
INEQUALITIES FOR A SYMMETRIC ELLIPTIC INTEGRAL1
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Abstract. Inequalities are found for an incomplete elliptic inte-

gral of the first kind which represents the reciprocal of the capacity

of an ellipsoid with semiaxes x, y, z. One sequence of symmetric

algebraic functions of x, y, z converges to the value of the integral

from below and two from above. Among the elements of these se-

quences are upper and lower approximations due to P61ya and

Szego.

1. Introduction and summary. Let x, y, z be positive numbers and

define

(1.1) R = — f   [(t + x2)(t + y2)(t + z2)]-1'2^.
2 J o

The electric capacity of a conducting ellipsoid with semiaxes x, y, z

is 1/R [l]. In terms of Legendre's elliptic integral F(<j>, k) and the

symmetric elliptic integral RF(x, y, z) [2], we have

r x    (z2 - rY/2l
(1.2) R = RF(x2,y2,z2) = (z2-x2)-1'2F\ cos-1 —, I--)     \.

L Z     \z2 — x2/    J

It is useful for numerical and analytical purposes to approximate

R by an algebraic function, preferably one which, like R itself, is

symmetric and homogeneous of degree — 1 in x, y, z and has the value

unity if x=y = z = l. Some possible candidates are

« = 3/2>/« > /» = (3/ E *2)1/2>      y = (3/Z xy)1",

8 = 3/ £ (xy)1'2, e = (xyz)-™, f = \ £ 1/x,

(1.3) 7 = (jZl/*2)x/2,        * = *£*/>*» ai = 3/E*'

=_2_^        =(—Y 1 V'2
£l      [ix + y)iy+z)iz + x)}^ '    *     V 3 ^ (x + y)(x+z) /    '

2 1 6

3 * + y E[(* + y)(* + «)]1'1
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where E denotes a summation over the three cyclic permutations of

x, y, z.

We henceforth exclude the case x=y=z. In 1917 Polya [3] stated

the inequality

(1.4) a< R<0

in a problem. The solution given by Szego [4] showed further that

(1.5) a<B<R<€<v<e.

Indeed, R<e is a special case of Poincare's theorem [5] that a sphere

has a smaller capacity than any other conductor of the same volume.

In 1945 Polya and Szego [l] proved a still sharper inequality,

(1.6) ai < R < 5.

It has recently been shown [6] by W. H. Greiman that

(1.7) en < R < ei

and by Carlson [7] that ei<8.

Let a„, ■ • • , 8„ denote the result of replacing x, y, z in the expres-

sions for a, • ■ • , 6 by xn, yn, z„, where

xo = x,       y0 = y,       z0 = z,

(Xn + yn    Xn+Zn\}12 (yn+Zn   yB + *B\1/2

a.s) *"+i = (n—2~) '   yn+i={———) '

/Zn + Xn   Zn + yn\in

Zn+1 = ( -~- )      . » = 0, 1, 2, • • • .

Thus «i, €i, 171, 61, a2 have the values given in (1.3). In the present note

we prove that if n ^ 2

(1.9) a < B < cti < Bi < ■ ■ ■ < *n < Bn < R,

(1.10) R < f. < r,n < 6n < ■ ■ ■ < fi < vi < 0! < r < v < 0,

R < yn  < Sn < Cn < i~n  < Vn  <   •  •  •

< Ti < Si < 61 < f 1 < 771 < 7 < S < t < f < 17.

These inequalities contain all the results quoted earlier, and 8n, fB,

and y„ approach R as n—»a>. Two sequences of upper bounds are

given because 0B+i is not comparable with yn, o„, or eB. The inequali-

ties tend to be sharp when the ratios of x, y, and z are close to unity.

One reasonable compromise between accuracy and algebraic sim-

plicity is a2<i?<«i, i.e.
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Z[ix + ^ + 2)]m<^j;[(l + x2)(t + y2)(t+z2)]^dt

(1.12) 2

" [(* + y)(y + z)(z + *)]1/3 '

For example,  in  the case x=l,  y = 2,  z = 3,  R = 0.5086446 • • • ,

Equations (1.5), (1.6) and (1.12) yield

(1.5') 0.37 < 0.46 < R < 0.55 < 0.67 < 0.78,

(1.6') 0.500 < R < 0.536,

(1.12') 0.5081 < R < 0.5109.

Inequalities for inverse circular and hyperbolic functions follow

from

Rr(x2, 1, 1) = (1 - X2)"1'2 cos-1 x,        0 S x < 1,

RF(x2, 1, 1) = (x2 - l)-1'2 cosh-1 x, x > 1.

For example (1.12) implies

6(1 - x)1'2 22'3(1 - x)1'2
(1.14)     - < cos"1 x <-,        0 < x < 1.

