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1  | INTRODUC TION

Circadian rhythms such as the sleep–wake cycle are internal rhythms 

that exist on a 24-hr period. These rhythms are generated by the 

suprachiasmatic nuclei (SCN) in the hypothalamus to integrate envi-

ronmental cues and modulate diverse biological processes (Mohawk 

& Takahashi, 2011). Importantly, these rhythms can be disrupted by 

aging or environmental/genetic changes, leading to abnormal sleep 

patterns and other physiological and transcriptional disturbances. 

Circadian rhythm disruption is a symptom of numerous neurolog-

ical and psychiatric diseases, including Alzheimer's disease (AD) 

(Coogan et al., 2013; Musiek & Holtzman, 2016). AD is a well-known 
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Abstract
A promising new therapeutic target for the treatment of Alzheimer's disease (AD) 

is the circadian system. Although patients with AD are known to have abnormal 

circadian rhythms and suffer sleep disturbances, the role of the molecular clock in 

regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored 

how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse micro-

glia.	We	discovered	that,	at	Circadian	time	4	(CT4),	microglia	expressed	higher	levels	
of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary Aβ1-

42 (fAβ1-42) than at CT12. BMAL1 directly drives transcription of REV-ERB proteins, 

which are implicated in microglial activation. Interestingly, pharmacological inhibi-

tion of REV-ERBs with the small molecule antagonist SR8278 or genetic knockdown 

of REV-ERBs-accelerated microglial uptake of fAβ1-42 and increased transcription of 

BMAL1. SR8278 also promoted microglia polarization toward a phagocytic M2-like 

phenotype with increased P2Y12 receptor expression. Finally, constitutive deletion 

of Rev-erbα in the 5XFAD model of AD decreased amyloid plaque number and size 

and prevented plaque-associated increases in disease-associated microglia markers 

including TREM2, CD45, and Clec7a. Altogether, our work suggests a novel strategy 

for controlling Aβ clearance and neuroinflammation by targeting REV-ERBs and pro-

vides new insights into the role of REV-ERBs in AD.
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neurodegenerative disorder that is accompanied by the accumulation 

of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain, 

cognitive	impairment,	and	memory	loss	(Eriksen	&	Janus,	2007).	The	
molecular changes associated with AD can be exacerbated by circa-

dian irregularities (Musiek, Xiong, & Holtzman, 2015; Saeed & Abbott, 

2017). Indeed, recent studies have revealed that circadian rhythms di-

rectly affect Aβ dynamics and pathology (Kress et al., 2018; Schmitt, 

Grimm, & Eckert, 2017). Despite evidence for the role of the circadian 

system in Aβ metabolism, the underlying molecular mechanisms for its 

involvement in AD remain largely unknown.

Components of the cellular circadian clock system are expressed 

in virtually all cells in the body. The core components of this system, 

Bmal1 and Clock, heterodimerize and bind to specific cis-regulatory 

enhancer sequences known as the E-boxes. These proteins drive 

the transcription of several clock-related genes including Period 

(Per1/2/3), Cryptochrome (Cry1/2), REV-ERB proteins (Nr1d1/Nr1d2 

encode REV-ERBα/REV-ERBβ), and retinoic acid receptor-related or-

phan receptors (e.g., Rora).	Of	these,	REV-ERBα and β transcriptionally 

repress	Bmal1	by	binding	to	the	RORE	cis-element in its promoter re-

gion (Herzog, Hermanstyne, Smyllie, & Hastings, 2017) and connect 

the circadian system to macrophage-driven inflammation (Gibbs et 

al., 2012; Griffin et al., 2019; Pariollaud et al., 2018). Rev-Erbα/β are 

also nuclear receptors which function as transcriptional repressors and 

exert a variety of biological functions (Everett & Lazar, 2014; Lam et 

al.,	2013;	Woldt	et	al.,	2013).	Recent	studies	suggest	that	modulating	
REV-ERBα activity can be a potent therapeutic target for neurodegen-

erative disease such as AD via modulating the glia activity and neu-

roinflammation response (Griffin et al., 2019; Roby et al., 2019).

The initial responders to Aβ accumulation in the brain are innate im-

mune cells known as microglia. Microglia rhythmically express circadian 

clock genes that can regulate function, including phagocytosis, inflam-

matory responses, and autophagy (Fonken et al., 2015; Ma, Li, Molusky, 

& Lin, 2012). This regulation may occur in part by mediating pro-in-

flammatory chemokine expression (Lam et al., 2013; Sato et al., 2014). 

Microglia are highly sensitive to environmental cues and can immedi-

ately transform their morphology into distinctive phenotypes, including 

resting, classically activated (M1), and alternatively activated (M2) mi-

croglia	(Ma,	Wang,	Wang,	&	Yang,	2017;	Zhou	et	al.,	2017).	M1	polar-
ized microglia are generally associated with pro-inflammatory cytokine 

production, while M2 polarization is associated with phagocytosis and 

neural	repair	(Cherry,	Olschowka,	&	O'Banion,	2014;	Hu	et	al.,	2015).
Microglial activation is also mediated by several purinoceptors 

(Koizumi,	Ohsawa,	 Inoue,	&	Kohsaka,	2013).	Recently,	 the	puriner-
gic receptor P2Y12R, a Gi/o-coupled ATP receptor, was proposed 

as a specific marker for rodent microglia, particularly for the M2 

phenotype	 (Butovsky	 et	 al.,	 2014;	Moore	 et	 al.,	 2015;	 Zhu	 et	 al.,	
2017). Moreover, P2Y12R is considered to be a primary receptor 

that acutely induces microglial chemotaxis toward injury sites or 

Aβ plaques (Thériault, ElAli, & Rivest, 2015). P2Y12R is also impli-

cated in synaptic pruning via modulating microglial phagocytosis. 

Recent work shows that sleep deprivation disrupted the process of 

synapse elimination and complement signaling with reduced expres-

sion of P2Y12R in adolescent but not in adult (Tuan & Lee., 2019). 

Interestingly, transcription of P2Y12R in microglia depends on Bmal1 

and circadian-driven expression of P2Y12R controls diurnal morpho-

logical changes in cortical microglia (Hayashi, 2013).

