
Ferrero et al. J Transl Med  (2017) 15:182 

DOI 10.1186/s12967-017-1285-6

RESEARCH

In silico prediction of novel therapeutic 
targets using gene–disease association data
Enrico Ferrero1* , Ian Dunham2,3 and Philippe Sanseau1,3

Abstract 

Background: Target identification and validation is a pressing challenge in the pharmaceutical industry, with many 

of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. 

Computational prediction of successful targets could have a considerable impact on attrition rates in the drug dis-

covery pipeline by significantly reducing the initial search space. Here, we explore whether gene–disease association 

data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by 

pharmaceutical companies or are already on the market.

Methods: To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a 

neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using 

nested cross-validation and testing on an independent set. We then select the best performing model and use it to 

make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for 

proposed therapeutic targets.

Results: We observe that the data types with the best predictive power are animal models showing a disease-

relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investi-

gation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting 

therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed 

programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently 

proposed in the literature.

Conclusions: Our in silico approach shows that data linking genes and diseases is sufficient to predict novel thera-

peutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypoth-

eses in the target discovery process. Ultimately, more rapid and automated target prioritisation holds the potential to 

reduce both the costs and the development times associated with bringing new medicines to patients.
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Background
In drug discovery, programme failures at late stages of 

development such as clinical phases are extremely costly 

[1]. In the majority of cases, it appears that lack of effi-

cacy is often the primary cause of this attrition [2, 3]. Effi-

cacy failures, in turn, are most often due to a poor linkage 

between the therapeutic drug target and the disease of 

interest or the lack of a well validated animal model of 

the disease [4]. Hence, the selection of the right target for 

the right disease in early discovery phases is a key deci-

sion to maximise the chances of success in the clinic and 

ensure a sustainable business in the longer term [5].

Many different sources of evidence linking potential 

therapeutic targets to diseases can be used in the target 

selection process. However, it is currently unclear what 

data type(s) are more relevant or appropriate to use when 

picking new drug targets. Recent reports highlighted that 

human genetics evidence providing a clear link between 

the putative target and the disease can have a quantifiable 

impact on the clinical success rates of new drugs [6, 7]. 
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�is is also supported by the finding that phase II pro-

jects where a genetic link has been established are almost 

twice as likely to be active or successful [4]. While genetic 

associations from large-scale genome-wide association 

studies (GWAS) are already contributing to the advance-

ment of therapeutic targets in early discovery [8, 9], other 

data types have not been systematically compared or 

taken into consideration so far.

Open Targets is a public–private partnership that aims 

to collect all data that can be used to link genes and dis-

eases, with the ultimate objective of providing evidence 

on the validation of potential therapeutic targets in one 

or more disease areas [10]. �is is implemented through 

an informatics platform that integrates multiple pieces of 

evidence connecting genes and diseases, including genet-

ics (both germline and somatic mutations), gene expres-

sion, literature, pathway and drug data [11].

Considering that the drug discovery process is costly 

and failure-prone, methods that can effectively predict or 

prioritise which targets to go after to treat or cure major 

diseases would be welcomed by the scientific community. 

Our aim is to leverage the notion that clear target–dis-

ease associations appear to be related with the success of 

pharmaceutical programmes; specifically, we are inter-

ested in addressing whether human gene products can 

work as therapeutic targets based on their disease asso-

ciation profile.

Machine learning is emerging as a specialised branch 

of statistics and computer science that can lead to pow-

erful insights in a number of different domains and con-

texts [12]. Here, we asked whether a predictive modelling 

strategy could be applied to identify therapeutic targets: 

Is it possible to discriminate between current drug tar-

gets in the pharmaceutical industry and other genes 

using a machine learning approach? Is there a set of dis-

ease association features that can be used to define drug 

targets? If so, can we use this information to predict 

novel targets?

In this study, we take advantage of the Open Targets 

platform using a semi-supervised approach on positive 

and unlabelled data to assess whether the disease asso-

ciation evidence that it contains can be used to make de 

novo predictions of potential therapeutic targets. We test 

the information content of five types of evidence con-

necting genes with diseases (pathways, animal models, 

somatic and germline genetics and RNA expression) and 

evaluate four different classification algorithms for pre-

dicting new drug targets.

Methods
Software

All data processing and analysis was performed using 

R 3.3.0 [13]. �e mlr package [14] was used to build the 

classifiers, test the models and perform the predictions. 

�e underlying packages for building the individual mod-

els were rpart [15], randomForest [16], nnet [17], e1071 

[18] and gbm [19]. Other packages used for data process-

ing and visualisation were biomaRt [20], jsonlite [21], 

ggplot2 [22], Rtsne [23] and Vennerable [24]. Release 84 

of Ensembl [25] was used for gene annotation. SciBite 

DocStore [26] was used for text mining the MEDLINE 

database. All code was versioned using Git and is avail-

able at https://github.com/enricoferrero/TargetPred.

Data processing

Observations and features were collected from the 

Open Targets platform [11]. It utilises seven distinct 

data types to represent associations between genes and 

diseases: affected_pathway (the gene is part of a path-

way that is affected in disease), animal_model (animal 

model with a gene knockout that manifests in pheno-

type concordant with human disease), genetic_associa-

tion (germline mutation in the gene associated with the 

disease), known_drug (existing drug that engages the 

target and is used to treat the disease), literature (asso-

ciation between gene and disease identified through text 

mining of the scientific literature), rna_expression (sig-

nificant gene expression change in disease) and somatic_

mutation (somatic mutation in the gene associated with 

the disease, typically cancer). Each of these data types 

is composed of one or more data sources. For instance, 

genetic_association contains germline mutation evidence 

from the GWAS catalog [27], UniProt [28] and EVA [29] 

while the somatic mutation data type is a collection of 

cancer-related mutation data from COSMIC [30] and 

EVA [29]. For each gene–disease combination, the plat-

form provides association scores for each of the data 

types as well as an overall association score calculated 

using the sum of the harmonic progression of each data 

type score [11]. Individual diseases are represented in the 

platform according to the Experimental Factor Ontol-

ogy [31] and grouped in different therapeutic areas via 

the ontology relationships [11]. �e platform stores both 

direct and indirect associations between genes and dis-

eases, with the indirect associations representing asso-

ciations between genes and parent terms in the ontology 

[11].

Four main steps were taken to reshape the raw data 

from the Open Targets platform into the input format for 

the machine learning algorithms:

1. �e JSON file containing all Open Targets gene–dis-

ease associations (2016 Apr version) was downloaded 

from the platform download page (https://www.tar-

getvalidation.org/downloads/data) and imported into 

R in tabular format.

https://github.com/enricoferrero/TargetPred
https://www.targetvalidation.org/downloads/data
https://www.targetvalidation.org/downloads/data
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2. Five data types were used to build the input data 

matrix: affected_pathway, animal_model, genetic_

association, rna_expression and somatic_muta-

tion. �e column corresponding to the known_drug 

data type was removed from the input data matrix 

because it is essentially equivalent to what we aim to 

predict (i.e.: is this gene a drug target?). Similarly, the 

literature data type was also removed as it was likely 

to be heavily biased towards well known, validated 

target–indication pairs and, in addition, we planned 

to use data from the scientific literature as a means 

to validate our approach. �e animal_model data 

type was filtered to eliminate lower confidence asso-

ciations below a 0.4 threshold. Finally, to avoid arti-

ficially increasing scores or counting evidence more 

than once, we removed all indirect associations.

3. For each data type, a single pan-disease score was 

computed per gene by calculating the mean score 

across all associated diseases. �is ensures that the 

resulting matrix has a single row per gene and lets 

the classifier(s) make predictions on individual tar-

gets, rather than target–indication pairs.

