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ABSTRACT
Despite the potential given by the combination of multi-
tenancy and virtualization, resource utilization in today’s
data centers is still low. We identify three key characteris-
tics of cloud services and infrastructure as-a-service manage-
ment practices: burstiness in service workloads, fluctuations
in virtual machine resource usage over time, and virtual ma-
chines being limited to pre-defined sizes only. Based on these
characteristics, we propose scheduling and admission control
algorithms that incorporate resource overbooking to improve
utilization. A combination of modeling, monitoring, and
prediction techniques is used to avoid overpassing the total
infrastructure capacity. A performance evaluation using a
mixture of workload traces demonstrates the potential for
significant improvements in resource utilization while still
avoiding overpassing the total capacity.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Cloud Computing;
D.2.11 [Software Architecture]: Domain-specific archi-
tectures

General Terms
Algorithms, Management, Performance

Keywords
Admission Control; Burstiness; Cloud Computing; Over-
booking; Prediction; Profiling; Resource Utilization;

1. INTRODUCTION
Efficient resource utilization has been a goal since long in

data centers, motivated by hardware and operational costs [7]
and lately also by power consumption and environmental
concerns [15]. Virtualization technologies give data center
providers increased flexibility in management of IT infras-
tructure. Similarly, the very large scale and multi-tenant
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nature of cloud infrastructures brings great potential for effi-
cient multi-plexing and very high resource utilization. How-
ever, the cloud paradigm also introduce new obstacles for
efficient resource management, as illustrated by recent data
center workload studies that suggest low utilizations in over-
all. An analysis of Google traces [21] concludes that only
53% of the available memory is used whereas CPU utiliza-
tion is as low as 40% on average. One reason for this is
that users tend to overprovision their needs for the sake of
safest execution. In a similar study where 5000 servers were
observed for 6 months, Barroso et al. [2] report 10-50% as
common levels for CPU resource utilization.

The most notably characteristic of cloud infrastructures
is the elastic application nature. As these cloud applica-
tions make use of more or less resources over time, efficient
resource allocation becomes significantly more difficult. In
the case of horizontal elasticity, Virtual Machines (VMs)
are dynamically (de)allocated based on changes in service
workload [1]. This pattern in commonly used for interactive
multi-tier services. From a cloud provider perspective, de-
ciding how much resources to dedicate to an elastic service
constitutes a challenging problem with significant impact on
resource utilization on one hand, and potential Service Level
Agreements (SLAs) violations on the other. For the rest of
this paper, we view SLAs as defined by availability service
(e.g., 97% of the time) and a penalty in case this is not
fulfilled.

In cloud environments, VMs are usually configured during
creation with a specific amount of resources, such as CPU,
disk, and memory [18]. Over-provisioning those VMs leads
to waste of resources, from the cloud provider perspective,
and higher costs, from the user perspective. Conversely,
under-provisioning may result in performance degradation.
When this is done by the users, there is no problem from
the provider perspective. Nevertheless, if the provider is
under-provisioning to increase the infrastructure utilization,
then the resulting performance degradation may result in
loosing customers. Furthermore, providers usually only offer
predefined VM sizes (e.g., S, M, L, XL) with a fixed amount
of CPU, memory, disk, etc., which the user is not allowed to
customize. Thus, in order to meet the requirements of the
applications, users have to select the VM size that provides
enough of the most critical resource type (such as CPU),
while typically over-provisioning other resources, e.g., disk,
memory, and network bandwidth [10].

Another aspect of elasticity is that cloud applications (en-
capsulated into VMs) do not use the same amount of hard-
ware resources (CPU, memory, I/O, etc.) all the time, com-



monly referred to as vertical elasticity. This can either be
related to different behavior due to internal phases of ap-
plication operation, or be caused by variations in incoming
workload. Users tend to provision the worst-case capacity
as the upper bound (or even more for leaving a margin),
even though that amount of CPU, memory, or I/O is only
used for a small period of time. A related study of parallel
computing workloads suggest that more than half of all jobs
use less than 20% of requested capacity [6].

