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Abstract. We report here that both KB-dependent 

transactivation of a reporter gene and NF-KB activation 

in response to tumor necrosis factor (TNFc 0 or H202 

treatments are deficient in human T47D cell transfec- 

tants that overexpress seleno-glutathione peroxidase 

(GSHPx). These cells feature low reactive oxygen spe- 

cies (ROS) levels and decreased intracellular ROS 

burst in response to TNFot treatment. Decreased ROS 

levels and NF-KB activation were likely to result from 

GSHPx increment since these phenomena were no 

longer observed when GSHPx activity was reduced by 

selenium depletion. The cellular contents of the two 

NF-KB subunits (p65 and p50) and of the inhibitory 

subunit IKB-a were unaffected by GSHPx overexpres- 

sion, suggesting that increased GSHPx activity inter- 

fered with the activation, but not the synthesis or stabil- 

ity, of NF-KB. Nuclear translocation of NF-KB as well 

as IKB-ot degradation were inhibited in GSHPx-overex- 

pressing cells exposed to oxidative stress. Moreover, in 

control T47D cells exposed to TNFa,  a time correlation 

was observed between elevated ROS levels and IKB-ot 

degradation. We also show that, in growing T47D cells, 

GSHPx overexpression altered the isoform composi- 

tion of IKB-et, leading to the accumulation of the more 

basic isoform of this protein. GSHPx overexpression 

also abolished the TNFe~-mediated transient accumula- 

tion of the acidic and highly phosphorylated IKB-et iso- 

form. These results suggest that intracellular ROS are 

key elements that regulate the phosphorylation of IKB- 

~, a phenomenon that precedes and controls the degra- 

dation of this protein, and then NF-KB activation. 

T rtE transcription factor NF-KB plays a pivotal role in 
the regulation of a wide variety of cellular genes, 
particularly those involved in immune and inflam- 

matory responses, and also participates in the regulation 
of viral promoters, including the human immunodefi- 
ciency virus long terminal repeat (HIV-1 LTR) (3, 7, 29, 
51, 66). Five different subunits of NF-KB have been de- 
scribed that can homo- and heterodimerize (21, 53). These 
polypeptides belong to the rel family of transcription fac- 
tors, and the more frequent and therefore prototypical 
form of NF-KB is a heterodimer complex containing the 
p50 and p65/RelA subunits (6, 11, 28, 59, 67). Unlike most 
transcription factors, these proteins reside in the cyto- 
plasm in a latent form and must therefore translocate into 
the nucleus to function (5). In unstimulated cells, the nu- 
clear import of the NF-KB DNA-binding dimer p65/RelA- 
p50 is prevented by high-affinity association of the p65/ 
RelA subunit with a cytoplasmic inhibitor called IKB (4, 
13, 57, 71). The inhibitory subunit IKB belongs also to a 
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family of distinct proteins (62) and interacts, through its 
ankyrin-like repeats, with the nuclear localization signals 
of p50 and p65/RelA (9, 34). The prototypical IKB protein 
involved in cytoplasmic retention of NF-KB dimers is IKB-a, 
encoded by the MAD-3 gene (32). The inactive NF-KB- 
IKB-ot complexes are dissociated in response to a variety 
of extracellular stimuli, thereby allowing free NF-KB 
dimers to translocate to the nucleus and activate transcrip- 
tion of genes containing KB regulatory elements. Phospho- 
rylation of IKB-ot is required for NF-KB activation (10, 27, 
35) but does not induce IKB dissociation from the inactive 
NF-KB-IKB-ot complex (20, 25, 39). This complex is more 
probably disrupted because of the selective degradation of 
phosphorylated IKB-a in response to extracellular signals 
(14, 33, 44). Recently, it has been shown that IKB-a turn- 
over was regulated by phosphorylation at serine residues 
32 and 36 (12, 14, 74). A multiprotease complex, the pro- 
teasome (2, 22), as well as I KB-a ubiquitination, is in- 
volved in this process (16, 37, 56, 74, 75). Stimulation results 
in a rapid loss of IKB-t~ and the rapid nuclear translocation 
of NF-KB. Transactivation by this factor, in turn, induces 
high levels of IKB-a synthesis that probably restore the un- 
stimulated inhibited state (1, 13, 17, 71). The proteasome 
also appears involved in the proteolytic processing of p50 
from a 105-kD precursor protein (p105) (24, 44, 45). 
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Transcription factors are usually activated by a re- 
stricted number of specific extracellular stimuli. In con- 
trast, NF-KB is activated by an extraordinarily large num- 
ber of conditions and agents (3, 7, 29, 73). Of great interest 
was the discovery that most inducers of NF-KB seem to 
rely on the production of intracellular reactive oxygen spe- 
cies (ROS) 1 as evidenced by the inhibitory effect of sev- 
eral antioxidants, including N-acetylcysteine (63, 70) and 
the activation induced by hydrogen peroxide (63). ROS in- 
clude superoxide radicals (O2"-/.O2H), hydrogen peroxide 
(H202), organic hydroperoxides, and hydroxyl radical 
(OH-). Eukaryotic cells produce ROS continuously as side 
products of the mitochondrial electron transfer chain reac- 
tions (31), but also upon exposure to different stimuli that 
can activate NF-KB, including UV light, hydrogen perox- 
ide, and inflammatory cytokines, such as tumor necrosis 
factor t~ (TNFet) and interleukin 1 (18, 19, 43, 64). 

The intracellular balance between ROS formation and 
detoxification is regulated by nonenzymatic as well as en- 
zymatic defenses. In mammalian cells, major antioxidant 
enzymes include superoxide dismutases (SOD), catalase, 
and a family of selenium-dependent glutathione peroxi- 
dases (68). In addition to the classical seleno-glutathione 
peroxidase (GSHPx) (26), which can reduce H202 and a 
variety of organic hydroperoxides in the presence of glu- 
tathione, this family of enzymes includes a plasmatic, a 
gastrointestinal, and a phospholipid hydroperoxide glu- 
tathione peroxidase. In the cytoplasm and in the mito- 
chondria, H202 is mainly detoxified by GSHPx; catalase, 
which has a much higher Michaelis Menten constant (Km) 
for H202 than GSHPx, is found predominantly in peroxi- 
somes. GSHPx is a homotetramer, and each subunit con- 
tains one selenocysteine residue in its active site (40). In 
higher eukaryotes, selenium (Se) is a trace element that is 
essential for the activity of these glutathione peroxidases. 
Lowering Se cellular contents, either in vivo by dietary 
manipulations or in vitro by using selenium-deprived 
growth media, decreased the selenoperoxidase-mediated 
cytoprotection against oxidative stress (26, 69, 72). On the 
other hand, cells grown in selenium-supplemented growth 
media showed increased GSHPx activity that resulted in a 
decreased NF-KB activation by oxidative stress and re- 
duced HIV-1 reactivation in HIV-1 latently infected T 
lymphocytes exposed to oxidative stress (60). Moreover, 
Se deficiency that results in reduced glutathione peroxi- 
dase activities has been detected in HIV-infected patients 
(23, 54), suggesting that, in vivo, Se levels may be an im- 
portant determinant of the progression and pathology of 
AIDS. 