We	hypothesized	that	dysregulated	clock	machinery	in	microglia	
might influence microglial behavior in the context of Aβ clearance. In 

this study, we show a relationship between microglial circadian clock 

oscillation and Aβ uptake, elucidate the effects of circadian repres-

sors REV-ERBα/β on Aβ clearance via increased microglial phago-

cytic activity, and demonstrate that REV-ERBα deletion reduces 

amyloid	plaque	accumulation	in	5XFAD	mice.	Our	findings	suggest	
that REV-ERBs are important regulators of Aβ pathology and sug-

gest that they may be a therapeutic target to delay AD progression.

2  | RESULTS

2.1 | Diurnal expression of circadian genes in vivo in 
microglia and macrophages

To investigate whether circadian gene expression was disrupted in a 

mouse model of AD, we measured the level of BMAL1, a core clock 

gene,	 in	 6.5-month	WT	 and	 5XFAD	 mouse	 brain	 by	Western	 blot.	
BMAL1	was	severely	attenuated	in	5XFAD	cortex	compared	with	WT	
(Figure 1a). In addition, Period1 (Per1) and Period2 (Per2) were signifi-

cantly dampened in 5XFAD cortex as well as in the hippocampus at 

the transcription levels (Figure 1b). Next, we initially confirmed that 

myeloid lineage cells possess molecular clock machinery in vivo prior 

to investigating the effect of circadian clock genes on microglial activ-

ity in AD. To test this, we isolated murine peritoneal macrophages at 

Circadian Time (CT) 6, 12, 18, 24, and 30. This revealed that, in peri-

toneal macrophages, the expression of several key clock components 

(Bmal1, Clock, Cry1, Cry2, Per1, Per2, Rev-erbα,	and	RORα) dynami-

cally oscillated in a time-dependent manner (Figure 1c), in keeping with 

previous reports (Keller et al., 2009). In particular, the expression of 

Bmal1, which encodes a core clock protein, was lowest at CT12 and 

peaked at around CT24. To more directly investigate the diurnal expres-

sion of Bmal1 in microglia, we performed double immunohistochemical 

staining for the Bmal1 and microglial marker, Iba1 at CT12 and CT24 in 

mouse brain sections that included striatum. Similar to previous in vivo 

data (Figure 1c), Bmal1 expression was higher at CT24 than at CT12 

in Iba1-positive cells and dramatically decreased in 5XFAD mice, es-

pecially	at	ZT24	(Figure	S1).	Interestingly,	the	daily	pattern	of	BMAL1	
expression in microglia entirely reversed in the brain of 5XFAD mice 

compared	to	WT	mice	between	ZT12	and	ZT24	(Figure	S1).

2.2 | Regulation of Aβ uptake and clearance by 
clock proteins in BV-2 microglia

We	 then	 examined	 the	 expression	 of	 circadian	 genes	 in	vitro	 using	
immortalized BV-2 mouse microglial cells. BV-2 cells were synchro-

nized with 50% horse serum (HS) for 2 hr. Interestingly, synchronized 

BV-2 cells expressed Bmal1 in a biphasic manner that is not clearly 
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circadian (Figure 2a). However, in order to test the effects of clock 

gene expression levels on Aβ uptake, we defined CT4 and CT12 as 

the peak and nadir times of Bmal1 expression, respectively. To explore 

how the daily rhythms of gene expression affected microglial uptake 

of fAβ1–42, we treated synchronized BV-2 cells with fAβ1–42 (1 µM) at 

CT4 and CT12 and then analyzed the amount of fAβ1–42 in cell lysates. 

In synchronized BV-2 cells, fAβ1–42 (1 µM) uptake was highest 2 hr 

after treatment (Figure 2b). Interestingly, we observed that microglia 

engulfed more fAβ1–42 at CT4 than at CT12 (Figure 2c,d). Using immu-

nocytochemistry, we confirmed that more FITC-Aβ1–42 (100 nM) was 

taken up by microglia at CT4 (Figure 2e). Thus, Aβ uptake by BV-2 cells 

varies with time of day in parallel with Bmal1 expression.

We	then	tested	whether	the	pharmacological	manipulation	of	the	
core circadian clock could alter fAβ1-42 uptake. SR8278 is known to 

inhibit REV-ERBα/β activity, thereby reducing repressive effects on 

Bmal1	and	 inducing	Bmal1	expression	 (Kojetin,	Wang,	Kamenecka,	
& Burris, 2011). Moreover, Bmal1 drives expression of REV-ERBα/β, 

suggesting that REV-ERBs could control Aβ uptake in microglia 

downstream of Bmal1. As expected, SR8278 treatment (20 μM) up-

regulated Bmal1 (Figure 3a) and increased fAβ1–42 uptake by BV-2 

F I G U R E  1   Patterns of circadian gene expression in murine peritoneal macrophages in vitro and microglia in vivo. (a) The expression of 

core clock protein, BMAL1, and Aβ	in	the	cortex	of	WT	and	5XFAD	at	6.5	months.	*p	<	.05,	***p	<	.001	compared	to	WT.	(b)	Comparing	the	
mRNA	levels	of	Per1/Per2	in	the	cortex	and	hippocampus	of	WT	and	5XFAD.	*p	<	.05	compared	to	WT.	(c)	The	expression	of	several	clock-
related genes in peritoneal macrophages is time-dependent
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cells relative to vehicle treatment in a dose-dependent manner 

(Figure 3b). To verify that the effect of SR8278 was on Aβ uptake, not 

its degradation, BV2 cells were treated with a Bafilomycin 1A (Baf) 

which	blocks	autophagic	flux.	We	measured	engulfed	fAβ1–42 levels 

in cell lysate after 2 and 8 hr under the Baf treatment. SR8278 again 

increased the amount of engulfed fAβ1–42 even when degradation 

was blocked (Figure 3c,d). This effect was more obvious after 8 hr 

fAβ1–42 treatment. In addition, SR8278 significantly increased Aβ in-

ternalization-related receptors such as CD36 and TREM2, as well as 

the TREM2 adaptor gene DAP12 (Figure 3e). Altogether, these data 

indicate that in BV-2 cells, alterations of circadian gene expression 

modulate fAβ1–42 uptake and that pharmacologic inhibition of REV-

ERBs increased fAβ1–42 uptake.