In summary, the three main characteristics of cloud in-
frastructure that tend to reduce resource utilization are:

1. Horizontal application elasticity - changing the number
of VMs allocated to a given service over time.

2. Pre-defined sizes of VMs - forcing application develop-
ers to waste resources.

3. Vertical application elasticity - changes in the actual
resources (CPU, bandwidth, etc.) usage by each VM
over time.

1.1 An Overbooking Approach
The above listed cloud infrastructure characteristics com-

bined with users’ tendency to overprovision resources to be
on the safe side result in significant waste of resources in a
cloud infrastructure. Overbooking describes resource man-
agement in any manner where the total available capacity is
less than the theoretical maximal requested capacity. This
is a well-known technique to manage scarce and valuable
resources. Overbooking has been applied in various fields
as diverse as airline yield management [22], network band-
width allocation [11], and batch scheduling for parallel com-
puters [4]. To address the cloud infrastructure utilization
problem, we propose a two-pronged overbooking strategy.
To cope with horizontal elasticity, we use admission con-
trol strategies where the maximum number of VMs (aggre-
gated over all services) accepted into a data center is larger
than the total infrastructure capacity. To handle the effects
of vertical elasticity and pre-defined VM sizes, we propose
scheduling techniques that overbook each physical server of
the infrastructure. Long-term capacity planning (admission
control) and short-term resource scheduling must be studied
in combination as the precision of admission control greatly
impacts scheduling. Having too few VMs in the data center
makes scheduling trivial and in-efficient, but with too many
VMs it is impossible to find, with or without overbooking,
a suitable allocation of these.

A conceptual overview of cloud overbooking is shown in
Figure 1. It can be seen that if two applications ask for
some capacity (gray boxes) but they actually use less than
the agreed amount (red boxes). Now, if and only if the total
real capacity being used for both applications is less than
the real capacity available at one node, the VMs running
those applications may be co-allocated at the same physical
resource without (noticeable) degradation in their perfor-
mance. The three dimensions (CPU, mem, I/O) must be
taken into account.

Overbooking techniques always exposes the cloud provider
to a risk of resource congestion and consequently of SLA vi-
olations. Thus, we need to establish a trade off between
improving the resource usage and exposing the infrastruc-
ture provider and customers to the risk of resource con-
gestion and performance degradation. Consequently, one

(a) Without overbooking. (b) With overbooking.

Figure 1: Conceptual illustration of overbooking ad-
vantage showing how two small enough VMs can be
collocated without disturbing each other.

of the main challenging issues when dealing with resource
overbooking is how to decide the appropriate amount of ex-
cess capacity to allocate to minimize the risk of SLA viola-
tions [23]. When providing IaaS, those SLA violations may
become an issue due to total compensation cost, legal and
regulatory issues to address in some cases and, most impor-
tantly, market acceptance when provided quality is not as
expected. The real challenge addressed in this paper is hence
how to estimate the total capacity needs and ensure that ap-
plications performance is not degraded due to overbooking,
while at the same time minimize resource wastage. It must
therefore be noted that the main aim of this work is not to
change the SLAs to enable higher utilization, but to increase
the number of SLAs that the infrastructure accepts without
risking the ones already agreed and in a transparent way to
the users. Hence, we try to keep the capacity used below
the physical capacity limits to avoid performance degrada-
tion that would lead to not meeting SLAs.

Resource characteristics and application behavior both
have to be taken into account when deciding which resource
types to overbook. Most applications run, albeit slower,
if allocated too little CPU, whereas provisioning too lit-
tle memory commonly makes applications crash. Regard-
ing application characteristics, e.g., CPU capability cannot
be treated in the same way for applications that require
high throughput as for ones that require low response time.
This is similar to other capabilities, such as network usage,
where bandwidth and latency are the equivalent parameters.
To exemplify, for MapReduce services, high bandwidth and
throughput may be preferred (reducing the shuffling and ex-
ecution phase, respectively), whereas for interactive services,
low latency and response times are the most critical aspects.

The rest of the paper is organized as follows. The pro-
posed overbooking system, its main components, and algo-
rithms are detailed at Section 2. Section 3 describes the ex-
perimental evaluation where the efficiency of the proposed
system is evaluated by a set of simulations. Finally, Sec-
tion 4 discuss related work, followed by the conclusions and
future directions at Section 5.

2. SYSTEM PROPOSAL
In order to study the afore-mentioned overbooking capa-



Figure 2: System Proposal Snapshot with the three
main components (AC, KOB and SOS) and their re-
lationship with the cloud infrastructure, and moni-
toring and profiling tools. AC decides whether allo-
cate the new request; SOS which is the best place-
ment; and both of them use the information col-
lected by KOB.

bilities, we have implemented a cloud capacity management
framework. Our system handles the three main tasks of
self-management: data collection, forecasting, and analysis.
The proposed system is depicted in Figure 2. Data collec-
tion is handled through different monitoring tools, which
are in charge of monitoring the status of either physical
and virtual machines and of profiling the running workloads.
This data collection process is carried out by several (inter-
changeable/customizable) plug-ins managed by the Knowl-
edge DB (KOB) module.