Until recently, most studies aimed to demonstrate a link 
between NF-KB activation and ROS were performed with 
chemicals and antioxidants that were often used at very 
high inhibitory doses and not devoid of possible side ef- 
fects. To overcome this problem, Schmidt et al. (61) used 
cell lines that overexpress SOD or catalase to modulate in- 
tracellular ROS levels. These authors pointed out the es- 
sential role of ROS, probably H 2 0 2 ,  in NF-KB activation. 

1. Abbreviat ions used in this paper: DOC, sodium desoxycholate; EB, 
ethidium bromide; ECL, enhanced chemiluminescence; GSHPx, seleno- 
glutathione peroxidase; HE, hydroethidine; ROS, reactive oxygen species; 
SOD, superoxide dismutase; TNFa, tumor necrosis factor a. 

In the present study, the overexpression of glutathione 
peroxidase was used to further demonstrate the implica- 
tion of ROS in NF-KB activation by hydrogen peroxide 
and TNFa. To this end, human breast carcinoma T47D 
cells, which are characterized by low endogenous GSHPx 
levels, were stably transfected with a cDNA gene encoding 
human GSHPx (49, 50). GSHPx overexpression induced 
oxidoresistance status and decreased intracellular ROS 
levels. Here, we show that the overexpression of GSHPx 
abolished NF-KB-IKB-et activation by TNFot or hydrogen 
peroxide. This phenomenon was characterized, in vitro, by 
an inhibition of NF-~B DNA-binding activity and, in live 
cells, by a strong decrease in NF-KB nuclear translocation, 
IKB-c~ phosphorylation and subsequent degradation, and 
KB-dependent transcription. Moreover, a time correlation 
was observed between the TNFa-mediated intracellular 
burst of ROS and I~B-a degradation. The data presented 
suggest that IKB-ot phosphorylation and subsequent degra- 
dation are controlled by intracellular ROS levels. 

Materials and Methods 

Cell Cultures 

The transfectant derivatives HCMV-GSHPx-2 and T47D-Hygro-3 of hu- 

man breast T47D cell line have been described elsewhere (49, 50). The 
names of these cells were abbreviated in T47D-GPx and T47D-Hygro 

cells. Cells were grown at 37°C in the presence of 5% COz in Hepes-buff- 
ered RPMI medium (Sigma Chimie, St. Quentin Fallavier, France) sup- 

plemented with 10% FCS (GIBCO BRL, Cergy Pontoise, France), 0.1 I~M 
fresh sodium selenite, 2 mM L-glutamine, 0.5 ~g/ml insulin, 100 U/ml peni- 

cillin, and 0.1 mg/ml streptomycin. 

Reagents and Plasmids 

Murine recombinant TNFct (107 U/mg) was from Boehringer Mannheim 
(Meylan, France). Hydrogen peroxide, t-butylhydroperoxide, and sodium 

desoxycholate were from Sigma Chimie. Anti-hsp70 serum was from Am- 

ersham Corp. (Little Chalfont, UK). Glutathione peroxidase activity was 
tested in cell extracts in the presence of t-butylhydroperoxide, as previ- 

ously described (49, 50). The specificity of anti-glutathione peroxidase an- 

tibody was previously described (49). Anti-p65/RelA, anti-p50, and anti- 

IKB-a/MAD-3 were from Santa Cruz Biotechnology (Santa Cruz, CA). 
pTKluc and pKB6-TKtuc vectors (a kind gift from P.A. Baeuerle 

[Freiburg University, Germany]) were described by Pahl and Baeuerle 
(1995) (55). Briefly, pTKluc contains the luciferase gene under the control 

of the herpes simplex thymidine kinase promoter. The construct pKB6- 

TKluc was obtained by insertion of a double-stranded oligonucleotide 

representing six NF-KB binding sites into the pTKluc plasmid, pCMV-13 

plasmid (Clontech, Palo Alto, CA) contains the gene encoding 13-galac- 
tosidase under the control of the cytomegalovirus promoter. 

Transfection, Luciferase, and fl-Galactosidase Assays 

Hygro and GPx ceils were seeded out the day before transfection at a den- 
sity of 2.5 X 106 cells per 100-mm dishes. 8 p.g of pTKluc or pKB6-TKIuc 

and pCMVq3 were cotransfected using Gibco's Lipofectamine reagent 
(GIBCO BRL) according to the manufacturer's instructions. 8 h after 

transfection, cells were trypsinized and replated into four 60-mm dishes. 
12 h later, cells were treated for 2 h with hydrogen peroxide or TNFa, and 
then the medium was changed and the cells were allowed to recover for 14 h 
before harvesting; i.e., 36 h after transfection. Cells were lysed in 400 ~1 of 

BLUC lysis buffer (25 mM Tris/H3PO4, pH 7.8, 10 mM MgC12, 1% Triton 
X-100, 15% glycerol, and 1 mM EDTA). 150 ~1 of the lysates were then 

added to 100 ~1 of BR LUC reacting buffer (1.2 mM ATP and 0.33 mM lu- 
ciferin in BLUC lysis buffer), and after mixing the reagents, the emission 
of light was measured during 10 s using a luminometer (LUMAT LB 9501; 
Becton Dickinson, Le Pont de Claix, France) (52). The percentage of cells 
expressing 13-galactosidase was monitored by 5-bromo-chloro-3-indoly113-D- 
galactosidase staining (38). 
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Estimation of lntraceUular Reactive Oxygen Species 

Estimation of intracellular ROS in living cells was performed by using the 

sodium borohydride-reduced form of ethidium bromide (EB), hydroethi- 

dine (HE) fluorescent probe (Molecular Probe-Interchim, Montluqon, 
France) (15, 58). This probe freely penetrates inside cells and is specifi- 
cally oxidized by ROS. 2.5 x 105 cells (T47D-GPx-2 or T47D-Hygro-3) 

were washed twice with PBS and incubated for 10 rain with 40 ~g/n'd hy- 
droethidine before being analyzed by flow cytometry using a FACS®ean 
flow cytometer (Becton Dickinson). Excitation wavelength was 488 nm, 
and emission filter specific for oxidized hydroethidine (EB) fluorescence 
was 610 nm bandpass. 

