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Crack detection is important for the inspection and evaluation during the maintenance of concrete structures. However,
conventional image-based methods need extract crack features using complex image preprocessing techniques, so it can lead to
challenges when concrete surface contains various types of noise due to extensively varying real-world situations such as thin
cracks, rough surface, shadows, etc. To overcome these challenges, this paper proposes an image-based crack detection method
using a deep convolutional neural network (CNN). A CNN is designed throughmodifying AlexNet and then trained and validated
using a built database with 60000 images. 0rough comparing validation accuracy under different base learning rates, 0.01 was
chosen as the best base learning rate with the highest validation accuracy of 99.06%, and its training result is used in the following
testing process. 0e robustness and adaptability of the trained CNN are tested on 205 images with 3120× 4160 pixel resolutions
which were not used for training and validation. 0e trained CNN is integrated into a smartphone application to mobile more
public to detect cracks in practice. 0e results confirm that the proposed method can indeed detect cracks in images from real
concrete surfaces.

1. Introduction

Crack detection is one of the most important links of
concrete structure maintenance, and it directly reflects how
safe, durable, and applicable the concrete structure is.
Conventional human-based crack detection method relies
on trained inspectors to find cracks on the surface of a
concrete structure based on their expertise and years of
experiences. 0ey assess the concrete structure through
analysing position and width of cracks. Although human-
based crack detection method is an effective way to detect
cracks, the detection results are subjective and vary from one
to another because inspectors only make evaluation of
current condition according to existing guidelines and their
experiences.

To overcome the drawbacks of human-based crack de-
tection method, many image processing techniques (IPTs)
are developed to detect concrete cracks [1–3], concrete

spalling [4], and potholes and cracks in asphalt pavement
[5–7]. 0e IPTs can not only recognize cracks from images
[8] but also measure the width and orientation of the rec-
ognized cracks [9, 10]. 0e simplest way to detect cracks
from images is using the structural features, including
histogram and threshold [11, 12]. To further improve its
performance, general global transforms and edge detection
detectors were applied, such as fast Haar transform (FHT),
fast Fourier transform (FFT), Sobel, and Canny edge de-
tectors [13, 14]. Although the IPTs are effective to detect
some specific images, their robustness is poor because the
crack images taken from a concrete structuremay be affected
by factors such as light, shadows, and rusty and rough
surfaces in real-world situations.

To improve the performance of image-based crack in-
spection methods, researchers turn to machine learning
(ML) algorithms [15]. 0e ML-based methods first extract
crack features using the IPTs, then evaluate whether or not
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the extracted features indicate cracks [16]. 0e artificial
neural networks (ANNs) and Support Vector Machine
(SVM) are typical ML algorithms, and they were adopted to
detect concrete cracks, spalling, and other structural dam-
ages. However, the performance of this method relies on the
extracted crack features, so the results of them have in-
evitably been affected by false feature extraction using IPTs.

To discard the extracting process of crack features,
convolutional neural networks (CNNs) are imported to
detect crack in images [17, 18]. CNNs are deep learning
algorithms developed from the ANNs, and they are high-
lighted in image classification and object recognition [19].
Compared to the ANNs, the CNNs learn image features
using fewer parameters computations due to the partial
connections, sharing weights, and pooling process between
neurons.0e CNNs need to be trained using large number of
manually classified images. 0e building of a database re-
quires lots of human resources and computations, but the
good news is that the existing well-annotated image data-
bases (ImageNet [20], CIFIA-10 and CIFAR-100 [21],
MNIST [22]) and parallel computations using graphic
processing units (GPU) have solved the problems.

In this paper, a deep CNN is proposed to establish an
image classifier for crack detection. 0e outstanding ad-
vantage of the proposed CNN-based crack detection is that it
spares multifarious work from features preextraction and
calculation compared to traditional methods [23]. Besides,
the CNN needs not to convert the format of input images,
but automatically learns crack features from images, which
reduces workload of crack detection [24]. Moreover, our
CNN-based crack detection approach achieves higher ac-
curacy than existing method [25], because our CNN was
trained using a large crack database with 60000 images taken
from real concrete surfaces.0anks to the large database, the
detection results of our method will not be affected by noises
of concrete surfaces such as roughness, light, shadows, or
stain and so on.

0e content of this research is described as follows.
Section 2 introduces the methodology of the proposed
method. Section 3 explains the CNN used and its related
theories. Section 4 lists the training details of the CNN and
results. Section 5 demonstrates testing results of the trained
CNN on concrete crack images in realistic situations, and
Section 6 is the conclusion of this paper.