Based on the collected monitoring data, we forecast ex-
pected future resource (CPU, memory and I/O) of the sys-
tem. Then, the analysis of all available and predicted data is
used in long-term capacity decisions, i.e., whether to accept
incoming applications or not (Admission Control (AC)
module). The collected monitoring data and the subsequent
forecasts and analysis are also used for shorter-term capac-
ity management. This scheduling is used to decide which
node(s) and/or core(s) are the most suitable ones for allo-
cating the VMs belonging to the newly admitted application
(Smart Overbooking Scheduler (SOS) module).

Forecasting techniques are a must to estimate the future
capacity requirements of provisioned VMs. Significant trends
must be detected but at the same time, we must avoid tak-
ing management decisions based on temporary load spikes
only. To this end, time-series forecasting techniques are used
(triple exponential smoothing function [24]), and combined
with statistical modeling to infer future usage and workload
patterns, respectively.

Detailed information about each one of the three main
modules is described at next subsections. Table 1 gives an
overview of the used notation.

2.1 Admission Control
The Admission Control module decides whether a new

service/application deployment request should be accepted
or not. Thus, by using the information provided by the
knowledge DB module, AC has to evaluate the impact that
accepting this new request will have at the short and long
term system behavior, i.e., weighting improved utilization
against the the risk of SLA violations.

Table 1: Notation.
App Incoming Application

AppProfile App Profile
VMType VM Type required by App

N Set of nodes {ni / i in [1..m] }
TC Total Capacity

TNC Total Node Capacity
Cused Capacity already booked
RCused Real Capacity in use

Rni
Cused Real node ni Capacity in use

Min Minimum # of VMs needed by the App
Max Maximum # of VMs needed by the App
Avg Average # of VMs needed by the App
OBF Overbooking Factor
OBFni

Overbooking Factor of node ni

ObjFunction Returns # of VMs to book depending on
(Min,Max,Avrg) the selected objective, Min, Max or Avg

Prediction(x) Predicts future values of x
Area(r, q) Area of line r over line q

GetSlopeV alues(y) Obtains final and max slope for time series y

Algorithm 1 Non Overbooking Admission Control

1: RequestedV Ms = ObjFunction(Min,Max,Avrg)
2: if Cused +RequestedV Ms <= TC then
3: Cused += RequestedV Ms

4: Accept App
5: else
6: Reject App
7: end if

Algorithm 2 Overbooking Admission Control

1: if Prediction(RCused) +AppProfile <= TC and
OBF > OBFthreshold then

2: Accept App
3: else
4: Reject App
5: end if

In this work we want to evaluate the improvement ob-
tained by the overbooking techniques as such. Thus, we
use only two simple admission control policies: with and
without applying overbooking. Basically, for the non over-
booking case, AC is based on accepting the applications (of
n VMs of type t) by taking into account the number of cores
requested: maximum; minimum; and average. This process
is detailed at Algorithm 1.

For the overbooking policy, there are two different imple-
mentations. The first one where no admission control at
all is performed, then all the requests are accepted. In the
second one, the decisions are taken based on several param-
eters to avoid overpassing the real capacity. This algorithm
(Algorithm 2) takes into account current and predicted sta-
tus of the system (real usage, not requested resources), the
workload profiles and the overbooking already achieved (for
more details about how to calculate Overbooking Factors,
see Section 2.3), but without analyzing the long term im-
pact. This means that only the current status is considered
when taking the decision, hence not considering the impact
of having to deploy more VMs for the already accepted ap-
plications in the future.

2.2 Monitoring and Profiling Tools
Measuring and profiling different applications behavior,

taking into account their different dimensions (CPU, mem-
ory and I/O) is a must for accurate analysis and decision
making in admission control and scheduling. In this work,



due to the lack of real available workloads and to be able to
have reproducible experiments, workload profiling has been
made offline and then resource executions emulated into sim-
ulated resources. However, through a plug-in architecture,
the monitoring framework is easily integrated with monitor-
ing frameworks for VMs and physical nodes, e.g., the Libvirt
library [16] or Nagios [19], that allow us to measure the vir-
tual and physical machines status. The same type of tools
can be used for application performance profiling but more
appropriately, more fine-grained monitoring should be used.

