(

1 − rij
)

⎞

⎠ (6)
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where rij is association score between genes gi and gj in

network R. Particularly, if two gene sets G1 and G2 are

identical, |G1 − G2| = 0. In summary, the term sim-

ilarity Simnet(t1, t2) represents the association between

G1 and G2 annotated by t1 and t2 based on the gene

association in R.

Step 3. calculating the cross-categories term similarity

In this step, we combine the network-based gene set sim-

ilarities and the level information in GO to calculate the

similarity between t1 and t2 in different categories. To

overcome the “shallow annotation” problem, we take the

level information of t1 and t2 in different categories into

account.

SimGO =

√

(

1 −
|G1|

|GC1 |

)

·

(

1 −
|G2|

|GC2 |

)

(7)

where |GC1 | and |GC2 | are the number of genes in the cat-

egory C1 and C2. If tx is close to the root of Cx, 1 −
|Gx|

|GCx |

is close to 0; if tx is a specific term (far from the root),

1−
|Gx|

|GCx |
is close to 1. Equation (7) shows that the specific

term pair are more likely to be identified.

Then, the similarity between t1 and t2 is calculated by

integrating gene co-functional network, GO structure and

gene annotations as:

Sim(t1, t2) = Simnet · SimGO (8)

Our previous work indicated that the relationships

between two terms should be directed [21]. Therefore, we

applied the term pair assignment method proposed in our

previous work to look for the directions of the relation-

ships. First, all similarities of term pairs across categories

are computed with Eq. (8). Second, a user defined thresh-

old is applied to filter term relationships with a threshold.

Third, given a term t1 and a term set T2 that has con-

nection to t1, the edge direction are deleted from t1 to

t2 only if there is a term t3 satisfying that t3 is a descen-

dant of t2 (t2, t3 ∈ T2). In the end, we can get the directed

relationships between terms in different GO categories.

Results

In our experiment, we used BP and MF category as input

to evaluate CroGO2. To show the significance of CroGO2,

we compare CroGO2 with CroGO [21], ASR-based [22]

and VSM-based [23] methods. All the four methods are

applied to a gold-standard set constructed with known

pathway-to-reaction associations on yeast, which is also

used as the evaluation data set in previous research

[20, 21]. Then, we constructed a term association network

for yeast between BP category and MF category.

The GO data and gene annotations were downloaded

from GO official website in October 2015 [27]. We used

yeastNet as the input co-function network, which con-

tains 102,803 edges and 5483 genes [29]. CroGO2 was

implemented with java and JUNG library [30]. In the

experiment, parameter α is set as 0.1. To determine the

parameter α, we re-ran CroGO2 by varying the parameter

α. CroGO2 achieve the best performance when α = 0.1.

Performance evaluation on gold-standard set

To test the performance of CroGO2, we generated a “gold-

standard” set based on the pathway-to-reaction interac-

tions [20] in yeast. The process includes three parts: 1) a

BP term is associated with a pathway based on GO bio-

logical process; 2) a metabolic pathway could be associate

with several Enzyme Commission (EC) groups based on

the enzymes catalysation; and 3) each EC can be linked

to a MF term based on the association data from GO

database [31–33]. Finally, the gold-standard set includes

334 MF-BP pairs. These 334 MF-BP term pairs are con-

sidered as the positive set. We also randomly selected

334 MF-BP term pairs as the random set. Note that

similar gold-standard set generation method has been

applied in previous research but on different data sources

[20, 21]. Similarities of term pairs in both gold-standard

set and random set are calculated using all four com-

paredmethods.We compared their performance based on

receiver operating characteristic (ROC) curve [34] of each

approach.

The result showed clearly that CroGO2 performs bet-

ter than other three methods. Comparing the AUC score

of the four methods showed that CroGO2 had the high-

est AUC score (0.87) with the CroGO as the runner-up

(Fig. 3). The AUC scores of CroGO, ASR and VSM are

0.82, 0.80 and 0.81 respectively. Table 1 shows that when

Fig. 3 ROC curves for the four methods on the gold-standard sets of

yeast. The red, blue, yellow and green lines represent CroGO2 (red),

CroGO (blue), and ASR (yellow) and VSM (green) method respectively.

Most portion of ROC curves of ASR and VSM are overlapping
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Table 1 The performance of ASR, VSM, CroGO and CroGO2

measures on yeast gold-standard set

Organism Measure TP rate (when TP rate (when TP rate (when

FP rate = 5%) FP rate = 10%) FP rate = 15%)

*Yeast ASR 59% / /

VSM 59% / /

CroGO 56% 65% 67%

CroGO2 66% 69% 71%

the false positive threshold is 5%, the true positive rate

of CroGO2 is 66%, while the values of CroGO, ASR and

VSM based approaches are 56, 59 and 59% respectively.

CroGO2 also has the highest true positive rate when the

false positive rate is equal to 10 and 15%.

In summary, the evaluation test indicates that CroGO2

has produced better performance than the other

measures.

Robustness test of CroGO2

CroGO2 combined the co-function network. To test

whether varied the co-function network density would

affect the performance of CroGO2, we randomly deleted

50% of edges in the co-function network and used the

low-density co-function network as input.