4. For each gene in the input data matrix obtained from 

the Open Targets platform, a label (or outcome vari-

able) specifying whether the gene was pursued as a 

drug target was then added according to the Informa 

Pharmaprojects data [32]. While the repertoire of 

target–indication pairs in the Open Targets platform 

and the Pharmaprojects database is likely to differ, we 

integrated the two resources at the gene level, with-

out taking into consideration disease association dif-

ferences that may exist in the two resources. A gene 

was labelled as a target if it was found in one of the 

following Pharmaprojects categories: Preclinical, 

Clinical Trial, Phase I Clinical Trial, Phase II Clinical 

Trial, Phase III Clinical Trial, Pre-registration, Regis-

tered, Launched. For targets with programmes across 

different stages of the drug discovery pipeline, the 

most advanced stage was considered. All other genes 

in the Open Targets dataset were labelled as non-tar-

gets.

Model training and testing

All targets were selected along with an equal number of 

randomly chosen non-targets to generate a working data-

set, while the remaining non-targets were kept as a pre-

diction set.

�e working dataset was used for unsupervised explor-

atory data analyses: hierarchical clustering, principal 

component analysis and t-stochastic neighbour embed-

ding (t-SNE) [33]. �e hierarchical clustering analysis was 

run using Euclidean distance and Ward’s criterion [34]; 

the t-SNE method was run using a perplexity value of 

30 and other default parameters as implemented in the 

Rtsne package [23]. �e working dataset was then ran-

domly split into training and test sets, containing 80 and 

20% of the observations, respectively. �e training data 

was used for tuning hyperparameters and for evaluating 

the performance of four different classifiers: a random 

forest (RF) [35], a support vector machine (SVM) with a 

radial kernel [36], a feed-forward neural network (NN) 

with a single hidden layer [37] and a gradient boosting 

machine (GBM) [38] using the AdaBoost exponential loss 

function [39]. In a positive–unlabelled (PU) learning set-

ting, conventional binary classifiers will often suffer from 

classifier instability, caused by the fact that the unlabelled 

set—which is effectively treated as the negative set—con-

tains both positive and negative cases [40, 41]. Bootstrap 

aggregating (bagging) is a common and effective tech-

nique that can be used to reduce classifier instability by 

randomly resampling observations with replacement and 

then aggregating the results by majority voting [42]. We 

applied bagging with 100 iterations to the SVM, the NN 

and the GBM classifiers. RFs already implement the bag-

ging procedure by default [35] so the classifier was not 

modified.

To ensure that performance estimates were reliable and 

that the models were not overfitted to the training data, a 

nested cross-validation strategy was adopted [43, 44]. An 

inner, fourfold cross-validation loop was used to tune the 

following hyperparameters of the four classifiers: num-

ber of trees and number of features (RF); size and decay 

(NN); gamma and cost (SVM); number of trees and inter-

action depth (GBM). An outer, fourfold cross-validation 

loop was then used for estimating the performance of the 

classifiers. �e performance of the four models was then 

evaluated on the test set. Based on these benchmarks, the 

NN model was selected and used to make predictions on 

the remaining set of non-targets (prediction set) using a 

probability threshold of 0.9.

Text mining

�e SciBite DocStore API [26] was utilised to iden-

tify instances of “Gene/Protein AND Target” in titles 

and abstracts stored in the MEDLINE database, where 

“Gene/Protein” stands for all known genes and proteins 

and “Target” is a concept describing a therapeutic tar-

get. Results were retrieved in a tab-delimited format 

and processed so that gene symbols could be mapped 

to Ensembl gene IDs. A two-sided Fisher’s exact test 

was then used to assess the significance of the overlap 

between predictions and text mining hits using the total 

number of protein-coding genes in the human genome 

as the universe size.
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Results
To assess whether information providing evidence of 

association between genes and diseases could predict 

successful drug targets, we set out to train and test a 

number of algorithms on an input matrix built using 

data from the Open Targets platform [11]. We obtained 

a matrix with 18,104 genes (observations) and five data 

types from Open Targets (features) by summarising all 

the available evidence at the gene level. Observations 

were labelled as targets or non-targets according to the 

presence or absence of drugs marketed or in development 

across the pharmaceutical industry using the Informa 

Pharmaprojects data [32] (Fig. 1). Information on which 

gene products are drug targets is available directly in the 

Open Targets platform though ChEMBL [45]. However, 

at the time of this analysis, the number of targets with 

drug annotations available from Pharmaprojects, which 

also covers early stage announcements, was superior 

(2105 compared to 625), with the majority of those found 

in Open Targets also part of the Pharmaprojects collec-

tion (389). In addition, using the Pharmaprojects data 

makes it possible to easily discriminate between the drug 

development phases and filter out targets with failed or 

abandoned programmes when generating the positive 

set.

One issue that we faced is that our data is only partially 

labelled. We have a number of genes that are currently 

targets of drugs that are marketed or under active devel-

opment but, for the majority of genes, we don’t know 

with certainty whether they are definitely non-targets or 

might become targets in the future, as our understand-

ing of diseases progresses and drug discovery technolo-

gies advance. Semi-supervised learning methods tackle 

exactly this type of settings, where a mixture of labelled 

and unlabelled data exists [46]. Specifically, a scenario 

where all labelled observations are positives is known 

as PU learning, or learning from positive and unlabelled 

data [47]. We created a positive set using all known drug 

targets, with the remaining protein-coding genes repre-

sented in Open Targets falling in a bucket of non-targets. 

�e assumption is that this unlabelled set contains both 

negatives—genes that are never going to be drug tar-

gets because of efficacy, safety or tractability reasons—

and future positives, genes that are currently not being 

actively pursued as therapeutic targets, but will become 

so in the future. From an algorithmic perspective, we 

simply treated the unlabelled data as the negative set 

[48], allowing us to utilise supervised learning methods 

within a semi-supervised setting.

A balanced working dataset was generated contain-

ing all positive cases (1421) and an equal number of 

randomly sampled unlabelled cases (2842 in total). �e 

remaining 15,262 observations were set aside to form a 

prediction set to be used for the actual predictions once a 

definite model had been established (Fig. 1).

Targets and non-targets appear as distinct on a 

two-dimensional space

We carried out an exploratory analysis on the work-

ing dataset using unsupervised methods to under-

stand whether targets and non-targets had different 

characteristics.

As expected, hierarchical clustering of the data 

revealed a very sparse matrix, with most values close to 

zero and virtually no genes showing high scores across 

multiple data types (Additional file  1: Figure S1A). 

While some smaller clusters predominantly composed 

of targets or non-targets could be identified, overall the 

data structure did not appear to relate to the assigned 

labels.

Similarly, a principal component analysis showed sub-

stantial overlap of targets and non-targets when plotting 

pairwise combinations of the first three principal com-

ponents, that altogether accounted for 66.1% of the total 

variance in the data (Additional file 1: Figure S1B).

We then asked whether a more sophisticated dimen-

sionality reduction method such as t-SNE [33] could 

reveal some hidden structure in the data. �is resulted 

in a rather clear separation between targets and non-

targets on a two-dimensional space (Fig. 2): most of the 

data points labelled as targets lie on a curved line and a 

gradient of targets and non-targets is present along the 

vertical axis.

�is result shows that a distinction between thera-

peutic targets and other genes exists based on the Open 

Targets data, thus supporting the notion of a non-linear 

classification-based approach that discriminates between 

targets and non-targets using disease-association 

evidence.

Assessing feature importance and classi�cation criteria

Considering that the feature space under investigation 

was small, we set out to investigate the contributions of 

all five individual data types and their relative importance 

in the dataset.

In scenarios with several predictors, it is common 

practice to use feature selection as a means of simplify-

ing model interpretation, reducing training times and 

to avoid overfitting models to the training data [12, 49]. 