Preparation of Whole Cell Extracts 
and Cell Fractionation 

T47D cells growing on 60-mm dishes (Falcon Labware, Oxnard, CA) were 
washed with cold PBS, scraped from the dishes, and pelleted for 5 min at 
1,000 g. The cellular pellet was then either lysed and boiled in Laemmli 
sample buffer (whole cell extract) or lysed at 4°C in a buffer containing 10 
mM Tris, pH 7.4, 10 mM NaC1, 1.5 mM MgCl2, and 0.5% Triton X-100. 
The tysates were then clarified for 10 min at 12,000 g. The procedure was 
repeated until the nuclei present in the pellet fraction were free of cyto- 
plasmic contaminations, as judged by microscopical analysis with a TMS 
inverted photomicroscope (Nikon Inc., Garden City, NY) equipped with 
phase-contrast. The crude nuclear pellets and the resulting cytoplasmic su- 
pematants were then resuspended or diluted in similar amounts in Laemmli 

SDS buffer before being boiled and analyzed by SDS-PAGE. 

Gel Electrophoresis and lmmunoblotting 

One and two-dimensional gel electrophoresis and immunoblots were per- 
formed as already described (41, 42), except that the isoeleetrofocusing 
gels were made up with 60% of pH 4-6 and 40% of pH 3-10 ampholines 
(Sigma Chimie). Isoelectrofocusing sample buffer contained pH 6-8 am- 

pholine. P65/RelA, p50, IKB-~, and GSHPx antisera were used as primary 
antibodies, and the revelation of immunoblots was performed with the 
ECL kit from Amersham Corp. The duration of the exposure was calcu- 
lated as to be in the linear response of the film. The bands on the films, 
representing the levels of the different proteins, were scanned with the 
Bioprofil system (Vilber Lourmat, France). 

Electrophoretic Mobility Shift Assays 

Extraction of DNA-binding proteins and binding conditions have been 
previously described (36). In brief, 10 ~g of protein from nuclear extracts 
was incubated with a 20,000 cpm (Cerenkov) 3~P-labeled KB DNA probe in 
the presence of 4 p.g poly (dLdC) (Pharmacia Biotech, Orsay, France) and 
1 p~l 10× BB buffer (50 mM Tris, pH 7.5, 5 mM DTT; 5 mM EDTA, 250 mM 
NaCl, and 10% Ficoll 400). Reaction was for 15 rain at room temperature 

after the addition of the 32p-labeled KB probe. The double-stranded oligo- 

nucleotide used to detect the NF-KB DNA binding activity was as previ- 
ously described (36, 77). Native 4% polyacrylamide gels were used to ana- 

lyze the samples. Autoradiographs of the gels were recorded onto BioMax 
MR films (Eastman-Kodak Co., Rochester, NY). For the competition ex- 
periments, 10 or 40 ng of unlabeled competitive KB probe were added to 

the binding mix including proteins 5 min before the incubation with 0.1 ng 
of the 32p-labeled KB probe. Supershift experiments were performed by 
adding 2 Ixg of an antiserum directed against the p65/RelA subunit of NF- 
KB to the binding mix including proteins, 30 min before the incubation 
with the 32p-labeled KB probe. Sodium desoxycholate (DOC) treatment 

(5) was performed by incubating the cytosolic fractions from unstimulated 
Hygro and GPx cells for 15 min with 0.8% DOC and 1% NP-40 (final concen- 
trations) before electrophoretic separation of protein-DNA complexes. 

Results 

rB-dependent Transactivation of a Reporter Gene 
by TNFa and Hydrogen Peroxide Is Inhibited in T47D 
Cells that Overexpress GSHPx 

The role of ROS formation and intracellular GSHPx activ- 
ity in KB-dependent gene transactivation was investigated 
in T47D transfectant cell lines that overexpress exogenous 
GSHPx (T47D-GPx-2, -16, and -10) as well as in control 
cell lines (e.g., T47D-Hygro-3) that express low endoge- 
nous GSHPx level and activity (4 mU/mg of cellular pro- 
teins) (49, 50). In contrast, the T47D-GPx-2 cells most of- 
ten used in this study have a 70-fold higher GSHPx activity 
(270 mU/mg) than T47D or T47D-Hygro-3 cells but simi- 
lar levels of Cu/Zn-SOD and catalase (49). On the other 
hand, a sevenfold-decreased GSHPx activity was observed 
in GSHPx-expressing T47D cells grown 6 d in selenium- 
depleted medium, a trace element that is essential for 
GSHPx activity. 

The efficiency of KB-dependent gene transactivation, as 
induced by TNFa and hydrogen peroxide, was therefore 
compared in control Hygro-3- and GPx-2-T47D cells that 
were transiently transfected with a plasmid vector pKB6- 
TKIuc containing a luciferase gene reporter placed under 
control of a thymidine kinase promoter coupled to six KB 
elements (55). Luciferase expression from this construct 
was compared to that from a similar plasmid but without 
KB elements (pTKluc). This was assessed by measuring lu- 

Figure 1. Overexpression of 

glutathione peroxidase de- 

creases NF-KB-mediated tran- 

scriptional activation induced 

by TNFa or hydrogen perox- 

ide. Control T47D-Hygro-3 

(A) and GSHPx-expressing 

T47D-GPx-2 (B) cells were 

cotransfected with either 

pTKluc (dark plots) and 

pCMVI3 or with pKB6-TKIuc 

(hatched plots) and pCMVI3 

as described in Materials and 

Methods. 20 h after transfec- 

tion and replating, cells were 

either kept untreated (Contr.) or treated for 2 h with 250 IxM H202 or 2,000 U/ml TNFa. The medium was changed, and the cells were 

allowed to recover for 14 h before harvesting. The determination of luciferase and 13-galactosidase activities was performed in parallel 

cultures (see Materials and Methods). Transfections presenting identical efficiency, estimated as the number of cells expressing I~-galac- 

tosidase, were further analyzed. Luciferase transcriptional activation is represented by arbitrary relative light unit (RL U) per mg of pro- 

teins. The histograms shown are representative of three identical experiments; SD are presented (n = 3). Note the strong stimulation of 

luciferase activity in Hygro-3 cells treated with hydrogen peroxide or TNFa, which was only faintly detectable in GPx-2 cells. 
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ciferase activity in cell extracts (see Materials and Methods). 