2. Methodology

Figure 1 shows a flow chart of using a CNN to detect cracks.
It includes three steps: building crack database, training the
CNN, and testing the trained CNN classifier. To train a
CNN, a large amount of raw images are taken from concrete
surface. 0e collected raw images are cropped into smaller
images, and then, cropped small images are manually
classified into images with and without cracks. After that,
training set and validation set are selected randomly from
the database and imported into a CNN for training and
validation. 0e training process generates a CNN classifier
that is capable of classifying images into images with and
without cracks. Using the trained CNN classifier and an

exhaustive search with a sliding window, cracks can be
separated from images accordingly.

3. CNN Architecture and Related Theories

0is section explains the CNN architecture and related
theories. A layer is the basic calculation unit of a CNN, so
CNN architecture is formed accordingly once each layer in a
CNN is confirmed. In the layers of a CNN, operations of data
including convolution, pooling, full connection, and recti-
fied linear unit (ReLU) and softmax can be conducted.
Besides, some auxiliary operations, such as normalization
and dropout, also can be embedded in layers for the specific
purposes.

3.1. CNN Architecture. 0is paper builds a CNN through
modifying the AlexNet [26]. 0e AlexNet is a remarkable
CNN for image classification. It is trained in the ImageNet
database, and the output number of its image classes is 1000,
while the number of image classes in this paper is 2 (images
with and without cracks). 0erefore, the output number of
classes is changed to 2, and other parameters remain un-
changed. 0e modified CNN architecture is shown in Fig-
ure 2 where each dimension in input image indicates height,
width, and channel (e.g., red, green, and blue), respectively.
Notably, the input size of 227× 227 can be enlarged and
shrunken through recalculating the specifications according
the changed input size. However, if too much image size is
chosen, the detection result will inevitably include more
background section, which disobeys the aim of crack de-
tection. 0e softmax layer predicts whether each input data
is an image with or without cracks according to output data.
Table 1 presents the detailed specifications of the modified
CNN. Notably, in the CNN, ReLU is used as activation
function after each convolution layer and fc1, fc2, re-
spectively. Besides, operations of local response normali-
zation (LRN) and dropout are also implemented, where local
response normalization is followed by pool1 and pool2, and
dropout is located after fc1 and fc2.

3.2. Related 'eories of the CNN Architecture. As listed in
Table 1, the CNN consists of five convolution layers, three
pooling layers, three full connection layers, and one softmax
layer. Besides, other operations, such as ReLU, LRN, and
dropout that cannot be visualized, also are included. All of
the mentioned components are explained in detail as
follows:

(i) Convolution Layer. Convolution layer makes CNNs
stand out from the ordinary neutral networks. A
convolution layer normally includes multiple fea-
ture maps. Each feature map consists of neurons
arrayed in a rectangle, and neurons from the same
feature map share weights called convolution
kernels. Convolution kernels are normally initial-
ized in the form of a random decimal array and
learn reasonable weights during training [27]. 0e
convolution kernels decrease connection between
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layers of the network. When conducting convo-
lution operations, convolution kernels convolve
with the upper neurons at certain strides; mean-
while, bias is added and outputted. Figure 3 shows a
convolution process with bias of 0.

(ii) Pooling Layer. Pooling layer is another symbol that
sets CNNs apart from the ordinary neutral net-
works. After the convolution process, the output
neurons all include some information of the
inputted neurons, which results in information
redundancy and increases calculations. To improve
algorithm performance and reduce calculations, a
pooling operation is added to conduct the con-
volution results. What’s more, pooling process also
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Figure 1: Flow chart for detecting cracks using a CNN.
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Figure 2: Illustration of a CNN’s overall architecture. conv#� convolution; pool#� pooling; fc#� full connection; k#� kernel of each
operation.

Table 1: Detailed specifications of a CNN.

Layer Kernel size Stride Pad Num_output

conv1 11 4 0 96
pool1 3 2 0 96
conv2 5 1 2 256
pool2 3 2 0 256
conv3 3 1 1 384
conv4 3 1 1 384
conv5 3 1 1 256
pool3 3 2 0 256
Fc1 — — — 4096
Fc2 — — — 4096
Fc3 — — — 2
Softmax — — — 2
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reduces the spatial size of input array, reserves
useful information, and avoids overfitting to some
extent. �ere are two pooling options: max pooling
and mean pooling. Studies showed that max
pooling outperforms mean pooling when dealing
with CNN architecture [28]. �erefore, this paper
adopts the max pooling method as shown in
Figure 4.