Many feature selection methods rely on assessing the 

importance of the different features by calculating how 

related they are with the response variable. Here, we 

applied the Chi squared test and the information gain 

method [50] to our dataset to understand which variables 

were considered more relevant, without actually filtering 

out any of the original features.
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Fig. 1 Framework for prediction of therapeutic targets based on disease association data. Observations and features were gathered from Open 

Targets while the labels were collected from Informa Pharmaprojects. The resulting data matrix was split into a prediction set and a working dataset. 

The former was kept aside and used to perform predictions once the model was established. The latter, containing both positive and unlabelled 

observations, was further split into training and test sets to train the classifiers and evaluate their performance
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Regardless of the method utilised, we observed animal 

model, RNA expression and genetic association showing 

the highest values and association with the outcome vari-

able (Fig. 3a).

�ese results suggest that evidence from animal 

model, gene expression and genetic data can potentially 

be helpful to define what makes a good therapeutic tar-

get. Hence, classifiers built on top of the dataset under 

investigation are more likely to prioritise this subset of 

features. Importantly, directionality is not taken into 

account by these methods so there is no way to know 

whether it is a higher or a lower score of any of these data 

types that is more correlated with what we are trying to 

predict.

Several machine learning algorithms exist for classi-

fication tasks, with varying degrees of performance and 

interpretability [12]. �e choice of the right algorithm 

depends on many factors—often specific to the data-

set currently being studied—and ultimately hinges on 

whether we are more interested in inference (e.g.: what 

makes a good target?) or prediction (e.g.: which ones are 

good targets?) [12].

Decision trees are a popular choice for inference since 

they are easy to interpret without sacrificing too much 

performance in most scenarios [51]. To test our hypothe-

sis that the features described above would be prioritised 

by a learning algorithm, we trained a classification tree 

on a subset of the data—the training set—correspond-

ing to 80% of the observations. We then explored the 

classification criteria of the model to get insights into the 

features the algorithm uses to make classification deci-

sions (Fig. 3b).

In line with the feature importance results described 

above, we found that animal model was the first node 

in the tree, with RNA expression and genetic associa-

tion also required for target classification. �ese findings 

confirmed the rich information content present in these 

predictors and suggested that more powerful non-linear 

classification approaches could indeed achieve satisfac-

tory separation of the two classes.

Fig. 2 Exploratory data analysis of the working dataset using dimen-

sionality reduction. The t-SNE algorithm for non-linear dimensionality 

reduction was run a perplexity value of 30 and other default param-

eters. Each dot in the two-dimensional space represents a gene and is 

coloured according to its label (green target, purple non-target)

Fig. 3 Feature importance and classification criteria. a Feature impor-

tance according to two independent feature selection methods 

(left to right): Chi squared test and information gain. b Decision tree 

classification criteria: colours represent predicted outcome (purple 

non-target, green target). In each node, numbers represent (from top 

to bottom): outcome (0: non-target, 1: target), number of observations 

in node per class (left non-target, right target), percentage of observa-

tions in node
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Di�erent learning algorithms can predict therapeutic 

targets with good accuracy

We selected four learning algorithms that are generally 

known to achieve good performance across a number of 

settings: a RF, a SVM, a NN and a GBM. To account for 

classifier instability due to the PU learning setting [40, 

41], bootstrap aggregating (bagging) with 100 iterations 

was applied to the SVM, the NN and the GBM classifiers. 

In order to avoid overfitting during the model tuning and 

evaluation procedures, we used a nested cross-validation 

strategy [43, 44] with a fourfold inner loop to tune hyper-

parameters and a fourfold outer loop to estimate the 

performance of the algorithms on the training set. Inter-

estingly, we observed the four methods to have broadly 

similar performance, with no classifier clearly outper-

forming the others. �e receiver operating characteristic 

(ROC) curves showed substantial similarity at different 

thresholds of the true positive and false positive rates 

(Fig. 4a). Of note, since the unlabelled set contains both 

positives and negatives, the false positive rate (FPR) is 

overestimated when compared to a standard supervised 

setting [48]. Another way to benchmark these classifiers 

is to look at precision–recall curves (Additional file  2: 

Figure S2A): while the SVM shows slightly lower values, 

the remaining three classifiers display a decent trade-off 

between precision and recall.

We then calculated the following standard perfor-

mance measures for all models: area under the curve 

(AUC), accuracy, precision, recall/sensitivity, specificity 

and F1 score (Fig. 4b). Overall, we observed that all algo-

rithms had comparable and satisfactory accuracy, AUC, 

precision and specificity. �e recall/sensitivity was gener-

ally found to be somewhat lower, possibly highlighting a 

limitation in identifying true positives or simply reflect-

ing the fact that a number of the unlabelled observations 

are actually positives. Of note, the SVM appeared to 

moderately underperform compared to the other algo-

rithms, while the GBM model displayed a slightly better 

overall performance during cross-validation. Accord-

ingly, it also achieved the lowest median misclassification 

error (Additional file 2: Figure S2). We report the mean 

values of all performance measures for the four classifiers 

in Table 1.

Finally, we explored how consistent the predictions 

were across models and observed a high degree of over-

lap. All four algorithms agreed on the classification of the 

majority of the observations in the training set for both 

targets (747, 66.4%, Additional file  3: Figure S3A) and 

non-targets (1149, 75.2%, Additional file 3: Figure S3B).

We have used cross-validation extensively in this study 

because it provides reliable estimates for the test error 

rate without having to resort to data outside of the train-

ing set [12, 43, 44]. However, to further ensure that we 

were not overfitting the models to the training data, we 

evaluated the performances of the four classifiers on an 

independent test set (corresponding to 20% of the obser-

vations in our working dataset) that was not previously 

fed to the learning algorithms.

We found the performance of all models to be consist-

ent with the nested cross-validation results on the train-

ing set, indicating that overfitting did not occur (Table 2). 

�e best performing classifier on the test data was the 

NN: it achieved an AUC of 0.76 and accuracy above 71%, 

meaning that less than 29% of the observations were mis-

classified. �e model featured good precision (0.74) and 

specificity (0.78); on the other hand, the recall/sensitivity 

and the F1 score were lower, but still well above 60% (0.64 

and 0.68, respectively).

Using a neural network to predict drug targets based 

on disease association data

Based on the benchmark results, we selected the bagged 

NN as the classifier with the most balanced overall per-

formance and further explored the results as shown in 

confusion matrices (Table  3). In line with the perfor-

mance measures reported above, we found that the NN 

model was able to identify true positives and true nega-

tives, but also misclassified a proportion of targets as 

non-targets because of a lower sensitivity.

To ensure that our results were not biased by the ran-

dom sampling of non-targets, we used a Monte Carlo 

simulation to select several different subsets of the 

unlabelled data (n  =  10,000) for the training and test 

sets. At each iteration, we created a new training set 

by adding the positive class and trained a NN classifier 

that was then tested on an independent test set (Addi-

tional file  4: Figure S4A, B). We found that the perfor-

mance measures of our classifier were largely unaffected 

by the random sampling step (mean accuracy  =  0.69, 

standard deviation = 0.02; mean AUC = 0.75, standard 

deviation = 0.02).

�e 1421 known targets utilised in the training and test 

set were further explored at this stage. Considering both 

training and testing, 875 genes (61.6%) were correctly 

predicted as targets while the remaining 546 (38.4%) were 

predicted as non-targets (Table 3). We set out to under-

stand whether there was any difference between these 

two groups based on how advanced the targets were in 

the drug discovery pipeline (Fig. 5a).