When overbooking, the different applications profiles must
be taken into account [26]. For instance, the behavior of a
web service application differs from that of a gaming server.
The latter one has latency requirements making it less tol-
erant to violations of performance guarantees than the web
service. In addition, some applications are more suitable
of being collocated with other VMs. As highlighted in [9],
workloads that present a bursty (peaky) behavior are really
prone to be overbooked since they only occasionally use all
the system resources that they are entitled to. Peaks and
lows in one workload do not need to coincide with the ones
at others workloads, thus they would be a good match for
being co-allocated. Moreover, as VMs are multidimensional
(CPU, memory, I/O), we cannot only take advantage of allo-
cating bursty and non bursty applications together, but also
of co-allocating CPU-bound and network-bound or memory-
bound applications [26].

2.3 Smart Overbooking Scheduler
Once the AC has decided that an application has to be

deployed, the scheduler is in charge of deciding which is the
most suitable node and core(s) for each VM. As physical
servers have limited CPU, memory, and I/O capabilities,
these have to be carefully considered when performing the
overbooking to try to avoid placements that may lead to low
performance. As highlighted in [26], making the overbooking
by only taking into account average resource requirements
or only taking into account one dimension can result in sig-
nificantly reduced performance. This is why we use a set of
different parameters when deciding where to schedule VMs.
The scheduling process is detailed at Algorithm 3.

This worst-fit style algorithm predicts first what is the fu-
ture expected usage of the physical resources – to just take
into account the real usage, not the requested one. To obtain
those predictions a triple exponential smoothing function is
used since it has been shown to provide accurate enough
results [24]. This information is used together with the ap-
plication profile to estimate if accepting the new incoming
request would overpass the total real capacity in any of the
dimensions (line 4). Figure 3 illustrates this graphically,
where the gray area shows the estimated time during which
the real available capacity is estimated to be less than the
required one, increasing the possibilities of SLA violations,
delays, failures, etc.

If that area is small enough (Line 5), the framework then
takes into consideration how overbooked the selected node
already is (Line 6) and what is the trend of that overbooking
(Line 7). To measure the overbooking already done we define
an overbooking factor as:

OBFX =
(UsageRequestedX −RealUsageX)

min(UsageRequestedX , RealCapacityX)
, (1)

Algorithm 3 Worst-Fit Overbooking Scheduling

1: Allocated = false
2: NS = Sort Nodes N by OBF
3: for each ni ∈ NS do
4: AccumulatedUsage = Prediction(RniCused) +

AppProfile
5: if Area(AccumulatedUsage, TNC) < Areathreshold

then
6: if OBFni > OBFthreshold then
7: finalSlope,maxSlope =

GetSlopeV alues(Prediction(OBFni ))
8: if |finalSlope| < Slopethreshold and

|maxSlope| < Slopethreshold then
9: Allocated = True

10: AllocateVM at Node ni

11: end if
12: end if
13: end if
14: end for
15: if Allocated == false then
16: AllocateVM at Node with highest OBF
17: end if

Figure 3: Overbooking decision. The gray area
means the predicted risks that will be taken if the
application is allocated in that node.

where X can be CPU , Mem, or I/O, depending on the
capacity we are measuring. This overbooking factor is cal-
culated for each node and core in the system (data center)
and for each dimension. The range of OBFX is (0,1) since
RealUsage cannot be greater than the requested one as it is
encapsulated within the requested VM and RealUsage can-
not be negative. Thus, OBF values represent how overbook-
able the resources are: the greater the value the higher the
potential for overbooking.

After calculating overbooking factors for all hosts, we use
a worst-fit (WF) technique to select the least overbooked
resource(s) (Line 2). We also implemented best-fit and first-
fit methods, but found these inferior. Due to lack of space
this comparison is omitted and worst-fit is used. Urgaonkar
et al. draw similar conclusions regarding worst-fit in their
study of overbooking in shared hosting platforms [26]. To
be able to take all resource dimensions into account in a sin-
gle comparison in the worst-fit algorithm, the overbooking
value for each resource (nodes and cores) is calculated by
multiplying the OBF obtained for each dimension:



  

|FinalSlopeValue|

|MaxSlopeValue|

Figure 4: Slope-Aware algorithm for predicting the
OBF for the next hour in the target node. It cal-
culates the trend by taking into account the final
expected OBF and the worst case during that pe-
riod.