Fig. 1 A shows that H202 and TNFet strongly increased lu- 
ciferase activity (up to 10-fold) in T47D-Hygro-3 ceils 
transfected with pKB6-TKIuc vector but not in cells trans- 
fected with pTKluc. This result clearly indicates that in 

T47D cells the transcription of genes controlled by KB ele- 
ments is inducible by TNFct and bona fide oxidants. In 
contrast, the induction of luciferase by these agents was re- 
markably lower in T47D-GPx-2 cells transfected with 
pKB6-TKIuc plasmid (Fig. 1 B). This inhibitory effect was 
strongly attenuated when the same experiment was per- 

formed with cells grown for 6 d in selenium-depleted me- 
dium before being transfected (not shown). Note that lu- 
ciferase activity after transfection with the noninducible 
pTKluc vector was similar in T47D-Hygro-3 and GPx-2 
cells, and that the transfection efficiency was similar in 

both cell lines (about 7%), as determined by the fraction 
of cells expressing 13-galactosidase in transfection experi- 
ments performed with a plasmid containing the [3-galac- 
tosidase gene controlled by the cytomegalovirus promoter 
(pCMV-13). Hence, these results suggest that high levels of 
GSHPx activity can interfere negatively on NF-KB activa- 
tion, synthesis, or stability. 

The trivial possibility that T47D-GPx-2 ceils were defi- 
cient in NF-KB synthesis, or that this factor was abnor- 

mally unstable in these cells after exposure to TNFet or hy- 
drogen peroxide, was thus investigated. The immunoblots 
presented in Fig. 2 show that the cellular contents of both 

p65/RelA and p50 subunits of NF-KB were very similar in 
T47D-Hygro-3 and -GPx-2 cells. This figure also shows 
that the level of neither NF-KB subunits nor GSHPx was 

affected by a 2-h treatment with 2,000 U/ml of TNFot. Sim- 
ilar observations were made when cells were treated for 2 h 

Figure 2. Intracellular levels of glutathione peroxidase and 
NF-KB subunits p65 and p50 in T47D-Hygro-3 and T47D-GPx-2 
cells treated or not with TNFct. Control T47D-Hygro-3 (Hygro) 
and GSHPx-expressing T47D-GPx-2 (GPx) ceils were treated 
(TNFa) or not (C) for 2 h with 2,000 U/ml of TNFa. The cellular 
contents of glutathione peroxidase and NF-KB subunits p65/ 
RelA and p50 were analyzed in immunoblots probed with anti- 
bodies that recognize specifically these proteins, as revealed by 
enhanced chemiluminescence (ECL). Note that the overexpres- 
sion of glutathione peroxidase or the treatment with TNFa did 
not induce significant differences in the cellular concentrations of 
the NF-KB subunits p50 and p65. 

with 250 ~M H20 2 (not shown). Therefore, it is unlikely 
that deficient synthesis or increased instability of NF-KB 
was responsible for the inhibition of KB-dependent gene 
transactivation observed in T47D-GPx-2 cells (Fig. 1). 
Also note that endogenous GSHPx in control T47D- 
Hygro-3 cells was not detected, confirming that these cells 
contain very low level of this enzyme. Moreover, neither 
GSHPx overexpression nor the treatment with TNFtx did 

induce a stress response in T47D cells (41). Similar results 
were obtained with the other GSHPx-expressing cell lines 
(not shown). 

The Endogenous Levels of  ROS As Well As the 
Burst of  ROS Induced by TNFa Are Decreased in 
GSHPx-overexpressing T47D Cells 

Antioxidants such as N-acetylcysteine, a precursor of gin- 
tathione, are able to prevent NF-KB-mediated gene trans- 
activation (63, 70). We have thus investigated whether the 

inhibition of KB-dependent gene transactivation observed 
in T47D-GPx-2 cells (Fig. 1 B) was due to an altered cellu- 
lar redox state linked to GSHPx overexpression, which 
could confer higher reducing capacity than in T47D- 
Hygro-3 cells. This hypothesis was verified by comparing 
ROS levels in both cell lines, exposed or not to TNFet or 

H20 2. Intracellular pools of ROS were assessed by FACS ® 
analysis of EB fluorescence resulting from ROS-mediated 
oxidation of H E  (15, 58). Fig. 3 shows that, in T47D- 
Hygro-3 cells, a 10-min treatment with 2,000 U/ml of TNFet 
increased the mean EB fluorescence index by ~30%,  indi- 
cating that this cytokine induced a rapid burst of HE-oxi- 
dizing ROS in these cells. In contrast, in T47D-GPx-2 

cells, the basal EB fluorescence index was below that ob- 
served in control T47D-Hygro-3 cells, and only a slight in- 
crease was observed after TNFa  treatment. Similar results 

were obtained with the other T47D cell lines that express 
similar levels of GSHPx. A decreased burst of ROS was 

also observed in T47D-GPx-2 cells in response to H202 
treatment (not shown). To confirm the link between 

GSHPx activity and intracellular ROS levels detected with 
the HE probe, control experiments were performed to de- 
press GSHPx levels in T47D-GPx-2 cells by selenium deple- 
tion. Culturing these cells for 6 d in selenium-depleted me- 
dium depressed their GSHPx activity to ~15% of that 
normally found in GPx-2 cells. In such cells, EB fluores- 
cence was reversed to the level observed in T47D-Hygro-3 
cells (Fig. 3). Selenium depletion had no detectable effect 
on H E  oxidation in T47D-Hygro-3 cells (containing barely 
detectable GSHPx, not shown). These results therefore in- 
dicate that the difference in ROS levels observed in con- 
trol and GSHPx-expressing T47D cells was likely to result 
from GSHPx overexpression. They also suggest that the 
decreased accumulation of ROS in T47D-GPx-2 cells ex- 
posed to TNFtx or H202 was a likely cause of KB depen- 
dent gene transactivation inhibition. 