2.3 | siRNA-mediated REV-ERB knockdown 
accelerates the fAβ

1–42
 uptake in primary microglia

To confirm the enhancement of microglial fAβ1–42 uptake following 

REV-ERBs inhibition, we measured amount of engulfed fAβ1–42 in 

F I G U R E  2   The phagocytic capacity of BV-2 microglia varies with circadian gene expression. (a) The pattern of the clock gene Bmal1 

expression in BV-2 cells. BV-2 cells were synchronized with 50% horse serum (HS), and total RNA was extracted every 4 hr for 28 hr. (b) The 

rate of Aβ degradation in synchronized BV-2 cells. The graph shows the densitometric quantification of the immunoblot bands. (c) fAβ1-42 

internalization	was	more	efficient	at	circadian	time	(CT)	4	than	at	CT12.	Representative	Western	blot	and	relative	band	densities	of	Aβ in 

BV-2 cell lysates at different time points (1, 2, 4, and 8) after fAβ1-42 treatment. (d) Total amount of engulfed Aβ in the cell lysate after 2 hr. 

We	treated	fAβ1-42	(1	µM)	in	synchronized	BV-2	Cells	at	the	different	time	point,	Peak	(CT4)	and	Nadir	(CT12),	respectively.	**p < .01. (P: 

Peak, N: Nadir) (e) Representative fluorescent images of FITC-fAβ1-42-positive cells over time (left) and (f) normalized fluorescence intensity 

values at CT4 and CT12 (right). BV-2 cells were initially treated with 100 nM FITC-fAβ1-42.	**p < .01
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primary	mouse	microglia	using	 siRNA	targeting	both	REV-ERBs.	We	
achieved a only partial knockdown of Rev-erbα (35%) and Rev-erbβ 

(60%) at the transcription levels, but it was adequate to induce in-

creased	expression	of	Bmal1	(Figure	4a).	We	found	that	fAβ1–42 uptake 

was induced in siREV-ERBs transfected primary microglia but was not 

affected	in	cells	transfected	with	control	siRNA	(Figure	4b).	We	also	
used siRNA to knockdown REV-ERBβ levels in primary microglia from 

REV-ERBα	 knockout	 (RKO)	mice	 (Figure	4c)	 and	 then	measured	 the	
levels of fAβ1–42 after 2 hr treatment. As we expected, fAβ1–42 uptake 

was increased in siREV-ERBβ/RKO	primary	microglia	compared	with	
siControl-transfected	WT	 primary	microglia	 (Figure	 4d).	 From	 these	
results, we clearly suggest that microglial fAβ1–42 uptake was regulated 

REV-ERBs-dependent manner.

2.4 | SR8278 upregulates P2Y
12

R expression and 
promotes M2 polarization

Microglia express many purinergic receptors, including P2Y12R and 

P2X7R. These receptors, which regulate microglia process length, 

have been closely linked to circadian gene expression. Indeed, 

P2Y12R expression and P2X7R expression are directly modulated 

by Bmal1 and Per1, respectively (Hayashi, 2013; Nakazato et al., 

2011). Therefore, we hypothesized that since SR8278 increases 

Bmal1 expression, it might regulate P2Y12R and P2X7R expression 

and	 subsequently	 alter	microglial	morphology.	We	 first	 examined	
whether SR8278-induced microglial activation was associated with 

changes in P2Y12R expression and P2X7R expression. To test this, 

we analyzed the expression of these receptors in BV-2 cells using 

quantitative PCR (qPCR) and immunocytochemistry. Interestingly, 

SR8278 induced P2Y12R expression at the transcript level in both 

the presence and absence of fAβ1–42 (Figure 5a). It also induced the 

upregulation of Bmal1 but not Per1	(Figure	5a).	We	then	examined	
how changes in P2Y12R expression affected microglial morphology 

by observing cells after SR8278 treatment in the presence or ab-

sence of fAβ1–42. This revealed that SR8278 significantly increased 

both microglial process length and P2Y12R expression (Figure 5b). 

Together, these data suggest that SR8278 increases the expression 

of P2Y12R in microglia, perhaps by regulating Bmal1 expression. 

These effects may initiate microglial chemotaxis to promote fAβ1–42 

internalization.	 We	 further	 investigated	 whether	 the	 elongation	
of microglial processes was induced when Bmal1 was at its peak 

(ZT24)	 in	vivo	using	brain	sectioning.	As	expected,	microglial	pro-

cess	length	was	higher	at	ZT24	than	at	ZT12	(Figure	S2).	However,	it	

F I G U R E  3   Inhibition of REV-ERBs 

by SR8278 induces Bmal1 and other 

Aβ internalization-related receptors 

and accelerates the Aβ uptake. (a) 

Effects of the REV-ERBs antagonist, 

SR8278 (20 µM) on Bmal1 expression. 

**p < .01. (b) SR8278 increased Aβ 

internalization. Synchronized BV-2 cells 

were preincubated with SR8278 (10 µM, 

20 µM) for 24 hr before treatment with 

fAβ1-42	(1	µM)	for	2	hr.	**p < .01. (c-d) 

Time-dependent accumulation of Aβ in 

the cell lysate by SR8278 with LC3BII 

accumulation under the Bafilomycin-

treated conditions. Synchronized BV-2 

cells were preincubated with SR8278 

(20	µM)	or	vehicle	DMSO	for	24	hr	and	
added Bafilomycin (100 nM) for 1 hr. 

Aβ levels were measured at 2 and 8 hr 

after	treatment.	*p	<	.05,	**p < .01 and 

***p < .001 compared to vehicle-treated 

group. Experiments were replicated 

three times. (e) Aβ internalization-related 

receptors (CD36 and TREM2) and TREM2 

adaptor protein (DAP12) were measured 

after SR8278 (20 µM) treatment. 

***p < .001 compared to vehicle-treated 

group
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was dampened in 5XFAD mice (Figure 5c) along with Bmal1 down-

regulation (Figure S1).