We observed that many of the targets correctly identi-

fied as such belonged to drugs currently on the market 

(308, 35.2%), while the proportion of launched drugs for 

predicted non-targets was much lower (117, 21.4%). A 

similar trend was observed for programmes currently in 

phase II and III clinical trials; conversely, targets in ear-

lier phases were more equally distributed among the two 
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Fig. 4 Estimated performance measures of trained classifiers as assessed by nested cross-validation on the training set. a Receiver operating char-

acteristic curves. b Box plots showing distributions of the following measures for the four algorithms: AUC, accuracy; F1 measure, precision, recall/

sensitivity and specificity
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classes. We confirmed this by using logistic regression 

and found significant differences for the following stages: 

launched (p  =  4.97e−19), pre-registration (p  =  0.02), 

phase III clinical trial (p = 3.30e−4) and phase II clinical 

trial (p = 2.25e−4). �ese results suggest that therapeu-

tic targets more advanced in the drug discovery pipeline 

show clearer differences and thus appear more straight-

forward to discriminate.

We also asked whether this model was capable of pre-

dicting failed targets by examining what we predicted 

as non-targets and the number of drugs that were sus-

pended or discontinued during development or with-

drawn from the market (Fig. 5b). We found that the total 

number of predicted non-targets belonging to discon-

tinued programmes (113) was significantly higher than 

the number of predicted targets (56; logistic regression 

p  =  1.74e−5), suggesting that our model is—to some 

extent—able to discriminate between targets that will or 

will not fail during development.

Finally, we used the model to make predictions on 

all the remaining 15,262 unlabelled observations not 

included in the training or test sets, and ranked them by 

their probability of being a drug target (Additional file 5: 

Table S1). By default, all observations with probability 

higher than 0.5 of being a target are classified as such. In 

an effort to reduce the number of false positives in our 

predictions, we applied a more stringent probability cut-

off of 0.9, which resulted in 1431 genes being predicted 

as novel targets according to their disease association 

profile.

Literature text mining validates predictions of novel 

targets

�e purpose of performing cross-validation or using a 

test set is to assess the performance of a classifier and 

validate its predictions using previous knowledge. How-

ever, an intrinsic limitation of these methods is that the 

same type of data (albeit not the same data) is used for 

validating the approach. �us, we utilised the scientific 

literature as an external source of validation by retriev-

ing suggested drug targets from published articles and 

checking what proportion of these we were predict-

ing with our model. Specifically, we searched for occur-

rences of a gene or protein being flagged as a (potential) 

therapeutic target in titles and abstracts on MEDLINE 

and found 25,603 such instances, corresponding to 4413 

unique genes (Additional file 6: Table S2). From this set, 

we removed all genes included in the training and test 

set and calculated the overlap with the NN predictions 

(Fig.  6). We found 590 genes in common between the 

two sets, a highly significant proportion as assessed by 

Fisher’s exact test (p = 5.05e−172, odds ratio = 5.78). To 

exclude that this result could be due to random chance, 

we computed 10,000 random permutations and calcu-

lated p values and odds ratios using the same statistical 

Table 1 Mean training set performance measures for all classi�ers estimated by nested cross-validation

Classi�er Misclassi�cation error Accuracy AUC Sensitivity/recall Speci�city Precision F1 score

RF 0.302 0.698 0.761 0.596 0.802 0.753 0.665

NN 0.303 0.697 0.758 0.610 0.785 0.742 0.670

SVM 0.317 0.683 0.733 0.592 0.775 0.729 0.652

GBM 0.297 0.703 0.752 0.637 0.771 0.738 0.683

Table 2 Test set performance measures for all classi�ers

Classi�er Misclassi�cation error Accuracy AUC Sensitivity/recall Speci�city Precision F1 score

RF 0.290 0.710 0.761 0.645 0.771 0.727 0.683

NN 0.287 0.713 0.763 0.638 0.784 0.736 0.683

SVM 0.296 0.704 0.747 0.594 0.808 0.745 0.661

GBM 0.294 0.706 0.750 0.649 0.760 0.719 0.682

Table 3 Confusion matrices for the neural network model

Predicted: non-target Predicted: target Sum

A. Training set (nested cross-validation)

 Actual: non-target 886 243 1129

 Actual: target 446 699 1145

 Sum 1332 942 2274

B. Test set

 Actual: non-target 229 63 292

 Actual: target 100 176 276

 Sum 329 239 568
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test. Neither of these values came close to the results 

obtained with the original data (Additional file 7: Figure 

S5A, B). �ese results serve as an external source of vali-

dation of the approach described here and demonstrate 

that the types of disease-association data used in this 

study can be predictive of therapeutic targets with good 

accuracy.

Discussion
We have presented a machine learning approach that is 

able to make accurate predictions of therapeutic targets 

based on the gene–disease association data present in the 

Open Targets platform, demonstrating that disease asso-

ciation is predictive of the ability of a gene or a protein 

to work as a drug target. Importantly, our predictions are 

individual targets, and not target–indication pairs: we 

predict potential therapeutic targets, regardless of the 

intended indication. �ese findings provide the first for-

mal proof that drug targets can be predicted using solely 

disease association data and strengthen the hypothesis 

that establishing unambiguous causative links between 

putative targets and diseases is of paramount importance 

to maximise the chances of success of drug discovery 

programmes [4–7]. Notably, an early discovery in silico 

pipeline able to prioritise candidate targets could lead 

to decreased failures for efficacy reasons at later stages, 

potentially resulting in substantial time and cost savings 

in the drug discovery process [1–4].

�e data collected and made available by Open Targets 

[11] is emerging as a key resource for target identification 

and validation field work. A number of databases of sys-

tematic gene–disease associations existed prior to Open 

Targets, such as the Comparative Toxicogenomics Data-

base [52], DisGeNET [53] and DISEASES [54]. However, 

these initiatives focus on evidence that is either manually 

curated or mined from the literature and lack the breadth 

of data types present in Open Targets. To our knowledge, 

our results provide the first empirical evidence that the 

data hosted on the platform can provide real insights into 

target discovery, rather than just being a collection of 

genes with disease associations.

We acknowledge a potential limitation of our approach 

is the labelling of the classes. First, we do not have a 

pure negative class, which makes a binary classifica-

tion task much more challenging than in a conventional 

Fig. 5 Distribution of targets across different stages of the drug 

discovery pipeline. a Known drug targets predicted as non-targets 

(purple) or targets (green) during training and testing. b Non-targets 

predicted as non-targets (purple) or targets (green) during training, 

testing and prediction

Fig. 6 Validation of target predictions using the scientific literature. 

The Venn diagram shows the overlap between the predicted targets 

from the NN classifier and those retrieved from the literature through 

text mining
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supervised setting: this is because defining bona fide 

unsuccessful targets is extremely difficult, if possible at 

all. When selecting our positive set of targets using the 

Informa Pharmaprojects data [32], we ignored a number 

of categories relating to drug programmes that had been 

suspended or discontinued, as well as drugs that were 

withdrawn from market. However, it is often unclear 

what the reason for failed or abandoned programmes 

is; for example, there could be perfectly viable targets 

whose drugs have been withdrawn from the market for 

commercial reasons, or whose programmes have been 

halted because of changing R&D strategies. Moreover, 

a target that is unsuccessful for a particular indication 

could eventually be successful in a different therapeutic 

area. Second, using an unlabelled set containing both 

negatives and potential positives will invariably affect 

most of the performance measures that are traditionally 

used in standard supervised scenarios. Specifically, the 

number of true positives is going to be underestimated 

[48], which leads to worse precision and sensitivity/

recall estimates. �e latter was found to be considerably 

lower compared to other metrics in our case, and we 

believe this is due at least in part to the underestimation 

of true positives that occurs when noisy negative labels 

are used. Finally, we defined our positive set from drugs 

that are currently on the market or under active devel-

opment in the pharmaceutical industry. In other words, 

we have taken a snapshot of the therapeutic targets we 

know are working at the moment. However, not all of the 

targets that are currently being worked on will be suc-

cessful (i.e.: they will end up with a marketed drug); a 

number of these are indeed destined to fail, which makes 

our positive set not immune from potential misannota-

tions either. Despite these caveats we believe the anno-

tation strategy we used best describes the current target 

landscape in the pharmaceutical industry and makes it 

possible to employ an effective semi-supervised learn-

ing approach. Finally, in terms of performance, a model 

with 71% accuracy is certainly less than ideal. However, 

it is important to emphasise that such an approach could 

already have a significant impact in drug development 

considering the current success rates across the pharma-

ceutical industry [3, 4].