GSHPx Overexpression Suppresses the TNFa- and 
Hydrogen Peroxide-mediated Binding of  NF-r,B to DNA 

The effect of GSHPx overexpression on the activation of 
NF-KB by TNFet or H202 was analyzed by DNA binding 
and electrophoretic shift assays. Nuclear extracts were pre- 
pared from control T47D-Hygro-3 and GSHPx-expressing 
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Figure 3. Reactive oxygen 
species levels in T47D-Hy- 
gro-3 and T47D-GPx-2 cells 
exposed or not to TNFa. 
ROS levels were determined 
by FACS ® analysis of the ox- 
idation of HE. T47D-Hygro-3 
(Hygro) or T47D-GPx-2 
(GPx) cells were incubated 
at 37°C for 10 min with HE in 
the presence (TNF) or ab- 
sence (C) of 2,000 U/ml of 
TNFot added at the same 
time than HE. EB fluores- 
cence was measured as de- 
scribed in Materials and 
Methods. Results are pre- 
sented as mean EB fluores- 
cence indexes that were ex- 
pressed as mean EB 
fluorescence of each sample 
divided by that measured in 
control untreated T47D- 
Hygro-3 cells. (GPx w/o sel- 
enite) The mean EB fluores- 

cence index of T47D-GPx-2 cells grown for 6 d in selenium-depleted medium before being treated (TNF) or not (C) with TNFet. The 
histograms shown are representative of three identical experiments; SD are presented (n = 3). 

T47D cells that were either left untreated or exposed to 

hydrogen peroxide or TNFet, and electrophoretic mobility 

shift assays were performed using a DNA probe encom- 

passing the KB motif (see Materials and Methods). As 

seen in Fig. 4 A, in T47D-Hygro-3 cells, a 2-h treatment 

with 250 ~M hydrogen peroxide induced the binding of a 

protein factor to KB DNA. A similar result was observed 

when cells were treated for only 1 h with H202 (not 

shown). Competition experiments show that the binding 

to the radioactive ~B DNA was no longer detectable when 

increasing concentrations of nonradioactive KB DNA 

were added to the binding mixture. A supershifted band 

was also observed when the reaction mixture was incu- 

bated with an antibody that recognizes the p65/RelA sub- 

unit of NF-KB. Hence, these observations indicate that in 

T47D-Hygro-3 cells, H202 induces the binding of NF-KB 

to the "KB" oligonucleotide. In contrast, in similarly 

treated T47D-GPx-2 cells, no protein factor was found to 

interact specifically with this oligonucleotide, indicating 

that, in these cells, NF-KB activation or NF-KB binding to 

DNA was abolished. A similar analysis was performed 

with cells treated for 2 h with 2,000 U/ml TNFa. The re- 

suits, shown in Fig. 4B, indicate that GSHPx overexpres- 

sion also blocked the TNFot-mediated binding of NF-KB to 

DNA. Similar results were observed with the other 

GSHPx-overexpressing cell lines and when the TNFa  

treatment was for 1 h. Control experiments were therefore 

performed to determine whether the observed inhibition 

of NF-KB binding to DNA was a direct consequence of 

GSHPx activity increment in T47D-GPx-2 cells. This was 

assessed by analyzing NF-KB activation in T47D-GPx-2 

cells grown for 6 d in a medium devoid of selenium to 

strongly decrease their GSHPx activity and reestablish a 

"normal" level of intracellular ROS (see above). As seen 

in Fig. 4 C, normal induction of NF-KB DNA binding ac- 

tivity by TNFot was restored in selenium-deprived T47D- 

GPx-2 cells. A similar result was observed when such cells 

were exposed to H202 (not shown). Hence, the observed 

inhibition of NF-KB activation in T47D-GPx-2 ceils grown 

in complete (selenium-supplemented) medium appears to 

be a direct consequence of the high levels of GSHPx activ- 

ity and low levels of ROS in these cells. 

The DNA Binding Ability of  NF-KB Is Not Affected by 
Elevated Levels of  IntraceUular GSHPx Activity 

We then investigated the mechanism by which glutathione 

peroxidase overexpression and concomitant decreased 

levels of ROS inhibited NF-KB activation in T47D-GPx-2 

cells. The observation that the level of the two NF-KB sub- 

units (p65-p50) was not affected by GSHPx overexpres- 

sion (Fig. 2) suggests that the inhibition of NF-KB activa- 

tion was posttranslational. In nonactivated cells, NF-KB is 

cytoplasmic, in the form of the NF-KB-IKB-a complex that 

is unable to bind DNA. However, the DNA binding prop- 

erty of this factor can be restored by treating the cytosolic 

fraction with DOC, which, in the presence of a nonionic de- 

tergent, NP-40, dissociates IKB-ot from NF-KB (5). This DOC 

treatment therefore allows us to determine the amount of in- 

ducible NF-KB present in the cytoplasm by electrophoretic 

mobility shift assay. It is seen in Fig. 5 that DOC treatments 

promoted similar levels of NF-KB binding to KB DNA in 

T47D-Hygro-3 and -GPx-2 cytoplasm. This indicates that 

GSHPx activity increment did not alter the intrinsic ability 

of NF-KB to bind DNA, but rather did inhibit the process 

that leads to the activation of this factor by oxidative stress. 

NF-rd~ Is No Longer Recovered in the Nucleus of  
GSHPx-Overexpressing Cells Exposed to TNFa or 
Hydrogen Peroxide 

NF-KB activation by oxidative stress is a multistep process 

that results in the translocation of a fraction of the p65-p50 
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Figure 4. Effect of GSHPx overexpression on the TNFa- or hydrogen peroxide-mediated activation of the DNA-binding activity of the 
transcription factor NF-KB. (A) The activation of NF-KBby intracellular ROS was measured in T47D-Hygro-3 (Hygro) and T47D-GPx-2 
(GPx) cells that were either left untreated (C) or incubated for 2 h at 37°C with 250 I~M of hydrogen peroxide (H202). Nuclear extracts 
were prepared and equal amounts (10 ~g) of nuclear proteins were incubated with a 3~P-labeled DNA probe encompassing the KB motif 
as described in Materials and Methods. Samples were analyzed on native 4% polyacrylamide gels. An autoradiograph of the gel is pre- 
sented. (Comp.) Competition experiments: (Ab) supershift performed by adding an antiserum recognizing the p65 subunit of NF-KB to 
the binding mixture of H202-treated T47D-Hygro-3 cell extracts; (C100 and C400) competition performed with either 10 or 40 ng of un- 
labeled KB probe added to the binding mixture of H202-treated T47D-Hygro-3 cell extracts. (B) Same experiment as A but in this case, 
the treatment was for 2 h with 2,000 U/ml of TNFa (TNF). (C) Same experiment as B but in this case, cells were grown for 6 d in sele- 
nium-depleted medium before being analyzed. In this case, the competition reactions are not shown. The position of the supershifted (s) 
and nonspecific (ns) complexes as well as the free probe (jr') are indicated. Note the sodium selenite-dependent decreased activation of 
NF-KB binding to KB DNA in glutathione peroxidase-overexpressing T47D cells. 