Due to the high levels of microglia phagocytic activation induced 

by SR8278, we hypothesized that SR8278 would promote M2 microg-

lial polarization, as M2 gene expression is associated with phagocytic 

activation. As expected, SR8278 dramatically increased the expression 

of M2 surface markers (CD206, IL-10, and YM-1) and decreased the 

expression of the M1 signature markers (iNOS and Cox-2), indicating a 

shift toward M2 phenotype following SR8278 treatment (Figure 5d). 

These results suggest a role for REV-ERBs on microglia morphology as 

well as their phenotype.

2.5 | Loss of REV-ERBα suppresses amyloid 
plaque pathology

Because we observed a positive effect of REV-ERBα/β knockdown 

or their antagonist SR8278 on the clearance of fAβ1-42 in microglia in 

vitro, we suspected that REV-ERBα-depletion could mitigate amyloid 

plaque deposition in an AD mouse model. To test this, we crossed 

constitutive global REV-ERBα	 KO	mice	with	 5XFAD	mice	 and	 ana-
lyzed plaque burden at 3.5 months old, an early plaque deposition 

time point. Using thioflavin-S staining, we found that amyloid plaque 

in the brain including the cortex, hippocampus, and thalamus of 

5XFAD mice was dramatically decreased by REV-ERBα deficiency 

(Figure	6a).	We	also	observed	a	striking	reduction	in	total	levels	of	Aβ 

using	WB	(Figure	6b)	as	well	as	a	decrease	in	the	number	and	size	of	
plaques	(Figure	6c–f)	in	the	same	brain	regions	of	5XFAD/RKO	mice.	
Hippocampal X34 plaque burden did not reach statistical significance 

in	5XFAD/RKO	mice	due	to	a	single	mouse,	but	it	was	a	strong	trend	
toward a decrease in that region (Figure 6d). Since we observed a re-

duction in the number of plaques in REV-ERBα-deficient 5XFAD mice, 

we evaluated phagocytic microglia surrounding plaques in the brain. 

We	stained	 for	 Iba1	 to	 label	microglia	and	CD68	to	 indicate	micro-

glial lysosomes, a marker of phagocytic activation. Plaque-associated 

Iba1+/CD68+	microglia	were	not	increased	in	5XFAD/RKO	compared	
with the cortex of 5XFAD (Figure 6e,f). This may be due to the mark-

edly	decreased	number	of	plaques	in	the	5XFAD/RKO	mice	leading.	
In contrast, REV-ERBα-deficient mice without plaques showed high 

levels	 of	 Iba1	 and	CD68	at	 the	 transcription	 levels	 (Figure	6g).	We	
suspect that phagocytic microglia activation caused by REV-ERBα 

deletion causes Aβ clearance early in the disease stage and prevents 

plaques from ever forming, thereby also preventing plaque-associated 

inflammation.

F I G U R E  4   Knockdown of REV-ERBα/β 

accelerates the microglial Aβ uptake in 

primary microglia. (a) mRNA Expression 

of Bmal1, Rev-erbα, and Rev-erbβ in 

siREV-ERBα/β-transfected	WT	mouse	
primary	microglia.	**p	<	.01,	***p < .001 

compared to siControl-transfected 

group. (b) Internalized Aβ levels in the cell 

lysate of siREV-ERBα/β-transfected	WT	
mouse primary microglia and siControl-

transfected group, after 2 hr of Aβ 

exposure. (c) Expression of Bmal1 and 

Rev-erbβ in siREV-ERBβ-transfected	RKO	
mouse	primary	microglia.	***p < .001 

compared to siControl-transfected 

cells. (d) Internalized Aβ levels in the cell 

lysate of siREV-ERBβ-transfected	RKO	
mouse primary microglia and siControl-

transfected	cells.	*p < .05 compared to 

siControl-transfected cells
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2.6 | Loss of REV-ERBα prevents plaques-associated 
increases in DAM markers and synapse loss in 
5XFAD mice

Because amyloid plaque deposition is associated with the accumula-

tion of disease-associated microglia (DAM) (Keren et al., 2017), we 

examined expression of the DAM markers Trem2, Clec7a, and CD45 

within	the	cortex	of	5XFAD/RKO	compared	with	the	5XFAD.	All	of	
these markers were significantly increased in 5XFAD but were in-

creased	to	a	lesser	degree	in	RKO/5XFAD	mice	(Figure	7a).	CD206	

and Arginase 1 were both decreased in 5XFAD brain, while their lev-

els	were	preserved	in	5XFAD/RKO	mice,	suggesting	that	REV-ERBα 

deletion can promote a phagocytic M2-like state (Figure 7b), similar 

to our results in vitro (Figure 5d). Pro-inflammatory cytokines IL-6 

and IL-1β	were	unchanged	in	both	5XFAD	and	RKO/5XFAD	at	this	
young	 age	 (Figure	 7b).	We	 further	 observed	 a	 decrease	 in	 synap-

tic proteins (Synapsin and PSD95) in 5XFAD cortex which was res-

cued	in	5XFAD/RKO	mice	(Figure	7c).	It	is	likely	that	the	diminished	
plaque	burden	in	5XFAD/RKO	mice	is	what	drives	these	changes	in	
DAM marker expression and synaptic protein levels, though direct 