As the size and quality of datasets and the power of 

computing infrastructures increase, applications of 

machine learning are becoming more and more suc-

cessful in biology [55, 56] and genomics [57], and we 

expect more refined machine learning paradigms and 

models coupled with more comprehensive datasets 

to achieve substantially better performance than the 

models presented here. In particular, both the fields 

of computational biology and drug discovery might 

be poised for a deep learning revolution [58–61] and 

a more sophisticated architecture of our feed-forward 

neural network algorithm with additional hidden lay-

ers could already show important performance gains. 

Future developments of the Open Targets platform, with 

more data and potentially more data types added could 

also improve the performance significantly. Notably, in 

an effort to assess the predictive power of gene–disease 

association data, we limited ourselves to the data availa-

ble in the Open Targets platform. Inclusion of functional 

(Gene Ontology, pathways), structural (protein domains) 

or interaction data (protein–protein interactions) is likely 

to have a large impact on the ability to successfully pre-

dict therapeutic targets.

Indeed, these data types have already been reported 

to be good predictors of druggability (intended as the 

ability of a protein to bind to a compound that alters its 

activity with a therapeutic effect), with models achiev-

ing AUC measures between 0.69 and 0.93, depending on 

the approach and data types utilised [62–70]. Similarly, 

gene–disease association data has been used before to 

discover new genes with important roles in disease, with 

precision estimates ranging from 0.61 to 0.84 [64, 71–73]. 

Interestingly, this is another scenario where sourcing 

unambiguous negative examples is challenging and has 

often been framed as a PU learning problem [71–73].

Conversely, our objective was to demonstrate that dis-

ease association data can predict therapeutic targets: 

to our knowledge, this is the first study of its kind. It is 

important to stress that we don’t make any claim regard-

ing the druggability of these targets: we expect them to 

have an interesting disease association profile similar to 

that of existing drug targets, but they may well be cur-

rently undruggable. Besides, the concept of druggability 

is likely to change over the years as newer technologies 

such as RNAi [74] and CRISPR/Cas9 [75] emerge and 

realise their potential in drug discovery.

While this study focuses on prediction, we haven’t 

neglected inference. Despite the fact that the four algo-

rithms we evaluated are well known to be black boxes, 

we utilised a feature importance workflow and observed 

the classification criteria of a simple decision tree to gain 

some insights into what are the characteristics of thera-

peutic targets that are currently being successful.

One of the strengths of the Open Targets platform is 

that it features unbiased genome-wide data for a num-

ber of its data types (germline and somatic DNA muta-

tions, RNA expression). Importantly, the animal model 

data type is a low throughput approach that is likely 

to be biased towards well studied genes, diseases or 
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phenotypes. Arguably, there are more animal models for 

genes that can potentially be therapeutically targeted or 

are currently being progressed as targets, compared to 

the rest of the genome. We believe this can explain, at 

least in part, why the animal model feature in the Open 

Targets data appears to have rich information content 

for discriminating therapeutic targets in our models. 

Although animal models are not always going to ade-

quately translate and be relevant to drug discovery in 

humans [76], our analysis suggests that data on mutant 

mice exhibiting human disease-relevant phenotypes can 

predict therapeutic targets. �is is particularly relevant in 

light of the fact that 40% of programme failures for effi-

cacy reasons are due to either poor linkage between tar-

get and disease or absence of good animal models for the 

disease under investigation [4]. Whether the influence of 

animal model data on drug discovery programmes will 

continue as evidence from primary human cells and pop-

ulations is prioritised (or as more mouse knockouts are 

developed) remains to be seen.

Gene expression data has been utilised broadly in drug 

discovery and development to gain better understanding 

of pathological conditions as well as to test the effect of 

compounds at a genome-wide scale [77, 78]. �e connec-

tivity map approach for drug repositioning for example, 

relies entirely on gene expression data [79]. Our findings 

confirm that altered RNA expression in diseased tissue 

is a key data type defining therapeutic targets that are 

currently on the market or being explored. Similarly, the 

proportion of targets with human genetic evidence was 

recently reported to increase significantly across the drug 

discovery pipeline and it was proposed that progressing 

targets with genetic links to the disease under investiga-

tion could double clinical success rates [7]. �e results 

presented here are in line with these observations as 

genetic association was found to be one of the defining 

characteristics of current and established targets in the 

pharmaceutical industry.

As for the remaining data types we investigated, the 

presence of a gene in a pathway that is altered in disease 

is likely to be relevant, but we are aware that the affected 

pathway data type is currently much less represented in 

the Open Targets platform compared to other data types. 

We also note that somatic mutations are extremely sig-

nificant for oncology indications but their contribution is 

probably diluted when collapsing all evidence at the gene 

level by averaging across indications.

And indeed, we do expect contributions from different 

data types to vary, even considerably, across different dis-

ease areas. It is plausible that some data types could be 

highly predictive of current drug targets in a particular 

disease and be poor predictors in another area. In line 

with this, genetic support varies significantly across 

indications, with metabolic and digestive diseases being 

examples of therapeutic areas having high and low lev-

els of genetic associations with drug targets, respectively 

[7]. We attempted to run our predictive workflow on the 

same data independently on each therapeutic area but 

failed to produce models with decent performance, prob-

ably because of the reduced number of observations (data 

not shown).

Of the known targets we made predictions for, our 

model correctly classified later stage drug targets more 

easily than earlier stages targets. We believe this reflects 

the fact that targets more advanced in the pipeline will 

have more established links with the disease area of inter-

est and are therefore more straightforward to tease apart 

by a classifier. �is is extremely clear for targets with 

launched drugs that invariably exhibit a very strong pro-

file of disease association, something that should be used 

as an imperative guideline as we aim to progress new tar-

gets across the pipeline. �e greater uncertainty of our 

model in classifying preclinical and early clinical data can 

be attributed to the fact that these targets have lower lev-

els of disease associations overall and that indeed some of 

them will fail as they progress through the pipeline. We 

also note that our model predicts as non-targets targets 

associated with drug programmes discontinued during 

development much more often than it predicts them as 

targets, thus reinforcing the notion that putative targets 

with poor disease linkage are more likely to fail in the 

drug discovery pipeline.

We carried out predictions on more than 15,000 pro-

teins that are not currently being pursued by pharma-

ceutical companies (Additional file  5: Table S1). Since 

we only label as positives drug targets that are currently 

on the market or under active investigation, there is a 

chance that we will predict targets that have extensively 

been explored by pharmaceutical companies and have 

failed. �is is indeed the case with some of our top hits 

in the prediction set, such as metalloproteinases (e.g.: 

MMP3, MMP7, MMP10, MMP13, MMP14, MMP20). 

�ese proteins have been thoroughly examined as drug 

targets, predominantly in cancer [80] and arthritis [81]. 

While most clinical programmes failed due to lack of 

specificity or incomplete understanding of the disease 

biology, there is renewed interest in this family of pro-

teins as disease understanding improves significantly 

and new pharmaceutical technologies emerge [82, 83]. 