(iii) ReLU. �e most frequently used nonlinear activa-
tion functions in artificial neural networks are
sigmoid function (f(x) � (1 + e−x)−1) and tanh
function (f(x) � tanh(x)). However, the calcula-
tions of these two saturating nonlinear activation
functions are slow. Recently, some researchers
introduced another activation function which is
ReLU (f(x) � max(0, x)) [29]. Figure 5 shows the
comparison of the sigmoid, tanh, and ReLU
functions. �e ReLU function is a nonsaturated
function, and only comparison is implemented in
gradient descent training because the gradients of
the ReLU are zero or one. If some training samples
generate positive input to ReLU, learning will
happen in that neuron. As a result, using the ReLU
function can achieve faster calculations and con-
vergence speed.

(iv) LRN. �e characteristics of ReLU spare the need of
normalization to avoid saturation. However, the
output values generated by ReLU activation func-
tion do not have a certain range, which is different
form the sigmoid and tanh function, so a LRN is
used to generalize the output of ReLU.

(v) Dropout. Overfitting is a common problem in
neural networks, and it often occurs in a network
with a large amount of neurons. To prevent
overfitting, dropout randomly deletes some neu-
rons with a given dropout rate when weights are
updated [30]. �rough employing the dropout, a
neural network can present a different architecture
for every input, which reduces the coadaptations of
neurons.

(vi) Full Connection Layer. �e function of full con-
nection layer is logical inference, which is same
with traditional neural networks. Specially, the
first full connection layer in our CNN needs to be
explained individually. It connects the output of
the last convolution layer, where a three-
dimensional matrix is turned into a one-
dimensional vector by operation of full convo-
lution. �at is to say, if input dimension of first
full connection layer is W ×H ×C, then a con-
volution kernel with W ×H ×C will be used.
�us, the output of first full connection layer will
become a number. As a result, such K convo-
lution kernels with a size of W ×H ×C will
correspond with K numbers, where K is the
number of neurons of the first full connection
layer.

(vii) SoftmaxLlayer. To classify input data, a softmax
layer is essential. �e softmax layer estimates a
possibility p(y(i) � j(i)|x(i);W) for every class j(i)

of k classes using a softmax function presented in
equation (1), where W is weight, i is the i-th
example out ofN input examples, andWT

kx
(i) are

inputs of softmax layer. Right-hand side of the
equation is a k-dimensional vector to represent

the k estimated possibility, and 1/∑kj�1e
WT

j x
(i)

is

used to normalize the distribution of
possibilities.
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4. Training and Validating the CNN

To train a CNN classifier used for crack detection, a database
that consists of a large amount of concrete images with
cracks should be built in advance. 0e hyperparameters of
the CNN need to be finally confirmed during training the
CNN through trial and error. All of the study of this paper is
conducted on Caffe [31] in Windows system using a
workstation that configured with a GPU. (CPU: Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.2GHz, RAM: 32GB, GPU:
ASUS GeForce GTX 1080 Ti).

4.1. Building Database. To build a database, 1455 crack
images with 4160× 3120 pixel resolutions were taken using a

smartphone. 0ese images were captured from surfaces on
bridge towers and anchor chambers of a suspension bridge in
Dalian, Liaoning, China. Distances from smartphone to the
cracks ranged from approximately 0.5–1.0m. However, some
images are taken below a 0.1m distance for testing, and the
lighting conditions of the images are substantially different
including, day, night, sun-facing, and shaded surfaces. Among
these images, 1250 images were used for CNN training and
validation, and the remaining 205 images were used to test the
trained CNN. To build training set and validation set, the 1250
images were cropped into smaller images with 256× 256 pixel
resolutions. 0en, the cropped images were classified manually
into two classes: with cracks and without cracks. Significantly,
because the cropped images with cracks only take a small
proportion of the total images, some cropped images without
cracks were randomly removed to avoid classification imbal-
ance. 0e number of prepared images in database is 60000, and
the quantity proportion of images with and without cracks is 1 :
1. To obtain a CNN classifier with excellent robustness, these
cropped images include cracks of different situations and
background features, as shown in Figure 6(a). 0e purpose of
cropping images into images with a resolution of 256× 256 is to
fit them with recommended size of CNN input. As shown in
Figure 6(b), images with unobvious cracks and corner cracks
were removedwhen building the database.0e reason for doing
this is that it is very difficult to detect cracks in those images by
human eye during manual classification. Besides, wrong clas-
sified images will lead to wrong CNN classification.0erefore, it
is meaningless to train CNNs using wrong classified images.