F I G U R E  5   SR8278 induces microglial process extension and expression of P2Y12R and Bmal1. (a) In both the presence and absence of 

fAβ1-42, SR8278 treatment significantly induced P2Y12R and Bmal1, but not P2X7R or Per1, in a dose-dependent manner. Synchronized BV-2 

cells were pretreated with SR8278 (20 µM) for 24 hr before treatment with fAβ1-42 (1 µM, 2 µM) for 2 hr. Each gene was analyzed using 

qPCR.	*p	<	.05,	**p < .01. (b) SR8278 (20 µM) recovered the fluorescence intensity of Bmal1 and P2Y12R and increased microglial process 

length in either the absence or presence of fAβ1-42 (P2Y12R in red and Bmal1 in green). The graph shows the average length of the longest 

microglial	processes	from	the	46	microglia	in	each	group.	***p < .001 compared to the vehicle-treated group and ###p < .001 compared to the 

fAβ-treated	group.	(c)	The	expression	of	M1-type	Markers	(iNOS,	Cox-2)	and	M2-type	markers	(CD206,	IL-10,	YM-1)	after	SR8278	(20	µM)	
treatment	for	24	hr	in	BV-2	cells	was	determined	using	qPCR.	***p < .001 compared to the vehicle-treated group
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F I G U R E  6   Deletion of REV-ERBα mitigates amyloid plaque deposition in 5XFAD mice. (a) Representative image from thioflavin-S 

staining of the brain sections including the cortex, hippocampus, and thalamus from 5XFAD and 5XFAD/REV-ERα	knockout	(RKO)	mice	
at 3.5 months. (n	=	6–7	mice	were	analyzed	per	group).	(b)	Western	blot	analysis	of	Aβ peptide (4KDa) and β-actin expression in each brain 

lysate. β-actin	was	used	as	a	loading	control.	**p	<	.01,	***p < .001 compared to the 5XFAD. (c) Representative image of X34 staining in the 

brain	of	5XFAD	and	5XFAD/RKO.	(d)	Quantification	of	X34-positive	plaque	number	and	%	area	of	X34	staining	for	each	group	mice	brain	
using	Image	J.	*p	<	.05,	**p < .01 compared to the 5XFAD. (e) Representative images from confocal analysis of IBA1 and CD68 staining 

surrounding	X34-positive	plaques	in	the	cortex	of	5XFAD	and	5XFAD/RKO	(X34	in	Blue,	IBA1	in	Red,	and	CD68	in	Green)	(f)	Quantification	
of X34-positive plaque and plaque-associated microglia (Iba1)/phagocytic microglia (CD68). Total volume of Iba1 and CD68 were normalized 

by	X34	volume	for	each	plaque.	**p < .01 compared to the 5XFAD (n = 30–44 plaques) (g) mRNA expression of Iba1 and CD68 in the cortex 

of	each	group	mice	(WT,	RKO,	5XFAD,	5XFAD/RKO).	*p	<	.05,	**p	<	.01,	and	***p < .001

F I G U R E  7   REV-ERBα deletion in 5XFAD mice mitigates changes in DAM and synaptic markers and induces M2 microglial markers 

without alteration of APP processing. (a) mRNA expression of DAM markers including TREM2, CD45, and Clec7a and (b) pro-inflammatory 

cytokines (IL-6 and IL-1β) as well as the M2 surface markers (CD206 and Arginase1)	in	the	cortex	of	WT,	5XFAD,	and	5XFAD/RKO.	*p < .05, 

***p	<	.001	compared	to	WT.	#p < .05 and ##p	<	.01	compared	to	the	5XFAD.	(c)	Western	blot	analysis	of	synaptic	markers	PSD95	and	
synapsin II in the cortex of all three different genotypes of mice. β-actin	was	used	as	a	loading	control.	**p	<	.01	compared	to	WT	and	
##p	<	.01	compared	to	the	5XFAD.	(d)	Total	amount	of	APP	in	the	cortex	of	each	group	of	mice	by	Western	blot	and	(e)	qPCR	analysis	of	Aβ 

degradating	enzymes	(IDE,	MMP2,	and	MMP9)	from	the	same	group	of	mice.	***p	<	.001	compared	to	WT
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effects of REV-ERBα on plaque-related microglial changes cannot 

be excluded.

To ensure that these results were not due to differences in 

transgene expression, we examined the levels of genes and proteins 

involved in Aβ	 synthesis	 and	 degradation.	 Western	 blot	 analysis	
showed	 no	 differences	 between	 5XFAD	 and	 5XFAD/RKO	 in	 APP	
protein (Figure 7d), and transcript levels of Aβ-degradating enzymes 

including IDE, MMP2, and MMP9 showed no significant changes 

between the two genotype (Figure 7e), suggesting that REV-ERBα 

depletion did not alter APP expression and processing. Together, our 

findings indicate that REV-ERBs have important role for Aβ clear-

ance, likely via microglia, leading to diminished plaque accumulation 

in REV-ERBα-deficient mice.

3  | DISCUSSION

Our	study	is	the	first	to	show	that	the	microglial	phagocytosis	of	Aβ 

undergoes circadian regulation. Herein, we demonstrated that the 

pharmacological inhibition of circadian repressor REV-ERBα/β using 

SR8278 enhanced microglial Aβ phagocytosis activity and increased 

Bmal1 expression as well as induction of the Aβ internalization-related 

receptors, CD36 and TREM2. Furthermore, we observed induction 

of P2Y12R, a microglia-specific purinergic receptor, by SR8278 treat-

ment, and found that SR8278 also led to M2 polarization in vitro and 

in vivo. Genetic knockdown of REV-ERBs also enhanced Aβ uptake 

by microglia, and global deletion of REV-ERBα strikingly reduced 

amyloid plaque burden without alteration of APP processing enzymes 

and amyloid precursor protein (APP) in the brain of 5XFAD mice. 

Disease-associated microglia markers (DAMs) including Clec7a, CD45, 

and TREM2 were increased in 5XFAD mice but virtually returned to 

normal levels when REV-ERBα was deleted. Ultimately, our results 

strongly suggest that REV-ERBs inhibition could be considered as a 

therapeutic strategy for enhancing microglia-mediated Aβ degradation 

and limiting amyloid plaque deposition in AD.