heterodimer in the nucleus where it binds to D N A  (5). We 

therefore investigated whether the GSHPx-mediated inhi- 

bition of p65-p50 binding to KB oligonucleotide was due to 

a deficient translocation of this transcription factor in the 

nucleus. To this end, Hygro-3 and GPx-2-T47D cells were 

incubated or not  for 2 h with 250 ~M hydrogen peroxide 

or 2,000 U/ml TNFet, and then lysed and fractionated as 

described in Materials and Methods. The distribution of 

the p65 subunit  in the resulting nuclear and soluble frac- 

tions was analyzed in immunoblots  probed with a specific 

antiserum. It is seen in Fig. 6 that ~ 3 0 %  of the cellular 

Figure 5. Glutathione peroxidase increment in T47D cells does 
not alter the intrinsic ability of NF-KB to bind DNA. Equal amounts 
(10 /~g) of cytoplasmic extracts of either Hygro-3 (Hygro) and 
GPx-2 T47D (GPx) cells were incubated with a 32p-labeled DNA 
probe encompassing the KB motif. The mixtures were either left 
untreated (C) or treated for 15 min with 0.8% sodium desoxycho- 
late (DOC) in the presence of 1% NP-40 before electrophoretic 
separation of the protein-DNA complexes on native 4% poly- 
acrylamide gels. An autoradiograph of a typical experiment is 
presented. Competition experiments (Comp.), performed as de- 
scribed in Fig. 4, show the specificity of the NF-KB/DNA com- 
plex. In this figure the supershifted complex is not visible. Non- 
specific complexes (ns) and free probe (f) are indicated. Note 
that DOC similarly activates the DNA-binding property of NF-KB 
present in the cytoplasm of both control and GSHPx-expressing 
T47D cells. 
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Figure 6. The presence of p65 in the nucleus of T47D cells 
treated with TNFt~ or hydrogen peroxide is abolished by glu- 
tathione peroxidase overexpression. Hygro-3 (Hygro) and GPx-2 
T47D (GPx) cells were either left untreated (C) or incubated for 
2 h at 37°C with 250 }~M hydrogen peroxide (H202) o r  2,000 U/ml 
of TNFct (TNF). Cells were harvested, lysed, and fractionated as 
described in Materials and Methods, and the p65 subunit of 
NF-KB content present in the cytoplasmic (s) and nuclear (p) 
fractions was analyzed by immunoblots probed with a specific an- 
tiserum. Immunoblots were revealed with ECL. Note that NF-KB 
is no longer recovered in the nucleus of GSHPx-overexpressing 
cells exposed to TNFa or H20 ~. 

content  of p65 was present  in the nuclear  fraction of con- 

t rol  Hygro-3 cells in response to T N F a  or  H 2 0  2 t reat-  

ments. In contrast ,  this phenomenon  was not  observed in 

the GSHPx-overexpress ing  cells. Similar results were ob- 

served when the immunoblo ts  were p robed  with anti-p50 

ant iserum (not shown). Hence,  the inhibition of KB-depen- 

dent  gene t ransact ivat ion (Fig. 1) and the absence of  NF-  

KB binding to D N A  observed  in T47D-GPx-2  cells (Fig. 4) 

p robab ly  resul ted f rom an interference at or  ups t ream of 

NF-KB translocat ion into the nucleus. 

GSHPx Overexpression Abolishes the TNFt~- and 
Hydrogen Peroxide-mediated Degradation of  the 
Inhibitory Subunit I rB-a  

The dissociation of  the p65-p50 NF-KB he te rod imer  from 

phosphory la ted  IKB is accompanied  by proteolyt ic  degra-  

dat ion of  IKB (4, 13, 20, 33, 44). W e  therefore  analyzed the 

kinetics of  degrada t ion  of the major  I~:B protein,  IKB-od 

MAD-3 ,  in Hygro-3 and GPx-2 cells exposed  to oxidat ive 

stress. Cells were incubated with 250 }xM of H 2 0  2 or 2,000 

U/ml of  TNFet, harvested at different  times, and whole cell 

extracts were analyzed in immunoblots  p robed  with an an- 

t ibody that  recognizes specifically IKB-odMAD-3. Fig. 7 

shows that  these t rea tments  induced a t ransient  degrada-  

t ion of IKB-et in Hygro-3 cells. This phenomenon  was de- 

tectable  a l ready after  5 min of t rea tment  with TNFet, while 

30 min of  incubat ion were necessary in the case of H 2 0  2. 

Af te r  60 min of  t rea tment  with TNFet, a resurgence of 

IKB-c~ was observed while in H2OE-treated cells, the level 

of  this prote in  was almost  back to normal.  In contrast ,  in 

GPx-2 cells, no degrada t ion  of  IKB-a was observed in re- 

sponse to e i ther  TNFot or  H202. A quanti ta t ive analysis of 

Figure 7. IKB-ct degradation is abolished in glutathione peroxi- 
dase-overexpressing T47D cells exposed to TNFet or hydrogen 
peroxide. (A) Hygro-3 (Hygro) and GPx-2 T47D (GPx) cells were 
either left untreated (0) or treated with 250 I~M of hydrogen per- 
oxide during various times ranging from 2-60 minutes. (B) Same 
experiment as in A but in this case, cells were treated for various 
times with 2,000 U/ml of TNFet. Whole cellular extracts were pre- 
pared, and the cellular contents of IKB-odMAD-3 inhibitory sub- 
unit of NF-KB were analyzed by immunoblots probed with an an- 
tibody specific for IKB-a and revealed by ECL. Note the inhibition 
of IKB-et transient degradation during TNFot and hydrogen perox- 
ide treatments in glutathione peroxidase--overexpressing T47D cells. 