4.2. SoftmaxLoss and StochasticGradientDescent. During the
process of CNN training, weights and bias need to be ini-
tialized. In this paper, weights and bias are, respectively,

(a)

(b)

Figure 6: Cropped images: (a) images with cracks used for building database; (b) removed images.

Advances in Civil Engineering 5



initialized using Gaussian and Constant initialization,
where the Gaussian initialization adopts Gaussian distri-
bution and Constant initialization set bias as a constant (0
by default). When training the CNN, the predicted and
actual classes of the trained CNN do not usually coincide.
Hence, a softmax loss function defined by equation (2) is
used to calculate the deviations between the predicted and
actual classes.

L(W) �
1

N
∑N
i�1

fw x(i) + λr(W)( ), (2)

whereW is weights, fw(x
(i)) is the loss of x(i), and r(W) is

regularization with a weight of λ.
To narrow the deviations during the CNN training, the

weights have to be constantly modified to predict true
classes. Stochastic gradient descent (SGD) is utilized to
update weights. To accelerate the convergence speed of
training, the momentum algorithm is used in SGD. As
shown in equation (3), SGD first updates (⟵) Vt+1
according to the linear combination of negative gradient
∇L(Wt) and the previous speed Vt, where learning rate α
and momentum μ are the weights of negative gradient and
speed, respectively. 0en, Wt+1 is updated in equation (4)
using the previous weight and the updated Vt+1:

Vt+1⟵ μVt − α∇L Wt( ), (3)

Wt+1⟵Wt + Vt+1. (4)

0e CNN repeats the abovementioned process many
times until equation (4) converges. During CNN training,
the number of used images in each update is called the batch
size. Each complete update out of a batch size is called an
iteration, and each complete update out of the entire da-
tabase is called an epoch.

4.3. Details of Training and Validating the CNN. 0e CNN
repeats the abovementioned process many times until
equation (4) converges. During CNN training, the number
of used images in each update is called the batch size. Each
complete update out of a batch size is called an iteration, and
each complete update out of the entire database is called an
epoch.

Unlike other image-based crack detection methods, the
CNN does not require feature extraction but learns features
automatically by updating the weights. 0e build training set
and validation set include 60000 images, and the ratio be-
tween training set and validation set is 4 :1, with that of
cracks and without cracks being 1 :1. Each batch needs 256
images for training and 200 images for validation process.
Before being input CNN, the mean of those images is
subtracted for efficient computation. Besides, those images
with 256× 256 pixel resolutions were automatically cropped
into images of 227× 227 pixel resolutions for data
augmentation.

0is paper adopts a learning strategy of “step” to adjust
learning rate which first set a base learning rate, then
multiply the learning rate with a learning rate changing

factor (set as 0.1 in this paper) after a certain number of
iterations (set as 5000 iterations this paper). Besides, other
hyperparameters, momentum, weight decay, and dropout
rate, are set as 0.9, 0.0005, and 0.5, respectively.

0e accuracy is adopted as the metric of validation
performance for the CNN in our study. When training the
CNN, the trainedmodels are validated with batch size of 200.
In an iteration of validation, the validation accuracy is the
ratio between the number of correctly classed images and the
total number of validation images at the iteration.

0e learning rate affects the validation accuracy and
convergence speed during training a CNN [32]. To choose a
best base learning rate, the base learning rates used in this
paper are set to 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and
0.0001, respectively. 0e CNN was trained 15000 iterations
under different base learning rates and validated every 50
iterations. Recorded validation accuracies are shown in
Figure 7.

According to Figure 7, the validation accuracies and
convergence speeds gradually increase with the base learning
rate change in the range of 0.0001 to 0.01, and peak at 0.01.
When the base learning rate increases to 0.05, the conver-
gence speed becomes low, but the accuracy remains high.
Larger base learning rate of 0.1, however, will lead the ac-
curacy to increase first and then remains 50%, which in-
dicates that the training of the CNN is nonconvergent. 0e
key finding taken from the training results is that choosing a
big base learning rate in a certain range can make a CNN
converge faster and obtain higher validation accuracy during
training.