OBF = OBFCPU ∗OBFMem ∗OBFI/O. (2)

These values are also used to finally decide whether the
overbooking action is going to be taken or not. To de-
cide that, OBF values are predicted for the near future
(Line 7). Then, it is checked that the OBF values are big-
ger than a certain threshold (customizable parameter de-
pending on how risky we want to be when performing the
overbooking actions) and that the tendency (depicted by
FinalSlopeV alue and MaxSlopeV alue in Figure 4) is also
below a certain absolute value (Line 8). Figure 4 shows a
graphical description of this slope-aware algorithm. In that
case, the resource is suitable for being overbooked. Other-
wise, the next node has to be checked and if there is no node
left, the node with highest total OBF is chosen for allocat-
ing the request. Notably, as admission control has accepted
the new application, all VMs must be scheduled by SOS,
even though this could result in too aggressive overbooking
of certain hosts.

3. EXPERIMENTS
In this section we first present the emulated testbed and

the workload generated to measure the performance of our
proposed framework. After that, the actual performance
evaluation is depicted. For simplicity, here we henceforth
mostly focus on illustrating and analyzing the results for
one capacity dimension (CPU – higher utilization than the
others), although also memory and I/O have been taken into
account in all experiments.

3.1 Simulated Infrastructure
As explained in Section 2.2, we have implement our pro-

posal in a framework that is able to communicate with and
monitoring real infrastructures, data center resources, vir-
tual machines, etc., as well as working over a simulated one.
This way, and due to unavailability of traces from actual ex-
ecutions or even characterization of the workloads that IaaS
providers are running, we have emulated the behavior of
workloads and carried out discrete event simulations of the
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Figure 5: Simulator behavior for CPU (left) and
memory (right). Simulated resources (red dashed
lines) have a similar behavior as the real one (black
line).

Table 2: Virtual Machines sizes.
# CPUs Memory Bandwidth

(MB) (Mbit/s)

S 1 2048 1000
M 2 4096 2000
L 4 8192 4000

XL 8 16384 8000

resources that execute them to study the demand imposed
on our system: we have simulated the physical resources be-
longing to the data center and emulate several applications
that to the best of our knowledge are representative within
cloud environments and consequently relevant for real cloud
providers (see Section 3.2).

The cloud infrastructure simulated for testing our algo-
rithms consists of 16 Nodes where each one of them has
32 Cores. Those cores simulate the execution of the work-
loads modeled in next section by following the profiled us-
age of them. Here it must be noted that the bigger the
infrastructure is, the better improvements we could achieve
since the overbooking techniques take more advantage of the
three properties (horizontal and vertical applications elastic-
ity, and pre-defined VM sizes) discussed at Section 1.

On the other hand, the reason for selecting an infrastruc-
ture of X nodes of 32 cores is based on the fact that we have
a cluster with those characteristics (32 AMD Opteron(TM)
Processor 6272, 64 GB Memory) where we have confirmed
that our simulator performs similar to the real server. This
can be seen at Figure 5, where real server (black line) has
similar trend than the simulated resources and workloads
(red dashed lines).

We consider four different types of VMs, similar to Ama-
zon model, with the characteristics detailed at Table 2. Even
though those four different kind of VMs can be used by all
applications, the results shown here are for fairness reasons
using only VMs of S type. If VMs of bigger sizes are used,
the improvements obtained thanks to overbooking actions
would be bigger. For instance, if we use a bursty application
that sometimes use 1 cores and others 8 and map that into
a XL VM, then we can take advantage of the 7 unused cores
(from time to time) for achieving greater consolidations.
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Figure 6: Background workload: Web servers show-
ing resource requirements of two Wikipedia traces
over time as well as the accumulated workload.

3.2 Workload Modeling
As highlighted before, there are no detailed enough work-

loads available from real cloud environments. For this reason
we have emulated the following two class of workloads:

• Background workload : web server applications with
varying number of user requests. This workload is
interpolated from real available traces, in this case
Wikipedia traces [20].

• Dynamic workload : applications profiled by using mon-
itoring tools after running the real application and
generating a workload through a poisson distribution.
Two different type of applications are profiled, one
with steady behavior and the other one with bursty
usage.

With those workloads we have emulated a scenario that
could be close to reality to the best of our knowledge, com-
posed of a mixture of background and dynamic workloads.
The reason of choosing this mix as the workload to test our
proposal is to have different kind of applications (with steady
and bursty behavior), as well as having services that present
(require) some elasticity in their usage – sometimes need a
few resources and other times a large amount of them. This
way we can exploit horizontal and vertical elasticity prob-
lems regarding resources utilization.