Our results confirm that several metalloproteinases 

have indeed an attractive profile of disease association, 

presumably very similar to that of more established 
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therapeutic targets. Metalloproteinases, and similar 

targets without current active programmes, could be of 

particular interest from a drug repositioning perspec-

tive. Combining good druggability and promising dis-

ease association profiles, these abandoned targets could 

be tested in new therapeutic areas where compelling 

evidence exists. Another high-scoring hit, BRWD1 is a 

putative chromatin remodelling protein that belongs 

to the bromodomain family [84, 85] and has a role in 

cytoskeleton organisation [86]. Despite a poor func-

tional annotation, multiple mouse models clearly linking 

it to a number of reproductive system conditions exist 

[87, 88]. Of note, bromodomain-containing epigenetic 

regulators are well-studied drug targets across different 

therapeutic areas [89]. We identify several others genes 

that we believe have a potential to become therapeutic 

targets in the future: RAB18 is a small GTPase that could 

be targeted to halt or reduce dengue virus infection [90]; 

blockers of KCNB1, a voltage-gated ion channel, have 

been suggested as hypoglycaemic agents for type II dia-

betes [91–93]; TAB 1, a TGFB downstream effector that 

activates the MAP kinase TAK1 [94], has been validated 

as a triptolide target in macrophages and has promise as 

a therapeutic target for immunoinflammatory indica-

tions [95].

Conclusions
In summary, we exploited the notion that poor linkage 

between targets and diseases correlates with clinical fail-

ure to build a machine learning framework able to make 

accurate predictions of therapeutic targets, exclusively 

using gene–disease association data. Our predictions 

can be considered for further analysis by the wider tar-

get discovery community, whilst remaining mindful that 

true and complete target validation only occurs when 

drugs show efficacy and safety profiles that allow them to 

be marketed and used by patients. We believe that, as an 

industry, we need to focus on clear-cut and unambigu-

ous evidence linking genes and diseases to maximise our 

chances of success; in particular, animal model, genetic 

and gene expression evidence should be among the data 

types driving the target discovery process. Finally, we 

welcome initiatives aimed at the comprehensive annota-

tion of gene–disease relationships such as Open Targets 

that have a real potential to catalyse a more forward-

looking and data-driven target discovery process in the 

years ahead.

Abbreviations

AUC: area under the curve; FPR: false positive rate; GBM: gradient boosting 

machine; GWAS: genome-wide association study; NN: neural network; PU: 

positive unlabelled; RF: random forest; ROC: receiver operating characteris-

tic; SVM: support vector machine; t-SNE: t-distributed stochastic neighbour 

embedding.

Authors’ contributions

EF conceived the initial idea of utilising a machine learning approach to 

identify novel therapeutic targets. ID and PS refined the proposed workflow. 

EF performed the data analysis. EF, ID and PS worked on the interpretation of 

the results. EF wrote the first draft of the manuscript. EF, ID and PS proposed 

changes and additions to the manuscript. All authors read and approved the 

final manuscript.

Author details
1 Computational Biology and Stats, Target Sciences, GSK Medicines Research 

Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK. 2 European Molecular 

Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome 

Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 3 Open Targets, Well-

come Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 

Additional �les

Additional �le 1: Figure S1. Exploratory data analysis of the working 

dataset. (A) Hierarchical clustering using Euclidean distance and Ward’s 

linkage: columns represent features, rows represent genes and are 

coloured according to their label (green: target; purple: non-target); (B) 

Principal Component Analysis: each dot represents a gene and is coloured 

according to its label (green: target, purple: non-target).

Additional �le 2: Figure S2. Estimated performance measures of 

trained classifiers as assessed by nested cross-validation on the training 

set. (A) Precision–recall curves; (B) Box plot showing estimated misclas-

sification errors for the four algorithms, as assessed by nested cross-valida-

tion on the training set.

Additional �le 3: Figure S3. Overlap of predictions across classifiers. 

Venn diagrams showing the relative overlap of (A) predicted targets and 

(B) predicted non-targets for the four algorithms as evaluated by nested 

cross-validation on the training set.

Additional �le 4: Figure S4. Monte Carlo simulation to assess the 

effect of randomly sampling from the unlabelled class on the classifier 

performance. Ten thousands random samples of the unlabelled class were 

aggregated to the positive class and used to train and test a NN classifier. 

Histograms show distributions of (A) accuracy (mean = 0.71, standard 

deviation = 0.02) and (B) AUC (mean = 0.77, standard deviation = 0.02) 

calculated using the test set.

Additional �le 5: Table S1. Prediction results of neural network classifier. 

The first three columns contain gene identifiers, the fourth column is the 

prediction (0: non-target, 1: target), the fifth and sixth columns contain the 

predicted probabilities of being a target or not, respectively.

Additional �le 6: Table S2. Literature text mining results. The first two 

columns contain gene identifiers, the third column contains the PubMed 

ID of the publication where the gene is mentioned as a therapeutic target.

Additional �le 7: Figure S5. Permutation test to assess the significance 

of the literature-based validation. Ten thousands permutations of the 

Fisher’s exact test were run using random labels. Histograms show distri-

butions of (A) p values (mean = 0.41, standard deviation = 0.42) and (B) 

odds ratios (mean = 1.00, standard deviation = 0.08).

http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6
http://dx.doi.org/10.1186/s12967-017-1285-6


Page 14 of 16Ferrero et al. J Transl Med  (2017) 15:182 

Acknowledgements

We would like to thank Gautier Koscielny and Giovanni Dall’Olio for enabling 

or facilitating access to data and software. We are grateful to Jin Yao and Marc 

Claesen for useful discussions on the topic of machine learning. Finally, we 

thank Pankaj Agarwal, Mark Hurle, Steven Barrett and Nicola Richmond for 

their helpful comments on the manuscript.

Competing interests

EF and PS are full-time employees of GSK (GlaxoSmithKline).

Availability of data and materials

The gene–disease association data analysed during the current study is 

publicly available from the Open Targets platform download page (https://

www.targetvalidation.org/downloads/data, version: 2016 Apr). Direct link: 

https://s3-eu-west-1.amazonaws.com/targetvalidation-dumps/16.04_associa-

tion_data.json.gz.

The drug target information used in the current study was collected from 

Informa Pharmaprojects [32]. Restrictions apply to the availability of this data, 

which was used under license for the current study, and so is not publicly 

available.

The datasets supporting the conclusions of this article are included within 

the article (and its additional files).

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

The authors received no specific funding for this work.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 7 July 2017   Accepted: 22 August 2017

References

 1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical 

industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.

 2. Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 

2011–2012. Nat Rev Drug Discov. 2013;12:569.

 3. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, 

Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analy-

sis of the attrition of drug candidates from four major pharmaceutical 

companies. Nat Rev Drug Discov. 2015;14:475–86.

 4. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite 

G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s 

drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 

2014;13:419–31.

 5. Plenge RM. Disciplined approach to drug discovery and early develop-

ment. Sci Transl Med. 2016;8:349ps15.

 6. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets 

through human genetics. Nat Rev Drug Discov. 2013;12:581–94.

 7. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, 

Sham PC, Li MJ, Wang J, Cardon LR, Whittaker JC, Sanseau P. The support 

of human genetic evidence for approved drug indications. Nat Genet. 

2015;47:856–60. doi:10.1038/ng.3314.

 8. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki 

A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny 

JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin 

J, Ye L, Su D-F, Yang J, Xie G, Keystone E, Westra H-J, Esko T, Metspalu A, 

et al. Genetics of rheumatoid arthritis contributes to biology and drug 

discovery. Nature. 2014;506:376–81.