The result shows that there was no significant different

between results using two networks with different densi-

ties (Fig. 4). The AUC scores using the full network and

low-density network are 0.870 and 0.869, which are almost

the same. In summary, the experiment result shows that

CroGO2 has high robustness.

Discussion

In this section, we linked BP and MF terms to generate

a term association network for yeast. The cross-category

Fig. 4 ROC curves for the robustness test of CroGO2 with different

co-function network densities

term association network can provide a convenient way

for researchers to use CroGO2.

A reliable MF-BP association network is generated by

calculating pairwise similarities of all MF and BP terms

and applying a strict FDR threshold (in this case we use

FDR < 0.05). Finally, the association network includes

1406 MF terms, 2305 BP terms, and 8531 linkages.

To show the power of the MF-BP association net-

work N, we test whether the result based on association

network has an agreement with the result based on

GO enrichment. Given a set of genes S with particular

function, we can get its enrichment results based on BP

category and MF category separately. The enriched term

sets of S on BP and MF category are labeled as TBP and

TMF respectively. Given TBP and N, we can find out the

MF terms, saved as T ′
MF , connect with terms in TBP based

on N. We can check whether overlap terms can be identi-

fied between TMF and T ′
MF . For example, we find a set of

genes which are associated with the phenotype “adhesion”

from the yeast phenotype ontology [35]. The gene set is

{CDC33,CIS3,CWP2, FIG2, FKS3, FLO10, FLO11, FLO5,

FLO9,PIR3, SCW4}. Following the aforementioned

experiment protocol, the result is shown in Fig. 5. It is

shown that three terms (GO:0005199, GO:0030246 and

GO:0048029) can be identified by both GO enriched-

based and MF-BP association network-based methods.

Furthermore, the top 20 term associations, which do

not have identical annotation set, are shown in Table 2.

We found biological evidence from literature or term

definition for 15 of them. The rest 5 new conceptual con-

nections may be new knowledge not found in previous

study.

Conclusions

Identifying the relationships between GO terms in dif-

ferent categories is vital for understanding the biological

Fig. 5 Venn diagram of TMF and T
′
MF
. TMF is the set of enriched MF

terms. T ′
MF

is the set of MF terms associatedwith the enriched BP terms
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Table 2 Top 20 term associations that were identified by CroGO2

BP Name MF Name Evidence

butanediol biosynthetic process (R,R)-butanediol dehydrogenase activity New

glutamine biosynthetic process glutamate-ammonia ligase activity [36]

putrescine biosynthetic process ornithine decarboxylase activity [37, 38]

acetyl-CoA biosynthetic process from acetate acetate-CoA ligase activity New

alanine catabolic process L-alanine:2-oxoglutarate aminotransferase
activity

[39]

siroheme biosynthetic process precorrin-2 dehydrogenase activity [40]

trehalose catabolic process alpha,alpha-trehalase activity [41]

asparagine catabolic process asparaginase activity [42]

lysine biosynthetic process aromatic-amino-acid:2-oxoglutarate aminotransferase activity [43, 44]

glycerol biosynthetic process glycerol-1-phosphatase activity New

threonine catabolic process L-threonine ammonia-lyase activity New

peptide alpha-N-acetyltransferase
activity

N-terminal protein amino acid acetylation [45]

glutathione catabolic process gamma-glutamyltransferase activity [46]

alanine biosynthetic process L-alanine:2-oxoglutarate aminotransferase
activity

[47]

positive regulation of histone H3-K36 methylation TFIIF-class binding TF activity New

siroheme biosynthetic process uroporphyrin-III C-methyltransferase activity [48]

siroheme biosynthetic process sirohydrochlorin ferrochelatase activity [40]

glutathione biosynthetic process glutamate-cysteine ligase activity [49, 50]

positive regulation of telomere
maintenance via telomerase

Hsp90 protein binding [51, 52]

chorismate biosynthetic process 3-deoxy-7-phosphoheptulonate synthase
activity

[53]

mechanism and inferring gene function. Recently,

researchers have begun to employ gene co-function

networks to calculate the similarity between terms in dif-

ferent GO categories. In this article, we proposed a novel

approach, called CroGO2, to measure the cross-categories

GO term similarities by incorporating level information

in gene ontology with both direct and indirect interac-

tions in the gene co-function network. CroGO2 has the

following advantages: 1) CroGO2 performs better than

existing methods by taking the global interactions in the

gene co-functional network into account; 2) A novel iter-

ative ranking-based method is developed to measure the

relationship between two gene sets; 3) A cross-categories

term association network was constructed by selecting the

high-quality associations. To demonstrate the advantages

of CroGO2, we compare it with three existing approaches

CroGO, ASR and VSM. The experiment on a gold stan-

dard set shows that CroGO2 performs better than other

methods. Furthermore, CroGO2 has the high robustness

to the co-function network density. We also generated a

genome-specific term association network of yeast. The

linkages in the association network can be supported by

literature. Given a gene set, the related terms identified

by using the association network have overlap with the

related terms identified by GO enrichment analysis.
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