For the first category (a web server) we have used avail-
able information about Wikipedia traces [20]. Two different
one-day periods were selected and extrapolated to our envi-
ronments, i.e., changing the available information (number
of requests per seconds) into resources usage (CPU, memory
and I/O usage). The information about how many cores are
required by this workload is depicted at Figure 6. As can
be seen, for supporting that kind of requirements each web
server must have between 80 and 180 cores serving requests
depending on the current load. Therefore, we assume that
the web workload owner wants to establish a contract (SLA)
with the cloud provider specifying that an amount between
100 and 200 cores (VMs of S type in this case) have to be
ready for attending the possible user requests – giving some
extra margin for unpredictable situations.

Regarding the dynamic workload, we have modeled two
different kind of jobs, with different length in time and be-
haviors. The first one (see Figure 7 (a)) represents an appli-
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(b) Steady application profile.

Figure 7: Dynamic workload: Resource usage profile
of a bursty (a) and a steady (b) application.

cation with bursty behavior (such as a web server) whereas
the second one (Figure 7 (b)) shows a totally different be-
havior – stable (steady), such as a CPU-bound map-reduce
job. These two application profiles have been obtained by
executing two different types of applications and using the
LTTng2 [17] monitoring tools to measure their resource us-
age over time. This tool provides very detailed profiling
of application behavior and supports integrated kernel and
user-space tracing from a single user interface. These two
different jobs are equally mixed and submitted into the sys-
tem according to a Poisson distribution with 20 jobs per
minute on average.

3.3 Performance Evaluation
In order to highlight the benefits of performing resource

overbooking to increase resource utilization within a data
center, the proposed overbooking algorithm is compared with
different non overbooking techniques and with the ideal (un-
realistic) case presented in Section 2.1. For the non over-
booking techniques three approaches are compared: Min,
Max and Avg. These means that when the Wikipedia web
service application (which presents elasticity) is admitted
into the system, it respectively deploys the minimum, max-
imum, and average number of VMs required by them, with
the subsequent risks or resource wastage. The application
can scale resource allocation up to Max and scale back down
to the initial allocation. Notably, in the Max scenario there
is no scale up or down at all.

Regarding the admission control techniques we have, on
the one hand, the ideal method (labeled as Ideal) which ac-
cepts all the requests even though there is no space left into
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Figure 8: Comparison of resource usage (a) and
number of VMs allocated (b) along time with and
without overbooking.

the resources, also assuming a perfect sharing (without over-
head) of the physical resources. On the other hand, we have
our proposed technique (labeled as Overbooking) that takes
decisions by analyzing the current impact of overbooking
the resources and whose main objective is to remain close to
this ideal scenario, but without overshooting the total real
capacity to avoid SLA violations.

Figure 8 shows the results for those comparisons. Fig-
ure 8 (a) shows the CPU (solid lines) and memory (dot-
ted lines) usages along time for each technique. The same
information regarding the most congested dimension (i.e.,
CPU) is summarized at Table 3 where the total amount of
dynamic workload jobs accepted is also highlighted. Fig-
ure 8 (b) shows the total amount of VMs allocated along
time. Both of them depict the significant improvement ob-
tained by using the overbooking technique (red lines), which
increase resource usage between 44.7% and 56.6% regarding

Table 3: Real CPU Usage Summary (Figure 8 (a)).
Overbooking Min Max Avg

1st Qu. 443.4 299.8 271.1 294.4
Median 448.4 308.2 280.2 304.6
Mean 444.0 311.1 283.6 308.1

3rd Qu. 453.5 322.9 297.6 321.8
Max 472.1 405.5 331.4 399.5

Applications
Accepted 15055 4542 2376 4303
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Figure 9: Allocation limit (no overbooking). Allo-
cated VMs exceed total capacity due to elastic ser-
vices.

CPU and between 55.8% and 76.1% for memory, leading to
accepting between 3.3 and 6.3 times more dynamic workload
applications in the same period of time. Even better results
could have been obtained by not only using S type VMs.

As presented in Figure 9 (zoom of first 300 minutes of
Figure 8 (b)), using Min or Avg techniques instead of Max
when performing admission control of elastics web services
could result in overshooting the capacity (without overbook-
ing techniques) due to elastic scale up of the web server ap-
plications. This figure also shows how Max never passes that
limit as the system books the whole amount of VMs needed
(no elasticity). Conversely, the Min and Avg techniques
overshoots every now and then by accepting too many jobs
without forecasting the scale up needs of already allocated
web servers.