 9. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins 

L, Rice DL, Gutierrez-Achury J, Ji S-G, Heap G, Nimmo ER, Edwards C, 

Henderson P, Mowat C, Sanderson J, Satsangi J, Simmons A, Wilson DC, 

Tremelling M, Hart A, Mathew CG, Newman WG, Parkes M, Lees CW, Uhlig 

H, Hawkey C, Prescott NJ, Ahmad T, Mansfield JC, et al. Genome-wide 

association study implicates immune activation of multiple integrin 

genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61. 

doi:10.1038/ng.3760.

 10. Barrett JC, Dunham I, Birney E. Using human genetics to make new 

medicines. Nat Rev Genet. 2015;16:561–2.

 11. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, 

Hasan S, Karamanis N, Maguire M, Papa E, Pierleoni A, Pignatelli M, Platt 

T, Rowland F, Wankar P, Bento AP, Burdett T, Fabregat A, Forbes S, Gaulton 

A, Gonzalez CY, Hermjakob H, Hersey A, Jupe S, Kafkas Ş, Keays M, Leroy 

C, Lopez F-J, Magarinos MP, Malone J, et al. Open Targets: a platform 

for therapeutic target identification and validation. Nucleic Acids Res. 

2017;45:D985–94.

 12. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical 

learning. 2006.

 13. R Core Team. R: a language and environment for statistical computing. 

2016.

 14. mlr: machine learning in R. https://cran.r-project.org/package=mlr. 

Accessed 24 Aug 2017.

 15. rpart: recursive partitioning and regression trees. https://cran.r-project.

org/package=rpart. Accessed 24 Aug 2017.

 16. Liaw A, Wiener M. Classification and regression by randomForest. R News. 

2002;2:18–22.

 17. Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New 

York: Springer; 2002.

 18. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: misc 

functions of the Department of Statistics, Probability Theory Group 

(Formerly: E1071). Wien: TU Wien. 2015.

 19. Ridgeway G. gbm: generalized boosted regression models. 2015.

 20. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the 

integration of genomic datasets with the R/bioconductor package 

biomaRt. Nat Protoc. 2009;4:1184–91.

 21. Ooms J. The jsonlite package: a practical and consistent mapping 

between JSON data and R objects. arXiv:14032805 [statCO]. 2014.

 22. Wickham H. ggplot2: elegant graphics for data analysis. 2009.

 23. Rtsne: T-distributed stochastic neighbor embedding using Barnes–Hut 

implementation. https://cran.r-project.org/package=Rtsne. Accessed 24 

Aug 2017.

 24. Vennerable: Venn and Euler area-proportional diagrams. https://github.

com/js229/Vennerable. Accessed 24 Aug 2017.

 25. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez-Banet 

J, Billis K, Garcia-Giron C, Hourlier T, Howe KL, Kahari AK, Kokocinski F, Mar-

tin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel J-H, White 

S, Zadissa A, Flicek P, Searle SMJ. The Ensembl gene annotation system. 

Database. 2016;2016(baw09):3.

 26. SciBite DocStore. https://www.scibite.com/products/docstore-semantic-

search/. Accessed 24 Aug 2017.

 27. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, 

Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS cata-

log, a curated resource of SNP-trait associations. Nucleic Acids Res. 

2014;42(Database issue):D1001–6.

 28. Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, 

Antunes R, Arganiska J, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas 

B, Chavali G, Cibrian-Uhalte E, Da Silva A, De Giorgi M, Dogan T, Fazzini 

F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge 

D, Liu W, Luo J, Macdougall A, Mutowo P, et al. UniProt: a hub for protein 

information. Nucleic Acids Res. 2015;43:D204–12.

 29. European Variation Archive. http://www.ebi.ac.uk/eva. Accessed 24 Aug 

2017.

 30. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding 

M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, 

McDermott U, Campbell PJ. COSMIC: exploring the world’s knowledge of 

somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–11.

 31. Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov 

N, Zhukova A, Brazma A, Parkinson H. Modeling sample variables with an 

experimental factor ontology. Bioinformatics. 2010;26:1112–8.

https://www.targetvalidation.org/downloads/data
https://www.targetvalidation.org/downloads/data
https://s3-eu-west-1.amazonaws.com/targetvalidation-dumps/16.04_association_data.json.gz
https://s3-eu-west-1.amazonaws.com/targetvalidation-dumps/16.04_association_data.json.gz
http://dx.doi.org/10.1038/ng.3314
http://dx.doi.org/10.1038/ng.3760
https://cran.r-project.org/package%3dmlr
https://cran.r-project.org/package%3drpart
https://cran.r-project.org/package%3drpart
http://arxiv.org/abs/14032805
https://cran.r-project.org/package%3dRtsne
https://github.com/js229/Vennerable
https://github.com/js229/Vennerable
https://www.scibite.com/products/docstore-semantic-search/
https://www.scibite.com/products/docstore-semantic-search/
http://www.ebi.ac.uk/eva


Page 15 of 16Ferrero et al. J Transl Med  (2017) 15:182 

 32. Informa Pharmaprojects. https://pharmaintelligence.informa.com/

products-and-services/data-and-analysis/pharmaprojects. Accessed 24 

Aug 2017.

 33. Van Der Maaten LJP, Hinton GE. Visualizing high-dimensional data using 

t-sne. J Mach Learn Res. 2008;9:2579–605.

 34. Murtagh F, Legendre P. Ward’s hierarchical agglomerative cluster-

ing method: which algorithms implement Ward’s criterion? J Classif. 

2014;31:274–95.

 35. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

 36. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

 37. Haykin SS. Neural networks : a comprehensive foundation. Upper Saddle 

River: Prentice Hall; 1999.

 38. Friedman JH. Greedy function approximation: a gradient boosting 

machine. Ann Stat. 2001;29:1189–232.

 39. Freund Y, Schapire RE. A decision-theoretic generalization of on-

line learning and an application to boosting. J Comput Syst Sci. 

1997;55:119–39.

 40. Mordelet F, Vert JP. A bagging SVM to learn from positive and unlabeled 

examples. Pattern Recognit Lett. 2014;37:201–9.

 41. Claesen M, De Smet F, Suykens JAK, De Moor B. A robust ensemble 

approach to learn from positive and unlabeled data using SVM base 

models. 2015;160:73–84. doi:10.1016/j.neucom.2014.10.081.

 42. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40.

 43. Cawley GC, Talbot NLC. On over-fitting in model selection and sub-

sequent selection bias in performance evaluation. J Mach Learn Res. 

2010;11:2079–107.

 44. Bischl B, Mersmann O, Trautmann H, Weihs C. Resampling methods for 

meta-model validation with recommendations for evolutionary compu-

tation. Evol Comput. 2012;20:249–75.

 45. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, 

Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Over-

ington JP. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 

2014;42(Database issue):D1083–90.

 46. Chapelle O, Schölkopf B, Zien A, others. Semi-supervised learning, vol. 2. 

Cambridge: MIT Press; 2006.

 47. Li X, Liu B. Learning to classify texts using positive and unlabeled data. 

In: IJCAI international joint conference on artificial intelligence. 2003. p. 

587–92.

 48. Claesen M, Davis J, De Smet F, De Moor B. Assessing binary classifiers 

using only positive and unlabeled data. arXiv Prepr. 2015.

 49. Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, 

Campbell H, Wright AF, Wilson JF, Agakov F, Navarro P, Haley CS. Applica-

tion of high-dimensional feature selection: evaluation for genomic 

prediction in man. Sci Rep. 2015;5:10312.

 50. Cheng T, Wang Y, Bryant SH. FSelector: a Ruby gem for feature selection. 

Bioinformatics. 2012;28:2851–2.

 51. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

 52. Mattingly CJ, Colby GT, Forrest JN, Boyer JL. The comparative toxicog-

enomics database (CTD). Environ Health Perspect. 2003;111:793.

 53. Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, 

Baron M, Sanz F, Furlong LI. DisGeNET: a discovery platform for the 

dynamical exploration of human diseases and their genes. Database. 