Numerous studies have suggested that the circadian system 

plays a pivotal role in neurodegenerative/neuroinflammatory dis-

eases such as AD and Parkinson's disease (Musiek & Holtzman, 

2016). Indeed, sleep and circadian dysfunction may manifest very 

early in AD progression (Musiek et al., 2018). Furthermore, chronic 

sleep deprivation increases amyloid plaque deposition (Kang et al., 

2009), while sleep augmentation induced by the genetic deletion 

of orexin strongly suppresses amyloid plaque formation in AD mice 

(Roh et al., 2014). Moreover, disruption of the circadian system by 

deletion of Bmal1 accelerates plaque accumulation in APP/PS1 mice 

(Kress et al., 2018), though the mechanisms remain unclear. Despite 

increasing evidence that molecular clockwork exists in neuroglia, in-

cluding	microglia	(Fonken	et	al.,	2015;	Jackson,	2011),	the	role	of	the	
microglial circadian system in amyloid clearance remained largely 

unknown.	Our	study	shows	that	the	core	clock	protein	Bmal1	was	
more	highly	expressed	at	ZT24	than	at	ZT12	in	murine	microglia	and	
this was completely reversed in 5XFAD mice (Figure S1), suggest-

ing	microglial	 clock	 disruption	 in	 this	 amyloidosis	model.	We	 also	

demonstrate a time-of-day dependence of microglial Aβ uptake, in-

dicating that the microglial molecular clock machinery can be a key 

regulator of microglial activity in AD. Further studies are needed to 

explore the effect of AD pathology on microglial circadian clocks 

and the mechanisms by which the clock regulates microglial phago-

cytic function.

Perhaps our most important finding was that suppression of 

REV-ERBα/β enhanced microglial Aβ phagocytosis in vitro and mit-

igate	plaque	deposition	 in	5XFAD	mice	 in	 vivo.	We	demonstrated	
using REV-ERBs antagonist, SR8278 and siRNA-mediated knock-

down experiments in vitro, as well as genetic manipulation of REV-

ERBα in vivo. SR8278 induced Bmal1 expression and accelerated 

microglial Aβ uptake even when lysosomal degradation was blocked 

with Bafilomycin A1 (Figure 3c), leading to an increase in the Aβ en-

docytosis-related receptors CD36 and TREM2 (Figure 3d). Microglia 

cells express diverse receptors that cooperate in the recognition, 

internalization, phagocytosis, and clearance of Amyloid-β, as well 

as the inflammatory response (Doens & Fernández, 2014). Among 

them, CD36/TLR4/TREM2 were considered as recycling receptors 

for Aβ phagocytosis and necessary factors for the LC3-associated 

endocytosis	(LANDO)	pathway	(Heckmann	et	al.,	2019.).	We	suspect	
that	REV-ERBs	activity	might	participate	in	LANDO	via	modulating	
the expression of receptors in microglia. TREM2 is a well-character-

ized Aβ receptor that participates in Aβ endocytosis and elimination 

and can help glia-mediated synaptic engulfment in neurodevelop-

ment	(Jay	et	al.,	2019;	Zhong	et	al.,	2019).	Interestingly,	SR8278	sig-
nificantly increased the expression of DAP12 which is considered as 

TREM2 adaptor in microglia, as well as induced TREM2 levels, indi-

cating that SR8278 could propagate TREM2 downstream signaling 

in microglia. TREM2 induction was also seen following REV-ERBα 

deletion in another paper (Griffin et al., 2019). Moreover, numerous 

studies support that TREM2 has critical role on tauopathy and amy-

loid pathology (Leyns et al., 2019). Thus, we suspect that REV-ERBs 

could be a potent candidate for AD therapy targeting tau. However, 

it still remains to be seen how REV-ERBs impact tau spreading/prop-

agation. Taken together, our results suggest that pharmacological in-

hibition of REV-ERBs may improve Aβ pathology through activating 

the microglial phagocytic activity in patients with AD.

Our	data	suggest	that	SR8278	may	enhance	microglial	phagocy-
tosis of Aβ by modulating P2Y12R expression. Microglia are sensitive 

to environmental changes and can immediately transform their mor-

phology in response to purinergic receptor activation (Koizumi et 

al., 2013). Specifically, microglia that are initially highly branched or 

ramified can undergo process extension and increase P2Y12R expres-

sion. Recent studies have shown that cortical microglia rhythmically 

express P2Y12R throughout the day (Hayashi, 2013). This suggests 

that molecular clockwork may regulate microglial phagocytic be-

havior by modulating purinergic receptor expression, which could 

further accelerate the clearance of Aβ aggregates. In this study, we 

showed that SR8278 enhanced P2Y12R expression, thereby increas-

ing microglial process length and enabling the phagocytosis of Aβ ag-

gregates (Figure 5). Another purinergic receptor subtype—P2X7—is 

selectively upregulated by ATP-induced Per1 expression (Nakazato 
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et al., 2011), but was unaffected by SR8278 (Figure 5a). In addition, 

the process length of microglia in 5XFAD mice (Figure 5c) exhibited 

a	marked	 shortening	 at	ZT24	with	 the	 reduction	 in	Bmal1	 (Figure	
S1), indicating that lower Bmal1 expression or reduced functioning 

may be specifically associated with microglia morphology and activ-

ity. Altogether, these results suggest that SR8278 modulates P2Y12R 

expression in microglia, perhaps by inducing Bmal1, and this may in-

fluence microglial morphology and Aβ uptake.

Given the effects of SR8278 on purinergic receptor expression 

and process length, it is possible that SR8278 promotes M2-like mi-

croglial polarization. Recent several studies and researchers suggest 

that promoting the differentiation toward the neuroprotective M2 

polarization is protective in models of neurodegenerative diseases 

and traumatic brain injury (Song & Suk, 2017). In our studies, SR8278 

dramatically increased M2 type markers such as CD206, IL-10, and 

YM1 in vitro as well as in vivo (Figurea 5d and 7b), indicating that it 

may further promote a phagocytic microglial phenotype. Moreover, 

the previous report suggests that autophagy activation can accel-

erate M2 microglia polarization under both basal and inflammatory 

conditions	(Jin	et	al.,	2018),	and	REV-ERBs	has	been	linked	to	regu-

lation	of	autophagy	(Woldt	et	al.,	2013).	From	these	results,	we	sus-
pect that SR8278 might induce autophagy by suppressing REV-ERB 

function, promoting Aβ clearance and M2-like polarization.