Figure 8 also compares the implemented overbooking tech-
nique with the ideal upper limit (labeled as ideal in the fig-
ure, black lines). In that case the same amount of jobs are
accepted (15055) without any admission control mechanism
and without taking into account any overhead due to time
resource sharing when real usage of accepted applications is
greater than the real available capacity. This ideal case ac-
cepts that amount of jobs within the first 800 minutes and
then, when all the accepted applications from the dynamic
workload have been executed (around minute 1150), only
provision the two Wikipedia servers – having therefore less
load than any other technique from that point onward. No-
tably the proposed overbooking technique remains close to
the ideal scenario. With a more advanced admission control



algorithm, the framework could have performed more ag-
gressive strategies, accepting a greater number of jobs lead-
ing to a better increment regarding data center utilization.

It must be noted that exceeding the capacity, regarding
number of VMs already allocated, does not mean violating
SLAs as long as the real capacity being used always remains
below the total available physical capacity. Hence, there are
problems for the “ideal” case since total capacity is less that
required most of the times, although we are not considering
them for that case to have a comparison with the (unrealis-
tic) ideal case where all the resources are being used all the
time. Therefore, our overbooking techniques would have
no SLAs violations (at least none caused by overbooking)
since total capacity being used in each dimension always re-
mains below the total available capacity. As Figure 8 (a)
depicts (red lines), CPU stays with a margin of approxi-
mately 10% below the real capacity and memory around
20%. The problems could appear when applying more ag-
gressive algorithms that aims to increase the utilization even
more (taking higher risks), leading to full utilization at some
points. This could be a problem that may result in SLA vio-
lations regardless the duration of the overloaded period since
some applications could not recover from that or simply not
finish on time.

Furthermore, the application profile influences the im-
provement obtained since steady applications yield smaller
gains when overbooking resources (if they are provisioned
accurately enough). Additional gains are possible by collo-
cating applications that present different bottlenecks, such
as CPU intensive workloads with network demanding appli-
cations. We repeat the experiments in Figure 8 (a) to study
these effects in more detail, we also present a comparison
regarding the number of applications concurrently accepted
when the proportion between bursty and steady applications
is changed. Figure 10 presents the trend when the ratio be-
tween bursty and steady applications is 25%, 50% and 75%.
This figure only shows 200 minutes since from that point
usage remains stable for all the overbooking cases. Differ-
ences can be appreciated early in the experiment, but after
some time they tend to achieve a similar and stable resource
utilization. The initial difference among the overbooking
ones stems from having more steady applications that are
filling the resources (real capacity) faster than bursty ones.
After that, thanks to the overbooking techniques, all three
scenarios reach a similar usage regardless the distribution of
bursty and steady applications. Consequently, when over-
booking techniques are applied, the resource utilization re-
mains stable independently of the workloads that are being
submitted. By contrast, when no overbooking is used, the
utilization varies along time and differs depending on the ap-
plications profile – the larger fraction of bursty applications
the lower utilization.

Although the ratio of bursty and stable applications have
little impact in the long term on the overall resource utiliza-
tion, there are large differences regarding the number of VMs
deployed, as depicted in Figure 11. Related information is
again summarized at Table 4. The more bursty applications
there are, the larger number of VMs can be concurrently de-
ployed thanks to the overbooking techniques. This results
in a gain of 8.6% from 25% to 50% of bursty applications
and of 9.8% from 50% to 75% regarding the total number
of accepted VMs. Regarding the number of concurrent VMs
deployed at the same time, the number increases 36.9% on
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Figure 10: Utilization over time with different ra-
tios of bursty applications. When overbooking tech-
niques are used convergence rate is impacted for
burstiness, but overall utilization is not.

Table 4: Allocated VMs Summary (Figure 11).
Percentage of bursty apps. 25% 50% 75%

1st Qu. 726 985 1281
Median 743 1028 1366
Mean 734.3 1005 1330

3rd Qu. 770 1055 1410
Max 815 1146 1598

Dynamic Workload
Applications Accepted 13868 15055 16527
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Figure 11: Number of VMs allocated over time us-
ing overbooking with different ratios of bursty and
steady applications. Higher burstiness rate results
in greater number of VMs allocated.

average from 25% to 50% ratio of bursty applications and
around 32.3% from 50% to 75% burstiness ratios.

In summary, the improvement obtained thanks to the pro-



posed overbooking techniques is significant even with sim-
ple admission control techniques. More advanced admission
control would allow us to perform a more aggressive sched-
uling techniques with the subsequent increments in resource
utilization.