2015;2015:bav028.

 54. Pletscher-Frankild S, Pallej A, Tsafou K, Binder JX, Jensen LJ. DISEASES: 

text mining and data integration of disease–gene associations. Methods. 

2015;74:83–9.

 55. Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S. Machine learning and its 

applications to biology. PLoS Comput Biol. 2007;3:e116.

 56. Sommer C, Gerlich DW. Machine learning in cell biology—teaching 

computers to recognize phenotypes. J Cell Sci. 2013;126(Pt 24):5529–39.

 57. Libbrecht MW, Noble WS. Machine learning applications in genetics and 

genomics. Nat Rev Genet. 2015;16:321–32.

 58. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for compu-

tational biology. Mol Syst Biol. 2016;12:878. doi:10.15252/msb.20156651.

 59. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol 

Inform. 2016;35:3–14.

 60. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep 

learning in biomedicine. Mol Pharm. 2016;13(5):1445–54. doi:10.1021/acs.

molpharmaceut.5b00982.

 61. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 

2016:bbw068. doi:10.1093/bib/bbw068.

 62. Mitsopoulos C, Schierz AC, Workman P, Al-Lazikani B. Distinctive 

behaviors of druggable proteins in cellular networks. PLoS Comput Biol. 

2015;11:e1004597.

 63. Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E. DrugMiner: 

comparative analysis of machine learning algorithms for prediction of 

potential druggable proteins. Drug Discov Today. 2016;21:718–24.

 64. Costa PR, Acencio ML, Lemke N. A machine learning approach for 

genome-wide prediction of morbid and druggable human genes based 

on systems-level data. BMC Genom. 2010;11(Suppl 5):S9.

 65. Zhu M, Gao L, Li X, Liu Z, Xu C, Yan Y, Walker E, Jiang W, Su B, Chen X, Lin 

H. The analysis of the drug-targets based on the topological proper-

ties in the human protein–protein interaction network. J Drug Target. 

2009;17:524–32.

 66. Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, Moffat J, Kim PM. A 

systematic approach to identify novel cancer drug targets using machine 

learning, inhibitor design and high-throughput screening. Genome Med. 

2014;6:57.

 67. Li Z-C, Zhong W-Q, Liu Z-Q, Huang M-H, Xie Y, Dai Z, Zou X-Y. Large-

scale identification of potential drug targets based on the topological 

features of human protein–protein interaction network. Anal Chim Acta. 

2015;871:18–27.

 68. Laenen G, Thorrez L, Börnigen D, Moreau Y. Finding the targets of a 

drug by integration of gene expression data with a protein interaction 

network. Mol Biosyst. 2013;9:1676–85.

 69. Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, 

Bessarabova M. Drug target prediction and repositioning using an inte-

grated network-based approach. PLoS ONE. 2013;8:e60618.

 70. Yao L, Rzhetsky A. Quantitative systems-level determinants of human 

genes targeted by successful drugs. Genome Res. 2008;18:206–13.

 71. Yang P, Li XL, Mei JP, Kwoh CK, Ng SK. Positive-unlabeled learning for 

disease gene identification. Bioinformatics. 2012;28:2640–7.

 72. Mordelet F, Vert J-P. ProDiGe: prioritization of disease genes with multitask 

machine learning from positive and unlabeled examples. BMC Bioinform. 

2011;12:389.

 73. Yang P, Li X, Chua H-N, Kwoh C-K, Ng S-K. Ensemble positive unlabeled 

learning for disease gene identification. PLoS ONE. 2014;9:e97079.

 74. Zuckerman JE, Davis ME. Clinical experiences with systemically 

administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 

2015;14:843–56.

 75. Luo J. CRISPR/Cas9: from genome engineering to cancer drug discovery. 

Trends Cancer. 2016;2(6):313–24. doi:10.1016/j.trecan.2016.05.001.

 76. Rice J. Animal models: not close enough. Nature. 2012;484:S9.

 77. Chengalvala MV, Chennathukuzhi VM, Johnston DS, Stevis PE, Kopf GS. 

Gene expression profiling and its practice in drug development. Curr 

Genom. 2007;8:262–70.

 78. Bai JPF, Alekseyenko AV, Statnikov A, Wang I-M, Wong PH. Strategic 

applications of gene expression: from drug discovery/development to 

bedside. AAPS J. 2013;15:427–37.

 79. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, 

Brunet J-P, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, 

Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub 

TR. The connectivity map: using gene-expression signatures to connect 

small molecules, genes, and disease. Science. 2006;313:1929–35.

 80. Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug tar-

gets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39.

 81. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in 

arthritis. Front Biosci. 2006;11:529–43.

 82. Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in 

cancer: bringing new life to old ideas. Genes Dis. 2015;2:26–34.

 83. Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix 

metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–27.

 84. Ramos VC, Vidal-Taboada JM, Bergoñon S, Egeo A, Fisher EMC, Scartezzini 

P, Oliva R. Characterisation and expression analysis of the WDR9 gene, 

located in the Down critical region-2 of the human chromosome 21. 

Biochim Biophys Acta Gene Struct Expr. 2002;1577:377–83.

 85. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-

Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrow-

smith CH, Knapp S. Histone recognition and large-scale structural analysis 

of the human bromodomain family. Cell. 2012;149:214–31.

 86. Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavan-

shi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and 

https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/pharmaprojects
https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/pharmaprojects
http://dx.doi.org/10.1016/j.neucom.2014.10.081
http://dx.doi.org/10.15252/msb.20156651
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982
http://dx.doi.org/10.1093/bib/bbw068
http://dx.doi.org/10.1016/j.trecan.2016.05.001


Page 16 of 16Ferrero et al. J Transl Med  (2017) 15:182 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

characterization of a set of conserved and new regulators of cytoskeletal 

organization, cell morphology and migration. BMC Biol. 2011;9:54.

 87. Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schi-

menti K, Handel M, Eppig JJ, Schimenti JC. The dual bromodomain and 

WD repeat-containing mouse protein BRWD1 is required for normal sper-

miogenesis and the oocyte-embryo transition. Dev Biol. 2008;317:72–82.

 88. Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, de La 

Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcrip-

tion and female meiotic chromosome stability. J Cell Biol. 2015;208:53–69.

 89. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers 

of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.

 90. Tang W-C, Lin R-J, Liao C-L, Lin Y-L. Rab18 facilitates dengue virus infec-

tion by targeting fatty acid synthase to sites of viral replication. J Virol. 

2014;88:6793–804.

 91. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as thera-

peutic targets. Nat Rev Drug Discov. 2009;8:982–1001.

 92. Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammälä CE, Philipson L. 

Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing 

insulin secretion. Cell Metab. 2007;6:229–35.

 93. Dai X-Q, Kolic J, Marchi P, Sipione S, Macdonald PE. SUMOylation regu-

lates Kv2.1 and modulates pancreatic beta-cell excitability. J Cell Sci. 

2009;122(Pt 6):775–9.

 94. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie 

K, Nishida E, Matsumoto K. TAB 1: an activator of the TAK1 MAPKKK in TGF-

beta signal transduction. Science. 1996;272:1179–82.

 95. Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, Li J, Shen P. TAB 1: a target of 

triptolide in macrophages. Chem Biol. 2014;21:246–56.


	In silico prediction of novel therapeutic targets using gene–disease association data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Software
	Data processing
	Model training and testing
	Text mining

	Results
	Targets and non-targets appear as distinct on a two-dimensional space
	Assessing feature importance and classification criteria
	Different learning algorithms can predict therapeutic targets with good accuracy
	Using a neural network to predict drug targets based on disease association data
	Literature text mining validates predictions of novel targets

	Discussion
	Conclusions
	Authors’ contributions
	References