Figure 8. Kinetics of IKB-a degradation and ROS accumulation 
after TNFet treatment. Hygro-3 and GPx-2 T47D cells were 
treated with 2,000 U/ml of TNFct during various times ranging 
from 1-60 min. The cellular content of IKB-et was analyzed as de- 
scribed above in Fig. 7, and the immunoblots were quantified as 
described in Materials and Methods. The results are presented in 
a graph representing the relative IKB-ot levels as a function of the 
duration of TNFet treatment: (-A-A-), IKB-et from GPx-2 cells; 
(-[]-[2-), IKB-t~ from Hygro-3 cells. The relative levels of IKB-ot 
were expressed as the levels of IKB-et measured after treatment 
divided by that of untreated Hygro-3 or GPx-2 cells. (Shaded 
area) Kinetics of ROS accumulation after TNFa treatment of 
T47D-Hygro-3 cells. Before and at different times (10, 30, and 60 
min) after the addition of 2,000 U/ml of TNFot, ROS levels were 
estimated by the conversion of HE into EB fluorescence (see Ma- 
terials and Methods and Fig. 3). Since an incubation of 10 min 
with HE was necessary to observe a detectable conversion of HE 
in EB, the first measurement (after 10 min of incubation with 
TNFc 0 was performed by adding simultaneously HE and TNFct 
to the culture medium. For the other time points, HE was added 
during the last 10 min of the TNFct treatment. SD between exper- 
iments (n = 3) were <5%. Note the rapid and transient increase 
of EB fluorescence in T47D-Hygro-3 cells treated with TNFa 
that correlates with the rapid and transient degradation of I~B-ot. 
In GPx-2 cells EB fluorescence is only weakly increased (not 
shown, see also Fig. 3). 
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the transient degradation of IKB-ct in TNFet-treated Hy- 

gro-3 cells is presented in Fig. 8. This figure shows that, in 
Hygro-3 cells, up to 70% of the total content of IKB-a was 
degraded after 10 min of TNFot treatment, while the 
amount of this protein remained almost the same in GPx-2 
cells. Of great interest is that in TNFet-treated Hygro-3 
cells, the rapid degradation of IKB-et occurred concomi- 
tantly with the burst of intracellular ROS. The kinetics 

presented in Fig. 8 also show that the IKB-ot content of Hy- 

gro-3 cells appears inversely related to that of ROS. This 
suggests that the TNFa-mediated burst of ROS triggers 
the degradation of IKB-ot. 

GSHPx Overexpression Abolishes the TNFa-mediated 
Transient Accumulation of an Acidic and Slow 
Migrating Isoform of the Inhibitory Subunit IrB-a 

Several reports have described the rapid appearance, in 
SDS polyacrylamide gel, of a slow migrating phosphory- 
lated form of IKB-et that precedes the degradation of this 
protein in response to TNFot (10, 14, 20, 25, 74, 75). This 
transient phosphorylation of IKB-a appears to control the 
degradation of this protein (75). We therefore investi- 
gated, by two-dimensional immunoblot analysis, the kinet- 

ics of appearance of a more acidic, with apparent higher 
molecular weight, isoform of IKB in response to TNFet 
treatment. Fig. 9 shows that in untreated control Hygro-3- 

cells, IKB-ot is resolved in two major isoforms; the b iso- 
form has a slightly higher apparent molecular weight and 

is more acidic than the major a isoform. After 1 min of 
treatment with TNFa, the level of the b isoform drastically 
increased while that of the a isoform concomitantly de- 
creased. Hence, during the first minutes of TNFet treat- 
ment, the b isoform becomes the major isoform of IKB-ot, 
suggesting that a large fraction of this protein is rapidly 
phosphorylated. After 3 min of treatment, the b isoform 

disappeared and the total level of IKB-ct decreased. Until 5 
min of treatment, the level of IKB-a, mainly in the form of 
the a isoform, continued to decrease. Thereafter, a gradual 
and slow increase of the a and then b isoforms was ob- 
served. After 60 min, the level, as well as the distribution, 
of IKB-t~ isoforms was almost back to normal and resem- 
bled that observed in untreated ceils. This confirms that a 
drastic change in the distribution of IKB-et isoforms, pre- 
sumably due to phosphorylation, precedes the degradation 
of this protein. In sharp contrast, in GSHPx-expressing 
cells only the a isoform was detected, and this particular 
distribution, as well as the level of this isoform, was unaf- 
fected in response to TNFa. These results suggest that, in 
growing and TNFet-treated T47D cells, GSHPx overex- 

pression induced drastic inhibition of IKB-a phosphoryla- 
tion. This phenomenon correlated and was probably re- 
sponsible for the lack of transient degradation of this 
protein in response to TNFa. 

Figure 9. Kinetics analysis of IKB-et isoforms in control and glu- 
tathione peroxidase-overexpressing T47D cells exposed to 
TNFa. Total proteins of Hygro-3 (Hygro) and GPx-2 T47D 
(GPx) cells, treated or not with 2,000 U/ml of TNFot during vari- 
ous time periods, were analyzed in two-dimensional immunoblots 
probed with anti-IKB-et antibody and revealed by ECL as de- 
scribed in Materials and Methods. As indicated in the figure, 
analyses were performed before and after 1, 3, 5, 30, and 60 min 
of treatment with TNFc~. The more acidic, with apparent higher 
molecular weight, IKB-~t phospho-isoform is indicated as the b 
isoform. The less acidic and faster migrating IKB-Q isoform is in- 
dicated as the a isoform. Note that GSHPx expression inhibited the 
TNFa-mediated redistribution and degradation of IKB-ct isoforms. 

Discussion 

We have observed that the overexpression of exogenous 
glutathione peroxidase in T47D cells inhibited the oxida- 
tive stress-mediated transcriptional activation of a lu- 
ciferase gene placed under the control of six KB regulatory 
elements. This observation demonstrates that the tran- 
scriptional activity of genes controlled by KB elements can 
be modulated by the activity of intracellular GSHPx and 
suggests that reactive oxygen species play an important 
role in this phenomenon. Our findings also confirm earlier 
observations that were performed with anti-oxidant drugs 
(63, 70) or by using catalase-overexpressing mouse cells (61). 