4. RELATED WORK
Overbooking techniques as such have been applied in var-

ious fields as diverse as bandwidth allocation [11], airline
yield management [22] and parallel computer scheduling [4].

Urgaonkar et al. propose techniques to overbook cluster
resources in a controlled way that guarantees applications
performance even despite overbooking [26]. However, they
assume that users provide information regarding the degree
of overbooking that their applications may tolerate as well
as their time periods, which at times may be known by the
users in a cluster environments but is not available for cloud
infrastructures.

There are also more recent studies centered on cloud en-
vironments. In a paper by Ghosh et al. [9], the risks of over-
booking resources in a cloud are analyzed and a threshold-
based overbooking scheme is proposed. The trade-off be-
tween overbooking and performance degradation is closely
related to SLA management. Similarly, Breitgand et al. [5]
present an algorithmic framework that uses cloud effective
demand to estimate the total physical capacity required for
performing the overbooking. Their work propose to extent
standard availability SLAs to also include probability of suc-
cessfully launching additional VMs, but the model is based
only on account CPU usage.

A key aspect of all overbooking systems is insight in fu-
ture resource usage. The literature on resource behavior
prediction within highly distributed systems such as Grids
or clouds is very rich. A survey of several prediction tech-
niques is presented in [8]. Examples of techniques include
adaptive methods [13], state-space models [14], exponential
smoothing [24], and use of control schemes for self-tuning
for improved forecasts [25].

Another important aspect of overbooking is the suitability
of co-allocating VMs into the same physical node(s). He et
al. [12] present an algorithm for improving resource utiliza-
tion for cloud providers based on a multivariate probabilis-
tic model. The suitable physical hosts for VMs are selected
based on the three dimensions (CPU, memory and I/O). VM
(anti)affinity rules are used to avoid repeating poor perfor-
mance in the future. A similar approach is taken by Meng
et al. [18], who propose a joint VM provisioning approach
that, based on estimates of the aggregate VM capacity re-
quirements, allocates and consolidates VMs. Their work
only takes into account CPU usage and perfect predictions
about future workload behavior is assumed.

With a somewhat different aim than ours, Beloglazov et
al. [3] propose a Markov chain model and a control algo-
rithm for the problem of host overload detection as a part of
dynamic VM consolidation. However, their work is based on
detecting when hosts are overloaded and perform the needed
migrations (to the less loaded resources), instead of focusing
on scheduling and admission control. VM migration could
serve as a valuable complement to these in case of prediction
failures. Gmach et al. [10], address the fixed size VM prob-
lem of cloud infrastructure vendors, which they refer to as
the “t-shirt” model. On the contrary, in some private cloud
scenarios, the capacity of each VM is permitted to change

dynamically using a time-sharing mechanism. Gmach et al.
present a tool to help customers to decide which approach
works most efficiently for their workloads. Their evaluation
demonstrates that for a given set of workloads, the t-shirt
model requires almost twice the number of physical servers
as the time share model. However, resource overbooking is
not used in their model.

5. CONCLUSIONS
VM consolidation overbooking is a promising solution to

address the resource utilization problems that arise due to
the elastic nature of cloud applications and current infras-
tructure management practices. However, it has to be care-
fully carried out to prevent performance degradation.

We propose a framework with admission control and sched-
uling mechanisms that are capable of resource overbooking
without overpassing the total available data center capacity.
Our experimental evaluation demonstrates that already with
a simple admission control mechanism, resource utilization
can be improved with more than 40%, and three times more
applications can be admitted concurrently.

A general conclusion is that overbooking is more benefi-
cial for the bursty applications. However, the system per-
formance also depends on the accuracy of the underlying
estimations regarding CPU, memory and I/O usage, as well
as on how accurately the workloads have been profiled and
how predictable their performance are. All these factors
have a strong relationship with the potential resource uti-
lization improvement achievable with overbooking.

As future work we plan to study affinity functions that
aids the scheduling system in deciding which applications
to collocate. This would allow the system to further in-
crease the resource utilization and perform overbooking with
less risk. Implementing a more advanced admission control
functionality is another future direction. With more accu-
rate forecasts of long-term resource usage of all applications,
more aggressive overbooking strategies can be applied to fur-
ther increase resource utilization. Another extension to the
current work is to evaluate our system by executing real ap-
plications and infrastructures instead of using simulations
based on traces. This would allow us to create improved
overbooking models by quantifying the overhead associated
with VM collocation, context switching, etc, as well as assess
its impact on application performance and overall resource
utilization or discovering unexpected effects that could lead
to increment the number of SLA violations.
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