Consistently, our study also showed that lower DAM markers 

which reflect “bad microglia” accompanied by more M2 microglia 

in REV-ERBα-deficient 5XFAD mouse brain. These data imply that 

modulating the REV-ERBs activity can improve the brain damage via 

releasing	 the	 protective	 factors	 from	M2	microglia.	We	 observed	
that REV-ERB inhibition/deletion alters microglial activation state to 

promote the removal of Aβ both in vitro and in vivo. Interestingly, 

REV-ERBα-deficient mice highly expressed Iba1 and CD68 as mark-

ers of microglia and phagocytic microglia, respectively, in the brain 

(Figure 6g). A previous report also showed significantly increased 

Iba1 and CD68 expression in hippocampal microglia of REV-ERBα 

knockout mice (Griffin et al., 2019). Thus, we suspect that high lev-

els of phagocytic microglia, evoked by REV-ERBα depletion, are 

likely responsible for the marked decrease in plaque accumulation 

in	RKO/5XFAD	mice.	Because	 these	mice	 accumulate	 less	plaque,	
there is a concomitant decrease in DAM microglial markers, as well 

as plaque-related synapse loss (Figure 7c). However, it is possible 

that REV-ERBs inhibition might directly promote synapse survival 

and limit DAM microglial marker expression independently of its ef-

fect on plaque burden, perhaps by promoting M2-like polarization. 

Furthermore, because global, constitutive REV-ERBα mice were 

used in our study with 5XFAD mice, we cannot exclude important 

contributions of cell types other than microglia, as REV-ERBs likely 

play important roles in neurons and other brain cell types. However, 

we did not observe changes in APP processing or other Aβ metabolic 

enzyme expression. Future studies in cell type-specific REV-ERBα 

KO	mice	will	be	needed	to	address	these	possibilities	in	more	detail.
Our	 studies	 investigating	 the	 REV-ERBs	 antagonist	 SR8278	 to	

definitively demonstrate the role of REV-ERBs in microglial activa-

tion for Aβ	clearance.	Our	data	reveal	that	the	inhibition	of	REV-ERBs	

effectively enhanced microglial phagocytosis in vivo and in vitro and 

also selectively increased P2Y12R expression in microglia, suggesting 

that SR8278 can modulate microglial process motility and promote 

M2-like polarization. In vivo, REV-ERBα strongly suppressed plaque 

accumulation and downstream Aβ toxicity in 5XFAD mice. Ultimately, 

our results strongly suggest that the circadian system intimately con-

trols microglial activation, potentially though REV-ERBs regulation, and 

it has therapeutic implications for a number of neurological disorders.

4  | E XPERIMENTAL PROCEDURES

4.1 | Animals

5XFAD and REV-ERBα	 knockout	 (KO)	mice	 were	 purchased	 from	
Jackson	Laboratories.	REV-ERBα	KO	mice	have	a	β-geo cassette re-

placing part of exon 2, all of exons 3–5, and part of exon 6 of the 

nuclear receptor subfamily 1, group D, member 1 (Nr1d1) gene, and 

abolishing gene function. To generate REV-ERBα deficient 5XFAD 

mice, 5XFAD mice were bred with REV-ERBα	KO	mice.	Each	group	
of mouse was housed in a different cage and was maintained at a 

constant ambient temperature (22 ± 1°C) with a 12:12 hr light-dark 

cycle and free access to water and food. All procedures were ap-

proved by the Institutional Animal Care and Use Committee of the 

Asan Institute for Life Sciences in Seoul, Korea.

4.2 | Reagents

SR8278 (#554718; Thermo Fisher Scientific) was dissolved in di-

methylsulfoxide	(DMSO).	Solutions	were	aliquoted	to	avoid	freeze-
thawing	 and	 stored	 at	 −80°C.	 Lipopolysaccharide	 (#L3024)	 was	
purchased from Sigma-Aldrich.

4.3 | Synthesis of fibrillar Aβ1-42

Aβ1-42 (#H1368; Bachem) and fluorescein isothiocyanate (FITC)-

conjugated Aβ1-42	(#M2585;	Bachem)	were	dissolved	in	DMSO	to	a	
final concentration of 500 µM (based on the original Aβ1–42 monomer 

concentration)	and	stored	at	−80°C.	Before	use,	fibrillar	Aβ1–42 (fAβ1-

42) was preincubated at 37°C for 24 hr in Dulbecco's modified Eagle's 

medium (DMEM) with high glucose (#21013024; Life Technologies). 

These compounds were then diluted 1:10 to a final concentration of 

50 µM. FITC-Aβ1-42 was always kept in the dark.

4.4 | Plaque staining

4.4.1 | Thioflavin-S staining

Staining was performed using thawed fresh-frozen sections post-

fixed in 4% paraformaldehyde (PFA). Free-floating brain sections 
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were washed with 1× phosphate-buffered saline (PBS). The sections 

were soaked in 1% thioflavin S solution for 8 min. Subsequently, sam-

ples	were	washed	with	70%	ethyl	alcohol	(EtOH)	for	5	min	and	were	
then washed twice with PBS. Sections were mounted using a fluo-

rescence mounting medium (#S3023; Dako) after minimal drying.

4.4.2 | X34 staining

Free-floating brain sections were washed three times with 1XPBS 

and incubated with 0.25% Triton X-100 in 1XPBS for 30 min at RT. 

The sections were stained with X34 staining buffer (1:3,000) for 

20 min and then washed three times with X34 wash buffer (40% 

EtOH	in	1XPBS)	for	2	min	at	RT.	Sections	were	mounted	using	fluo-

rescence mounting medium (#S3023; Dako) after two times of wash 

with 1XPBS for 5 min.

4.5 | Cell culture

Murine-immortalized microglial BV-2 cells were grown in DMEM 

supplemented with 5% fetal bovine serum (#10082147; Life 

Technologies) and 100 U/ml penicillin and streptomycin (#15140122; 

Life Technologies). All cells were maintained at 37°C in a humidified 

atmosphere	with	5%	CO2.

4.6 | Isolation of peritoneal macrophages

Wild-type	mice	were	 injected	 intraperitoneally	with	3	ml	of	1×	PBS	
at	ZT	6,	12,	18,	24,	and	30	(n = 3 per point in time). Three hours later, 

primary macrophages were collected from the peritoneal cavities of 

the anesthetized animals using 10-ml syringes. Macrophages were ob-

tained	by	centrifugation	at	400 g and 4°C. Following washing with PBS 

twice, each pellet was analyzed using qPCR.