Our results show that elevated levels of GSHPx signifi- 
cantly decreased the basal level of intracellular ROS as 
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measured by FACS®can analysis of HE fluorescence. The 

rapid and transient burst of intracellular ROS induced by 
TNFot was also abolished by GSHPx overexpression. 
These effects of GSHPx were abolished when cells were 
grown in the absence of selenium, suggesting that small 
variations in the level of ROS drastically modulate NF-KB 
activability. TNFa is known to stimulate 02"- production 
in mitochondria, and NF-~B activation is reduced in cells 
depleted of the mitochondrial respiratory chain (65). 
Therefore, the burst of ROS detected with HE could have 
been triggered by superoxide production. It is not known, 
however, whether HE was oxidized directly by superoxide 
(02"-) and/or by more downstream ROS metabolites such 
as H202, fatty acid (hydro)peroxides, hydroxyl radicals, or 
singlet oxygen. The latter possibility is supported by the 
fact that a strong burst of ROS was detected by HE in 
T47D-Hygro-3 cells treated with H202. It is not excluded 
that, although both GPx-2 and Hygro-3 cell lines contain 
similar levels of Cu/Zn-SOD (49), GSHPx overexpression 
could also stimulate the conversion of superoxide in per- 
oxide since a higher capacity to eliminate H202 appears to 
protect Cu/Zn-SOD from inactivation by H202 (8, 76). 

Several reports have shown that anti-oxidant drugs in- 
hibit the activation of NF-KB by oxidative stress (47, 48, 
63, 64) and that H202 can induce this factor in some cell 
lines (47, 48, 63). These observations led to the conclusion 
that ROS act as second messengers in the activation of 
NF-KB. Recently, Schmidt et al., (61) showed that, in mouse 
JB6 cells, the overexpression of Cu/Zn-SOD, which dis- 
mutates superoxide into 1-1202 and 02 in the cytosol, increases 
NF-KB activation by TNFa. In contrast, overexpression of 
catalase, which detoxifies H202, decreased NF-KB activa- 
tion (61). These results demonstrate a causal link between 
H202 production and NF-KB activation. Our results show- 
ing that the overexpression of another major H202-detoxi- 
fying enzyme, glutathione peroxidase, inhibits NF-KB acti- 
vation in response to TNFa or H202 support the model 
that intracellular H202 is the likely precursor of the puta- 
tive free radicals that activate NF-KB. Hence, the primary 
cause leading to NF-KB inhibition in GSHPx-overexpress- 
ing T47D cells appears to be an increased depletion of 

H202. 

Several reports have pointed out the importance of 
GSHPx in vivo. For example, in peripheral blood mono- 
nuclear cells from elderly subjects, the redox equilibrium 
is shifted toward a prooxidant state as a consequence of a 
30 to 40% decreased GSHPx activity (46). Our results also 
clearly demonstrate that in cells that overexpress GSHPx, 
NF-KB activation may be controlled by the concentration 
of selenium, a trace element required for GSHPx activity. 
In T lymphocytes, selenium has also been reported to act 
as a key regulator of NF-KB activation (60). Hence, in 
vivo, the level of selenium as well as that of GSHPx di- 
rectly participate in the fine tuning of intracellular ROS, 
and any change in their cellular contents may have dra- 
matic consequences for the organism. The observation 
that NF-KB activation by TNF~t can also be suppressed by 
transition metal chelating agents (e.g., desferoxamine) or 
free radical trapping agents (64) suggests that activation of 
NF-KB is likely mediated by free radicals and not by H202 

directly. It is of interest to note that oxidative DNA dam- 
age induced in T47D cells by menadione (an intracellular 

source of O2"-/I-'I202) could also be suppressed by GSHPx 
overexpression or preincubation with desferoxamine, which 
chelates catalytic Fe 3÷ ions (49). In this case, DNA dam- 
age was strongly suspected to be caused by hydroxyl radi- 
cals formed by iron-dependent Fenton-type reactions. 
Whether NF-KB activation by menadione, H202,  or  TNFct 
will also be suppressed in T47D Hygro-3 cells preincu- 
bated with desferoxamine remains to be determined. 

The question remains as to how ROS activ~ite NF-KB. 
We have shown that GSHPx overexpression leading to de- 
creased levels of ROS inhibited the oxidative stress-medi- 
ated p65-p50 nuclear translocation. This suggests that low 
ROS levels inhibited the activation of the cytoplasmic 
NF-KB-IKB-e~ complex. Several reports have described 
that IKB-a degradation precedes NF-KB activation and 
that transactivation by this factor, in turn, promotes IKB-a 
synthesis, restoring the unstimulated inhibited state (13, 
17, 71). Kinetics experiments revealed that, in parental 
and control transfectant T47D cells, IKB-o~ was already de- 
graded after 5 min of treatment with TNFet, while, in the 
presence of H202, 30 min appeared necessary. This is con- 
sistent with the fact that the kinetics of NF-KB induction 
by H202 are rather slow as compared with those mediated 
by TNFet (61, 63), probably because oxidative damage in- 
duced by H202 slows down the mechanism of NF-KB acti- 
vation. A kinetic analysis of the burst of ROS generated 
by TNFet in T47D Hygro-3 cells showed that this phenom- 
enon occurred concomitantly with the transient degrada- 
tion of IKB-a. This suggests that IKB-oL degradation is the 
target that is controlled by ROS. Decreased ROS levels 
would therefore inhibit IKB-et degradation. Recently, IKB-et 
phosphorylation has been reported to precede (10, 20, 25) 
and to be necessary for the rapid degradation of this pro- 
tein by the proteasome (16, 37, 56, 74, 75). Analysis of this 
phenomenon in T47D Hygro-3 cells revealed that TNFc~ 
induced the rapid accumulation of an acidic phospho-iso- 
form of IKB-et that preceded the degradation of this pro- 
tein. This transient accumulation of this isoform was not 
observed in TNFet-treated cells that overexpress GSHPx, 
confirming that the phosphorylation of IKB-et precedes its 
degradation. Moreover, we show that, while untreated 
T47D-Hygro-3 cells already contain a small amount of the 
b phospho-isoform, this is not the case in untreated T47D 
cells that overexpress GSHPx. This favors the hypothesis 
that the intracellular levels of ROS control the level of the 
b phospho-isoform of IKB-a by activating a kinase or inac- 
tivating a phosphatase that is specific to this protein. 
Hence, the GSHPx-mediated low levels of ROS, by inhib- 
iting IKB-et phosphorylation, probably abolish the specific 
proteolysis of phosphorylated IKB-et that results in NF-KB 
activation. 
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