0e training result under a base leaning rate of 0.01 was
finally selected as the image classifier due to its highest
validation accuracy that is 99.07% achieved at 13450th it-
eration. With the acceleration of a GPU, the training process
took 12 hours to train the CNN 15000 iterations on 60000
images, while it will normally take around one month to
complete the same calculation in this workstation only by
using CPU. Figure 8 shows the visualized convolution
kernels of features in the first convolution layer (conv1)
under the base learning rate of 0.01, in which the features of
each convolution kernel were obtained automatically from
training images. 0e learned crack-like features of convo-
lution kernels are smooth, and the crack features make
CNNs detect cracks from complicated images of concrete
surface.

5. Testing the Trained and Validated CNN

After the training process, the trained CNN classifier is
tested on new images to verify the adaptation and robust-
ness. Due to the random distributions of the cracks, a
strategy of exhaustive search is used to locate the cracks’
positions because it is difficult to find cracks depending only
lump-sum scan in a large image [18]. Exhaustive search
method is often used in programming when there is no rule
to solve a problem. Numerous candidate solutions are
enumerated and tested one by one in a certain order, and
those candidate solutions that meet the requirements are
found out as the solution of the problem. As shown in
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Figure 9(a), a large image with 4160× 3120 pixel resolutions
is scanned using a sliding window of 256× 256 pixel reso-
lutions. When the window slides to a position, the trained
CNN image classifier in Section 4.3 will classify the little
image in that position, in which a little image with cracks will
be retained, otherwise removed. To avoid wrong classifi-
cations mentioned in Section 4.1, the whole large image will
be scanned twice. Figure 9(b) shows the scanning results of
crack detection using the exhaustive search method. It can
be found that if only the 1st scanning using exhaustive search
was implemented to detect crack, the crack parts located in
corners of some scanning windows are disregarded. When
the detection result of the 2nd scanning was overlapped to the
result of the 1st scanning, the disregarded crack parts also
ware successfully detected.

205 raw images with 4160× 3120 pixel resolutions that
were not used to build training set and validation set were
scanned according to the abovementioned exhaustive
search. Like the training process of the CNN, the image with

256× 256 pixel resolutions where the sliding window was in
here was subtracted the mean of training set before being
classified by the trained CNN. In testing results, the regions
in raw images with actual cracks are defined as positive
regions, otherwise negative regions. Meanwhile, the positive
and negative regions that can be detected and classified
correctly by the trained CNN are defined as true-positive
and true-negative regions, otherwise false-positive and false-
negative regions, respectively. �e calculation of testing
accuracy for each image was conducted in equation (5):

accuracy �
TP + TN

TP + FP + TN + FN
, (5)

where TP, FP, TN, and FN represent the number of true-
positive, false-positive, true-negative, and false-negative
regions in the tested images, respectively.

Figure 10 presents testing accuracies of 205 images, and
the average accuracy of them is 99.09% which is very close to
the highest validation accuracy (99.06%). Encouragingly, the
performance of the trained CNN is still impressive even
though totally different images are used for testing, and the
recorded testing time required for each image is about
60 seconds.

Figures 11–13 show some testing results in different
situations, where the false-positive and false-negative re-
gions are highlighted. Figure 11 shows images of normal
concrete surfaces with clear microcracks. �eir testing
results are remarkable where all the cracks are detected
successfully. Especially, in Figure 11(b), an image with
microcracks is used to test the trained CNN, where the
distance from smartphone to the microcracks is about
10 cm. In the detection result, the width of the microcracks
is 2 pixels (about 90 μm). �e result shows that the pro-
posed method has good performance of detecting micro-
cracks. To examine the robustness of the trained CNN,
images taken from damaged surfaces, shadowed, rough,
and rusty surface, and even a surface with holes are used for
testing. Notably, when taking the image in Figure 11(b), the
distance between the thin cracks and smartphone is about
0.1m and width of the detected thin crack is about 3 pixels,
which corresponds to about 0.09mm. In Figure 12, all
cracks in original images are still detected correctly, al-
though there are two false-positive regions in the images
from rough and rusty surfaces, respectively. To test the
adaptability of the trained CNN further, an image with
complex and blurry cracks is chosen in Figure 13, and the
testing results provide acceptable testing accuracy of
98.32% with only three false-negative regions and three
false-negative regions. It can be seen from the testing re-
sults shown in Figures 11–13 that the robustness and
adaptability of proposed crack detection method are im-
pressive in real-world situations.