2V2 + (1 + x)1'* (1 + x)1"

The ratio of the third member to the first increases monotonically

from 1 at x = l to 1.013 at x = 0.
If exactly one of the numbers x, y, z is zero, then e, f, 77, and 0 are

infinite but the inequalities between finite quantities remain valid.

However, R is then a complete elliptic integral for which inequalities

preferable to (1.12) can readily be obtained from Gauss' algorithm

of the arithmetic-geometric mean [2, Equation (5.3)], e.g.

(2        \2       2 /    2    \1/2
_^  <_*,(»., ,.,0) <(*,)-«(—)    ,

(1.15)
(x > 0, y > 0, x ^ y).

Some inequalities for integrals more general than (1.1), including

the capacity and surface area of ellipsoids in n dimensions, are given

in [8]. Some unsymmetrical nonalgebraic upper and lower bounds for

(1.1) can be deduced from [9].

2. Lower bounds. We shall sharpen an inequality such as (1.5) by

successive applications of the duplication theorem for elliptic inte-

grals. This theorem has been used for iterative computation of R [10],

but the quantities encountered in the iteration are not completely
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symmetric in x, y, z. Besides the duplication theorem we shall use

only two elementary results. First, the harmonic mean, the geometric

mean, the arithmetic mean, and the root-mean-square form an in-

creasing sequence. Second, Maclaurin's inequality for elementary

symmetric functions states that

/ab + bc+caV-'2      a + b + c
(2.1) iabcyi><{-j     <-

provided the positive numbers a, b, c are not all equal. With a=x2,

b=y2, c=z2, and t>0, (2.1) implies

/       x2 + y2 + z2\3
it + ixyz)2^y <(t+ x2)(t + y2)(t + z2) < It +-—-J ,

as observed in [4]. Substituting in (1.1) we have

(2.2) B < R < f,

a result which follows also from [8, Theorem 2].

Continuing to exclude the case x=y = z, we note that a<8 is im-

plied by the identity

<-) h-e®*+2£*<-3i>4i>e-fy.
Another proof, given in [4], consists in applying (2.1) to (a, b, c)

= (yz/x, zx/y, xy/z). Furthermore the inequality of the arithmetic

mean and the root-mean-square implies 8<ai. Since a<8<ai implies

a„<p\,<an+i by substitution of xn, yn, z„ for x, y, z, we have

(2.4) a < B < <xi < Bi < a2 < /32 < • • • .

The duplication theorem for elliptic integrals [lO], [6] states that

Rp{Xn, yt, z„) is independent of n. Taken with (2.2) this implies

(2.5) Bn < R < e„,       n = 0, 1, 2, ■ • • .

From (2.4) and (2.5) we deduce (1.9). Moreover, xn, yn, and z„ ap-

proach the common limit 1/R as n—*°o [lO], and it follows that Bn

and e„ approach R.

3. Upper bounds. We observe first that y<d<e<^<n<6. The

inequality of the arithmetic mean and the root-mean-square shows

that 7<5 and f <w, the inequality of the geometric and arithmetic

means shows that 8<e, and the inequality of the harmonic and

geometric means shows that e<f. We deduce n<9 from the identity
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9e2-9r,2=E^ + 2E4-32 4
y2Z2 X2 X2

(3.1) y

2 xl\z       y /

or alternatively, as in [4], by applying (2.1) to (0, b, c) = (x/yz, y/zx,

z/xy).

Now 81 is not comparable with 7, S, or e because 0i<7<5<e if

x<£y = z whereas 7<5<e<0i if x=y<£z. However, we may conclude

that 6i <f from the identity

^1/1        1 \       ^      2 1  ^    (x- y)2

(3.2) 3f-39i=ET(- + -)-Z-—-=-E    \     !\2 \x       y / x + y       2 xy(x + y)

or alternatively from Minkowski's inequality [ll, p. 30] for the har-

monic mean. Now di<$<r)<6 implies 6n+i<tn<yn<0n and hence

(3.3) • • • < f, < r,2 < 02 < fi < 771 < 0i < i < 77 < 8.

Since i?<eB<fB by (2.5), we have proved (1.10).

To prove 771 <y we use the inequality of the arithmetic and geo-

metric means to show that

(3.4) (E x)(2Z xj) > 3(xyzy* 3(xyz)2l3 = 9xyz

and hence

(3.5) (x + y)(y + z)(z + x) = (E*)(2>X> - xyz > -|-(E*)(E*y).

It follows that

«       *-*+£'«,+*<&-*

Now 77i<7<S<e<f <77 implies 77„+i<7,,<SB<€„<£"„<77,, and hence

• • •  < 72 < S2 < e2 < f2 < »?2 < 7i < Si < ei < fi < 771

<7<5<£<f<77.

From (2.5) and (3.7) we deduce (1.11).
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