6. Integrating the Trained CNN into a
Smartphone Application

�e trained CNN can be used to predict the class of a new
image, and the popularity of smartphones provides an
opportunity to mobile public to detect cracks. For this
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purpose, based on the framework of Core ML, the trained
CNN model is integrated into a smartphone application
to detect cracks in practice conveniently. During the
integrating process, the Xcode (version 9.2), an in-
tegrated development environment is utilized to create an
application with Swift programming language. �e
generated application named Crack Detector is installed
on an iPhone 7 Plus with iOS 11.2. Notably, it can predict
not only local photos but also a new photo taken from
concrete surface at that time. Figure 14 presents a de-
tection result of the Crack Detector. �e result exposes
the great performance of the trained CNN. In addition,
this smartphone application can draw more attention to
crack detection handily.

7. Conclusions

�is paper proposed a method to detect cracks from images
using convolutional neural networks. �e CNN architecture
of binary-class output for crack detection was designed
through modifying the AlexNet. 1455 images with
4160× 3120 pixel resolutions captured by a smartphone were
used to train, validate, and test the CNN where all of the
images were taken from real concrete surfaces. To build the
training set and validation set, 1250 images were cropped into
60000 smaller images of 256× 256 pixel resolutions. �e
datasets as open-source can be downloaded from website
(https://drive.google.com/open?id�1XGoHqdG-WYhIaTsm-
uctdV9J1CeLPhZR). To choose the best base learning rate

256 256

256 256128

1st scanning

2nd scanning

4160

12
8

25
6

31
20

(a)

1st scanning 1st + 2nd scanningOriginal image

(b)

Figure 9: Crack detection using exhaustive search: (a) sketch; (b) detection result.

94

95

96

97

98

99

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

T
es

ti
n

g 
ac

cu
ra

cy
 (

%
)

Image # (1--205)

Figure 10: Testing accuracies of 205 images.

8 Advances in Civil Engineering

https://drive.google.com/open?id=1XGoHqdG-WYhIaTsm-uctdV9J1CeLPhZR
https://drive.google.com/open?id=1XGoHqdG-WYhIaTsm-uctdV9J1CeLPhZR


Original image Testing result

(a)

Original image Testing result

(b)

Figure 11: Normal surfaces: (a) clear crack; (b) microcracks.
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Figure 12: Continued.
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according to validation accuracy, different base learning rates
were set during training the CNN. By comparing the training
results under different base learning rates, the base learning
rate of 0.01 was chosen the best where the CNN achieved the
highest validation accuracy of 99.06%. 0en the trained CNN
under the learning rate of 0.01 was used for the following
testing. Combined with an exhaustive search using a sliding
window, the trained CNN was tested on remaining 205
images, and average testing accuracy reached to 99.09%. 0e
training and testing codes and their usage can be viewed from
the website https://github.com/Shengyuan-Li/CNN-for-
Crack-Detection. Images used for the testing were a vari-
ous range of concrete surfaces with situations such as thin

cracks; cracks on shadowed, rough, rusty surface; surface with
holes; and even complex and blurry cracks. To mobile more
public to detect cracks in practice, the trained CNN model is
integrated into a smartphone application named Crack De-
tector. It is concluded that the proposed method is capable of
detecting the cracks on real concrete surfaces without being
interfered by noises. 0e study in this paper proves that a
CNN is especially powerful in image classification as it can
automatically learn certain features from a large amount of
images. 0e research approach of this paper can also be
adopted in other types of damage detections such as scaling of
concrete surface, corruption, and peeling paint of steel and
concrete and more.

Original image Testing result (—false positive)

FP-1

FP-2

(c)

Testing result (—false positive)Original image

FP-1

FP-2

(d)

Figure 12: Damaged surfaces: (a) shadowed surface; (b) surface with holes; (c) rough surface; (d) rusty surface.

Testing result (—false positive;
—false negative)

Original image

Figure 13: Complex and blurry cracks.
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In future studies, more images with more types of
concrete damages under various conditions will be provided
and added to the existing database to increase the adaptation
and robustness of the proposed method, and comparative
studies will also be performed.
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concrete surface using false colour HSV images, including
near-infrared information,” in Proceedings of the Optical
Sensing and Detection V, p. 1068003, Strasbourg, France, July
2018.

[25] S. Yokoyama and T. Matsumoto, “Development of an au-
tomatic detector of cracks in concrete using machine learn-
ing,” Procedia Engineering, vol. 171, pp. 1250–1255, 2017.

[26] A. Krizhevsk, I. Sutskever, and G. Hinton, “ImageNet clas-
sification with deep convolutional neural networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, 25 (NIPS 2012), pp. 1097–1105, Harrahs and Harveys,
Lake Tahoe, NV, USA, December 2012.
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