4.7 | Isolation of primary microglia

Microglia were isolated from mixed glial that were obtained from 

the cerebral cortex of postnatal days 1–3 (P1-3) mice. Cortices were 

dissected stripped of meninges with cold DMEM and trypsinization 

with 0.05% trypsin-EDTA at 37°C for 10 min. Cells were suspended 

with complete media containing GM-CSF (5 ng/ml) after centrifu-

gation for 5 min and replated coated with PDL. Floating microglia 

were collected from the mixed glial cultures by shaking the flask at 

225 rpm for 2 hr after 10 days.

4.8 | siRNA transfection

Primary microglia were transfected with siRNA using lipo-

fectamine	 RNAiMAX	 (Life	 Technologies)	 in	 OptiMEM	 (Life	

Technologies) according to the manufacturer's instructions. siR-

NAs targeting mouse Nr1d1, Nr1d2, and scramble were obtained 

from	Dharmacon	 (Lafayette,	CO).	A	 siRNA	 to	RNAiMAX	ratio	of	
1:1.25 was used, and 40 pmol of siRNA (2.5 μL of 20 μM stock) 

was added to each well of a 12 well plate. Media was changed 

after 7 days.

4.9 | RNA preparation and qPCR analysis

Total RNA was extracted from cells using a NucleoSpin RNA kit 

(#740955.250; Macherey-Nagel) according to the manufacturer's in-

structions. RNA concentrations were determined using a Nanodrop 

ND 1000 spectrophotometer. cDNA was then synthesized using ap-

proximately	1	µg	of	RNA	and	the	ReverTra	Ace	qPCR	RT	Kit	(#FSQ-
101; Toyobo) according to the manufacturer's instructions. qPCR 

was	 performed	 on	 diluted	 cDNA	 samples	 using	 either	 iQ	 SYBR	
Green Supermix (#1708882; Bio-rad) or TaqMan primers and mat-

ers	mix	(Thermo)	with	a	StepOnePlus	RT-PCR	system.	Melting	curve	
analysis confirmed the specificity of each SYBR Green reaction. The 

PCR primer sequences are listed in Table 1.

4.10 | Immunoblot

Samples	 were	 harvested	 with	 a	 PRO-PREP	 protein	 extraction	 kit	
(#17081;	 iNtRON)	 supplemented	 with	 phosphatase	 inhibitor	 cock-
tail 2 (#P5726; Sigma-Aldrich) and centrifuged to remove cell debris. 

The concentrations of the prepared protein samples were determined 

using Bradford assays. Protein samples were separated by electropho-

resis on 10%–15% sodium dodecyl sulfate–polyacrylamide gels and 

then transferred electrophoretically to polyvinylidene difluoride mem-

branes. The membranes were blocked with 5% skim milk and then 

washed with PBS containing 0.05% Tween® 20. The membranes were 

then gently agitated and incubated at 4°C overnight with the follow-

ing primary antibodies: anti-Aβ (1:500, 6E10; #SIG-39340 or 1:1,000, 

82E1; IBL-America), anti-β-actin (1:1,000, AC-15, #A5441; Sigma), and 

anti-α-tubulin (1:1,000, T5168; Merck). The following day, the mem-

branes were washed and then incubated with horseradish peroxidase-

labeled anti-rabbit or anti-mouse secondary antibodies for 40 min at 

room temperature. Subsequently, membrane-bound horseradish per-

oxidase-labeled antibodies were detected using an enhanced chemi-

luminescence	 detection	 system	 including	 the	 Pierce	 ECL	 Western	
Blotting Substrate (#32106; Thermo Fisher Scientific). Densitometric 

quantification	 of	 the	 bands	 was	 conducted	 using	 ImageJ	 (Image	
Processing	and	Analysis	in	Java;	National	Institutes	of	Health).	Protein	
levels were normalized to β-actin or α-tubulin for quantification.

4.11 | Immunocytochemistry

Cells were seeded onto 24-well plates with poly-L-lysine-coated cov-

erslips and fixed with 4% paraformaldehyde (#A2025; Biosesang) 
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for 15 min. Subsequently, each well was washed with PBS and then 

incubated in blocking medium (3% bovine serum albumin [Probumin, 

#821006; Millipore] in PBS) for 30 min at room temperature. The 

samples were incubated for 1 hr with the following primary anti-

bodies diluted in PBS with 0.1% Triton X-100 and 10% HS: rabbit 

P2Y12R (1:500, NBP1-78249, #64805; Novus Biologicals), mouse 

Bmal1 (1:200, B-1, #sc-365645; Santa Cruz Biotechnology), and 

rabbit	Iba1	(1:1,000,	#016-20001;	Wako	Chemicals).	After	washing	
them three times with PBS, the cells were incubated with secondary 

Alexa Fluor™ 488- and 594-conjugated goat anti-mouse and goat 

anti-rabbit	 antibodies	 (Jackson	 ImmunoResearch	 Laboratories)	 di-
luted to 1:500 in PBS with 0.1% Triton X-100 and 10% HS for 30 min 

at	room	temperature.	The	nuclei	were	stained	with	4′,6-diamidino-
2-phenylindole (DAPI) for 10 min, and then, the cells were washed 

with PBS and mounted using a fluorescence mounting medium 

(#S3023; Dako).

4.12 | Immunohistochemistry

Fixed hemispheres of the mouse brains were cut into 35-μm sections 

(coronal sections) using a Leica VT1000S vibratome. Free-floating 

sections were washed with PBS three times for 5 min, blocked with 

3% bovine serum albumin for 30 min, and finally incubated with pri-

mary antibodies diluted in PBS [(rabbit Iba1, 1:1,000, #016-20001; 

Wako	Chemicals),	 (rat	CD68,	1:150,	MCA1957;	Bio-rad)]	overnight	
at 4°C. Incubated slices were then washed with PBS three times for 

5 min, incubated for 2 hr at room temperature with a secondary an-

tibody	(1:400;	Jackson	Laboratories)	in	PBS,	and	then	washed	with	
PBS three times for 5 min at room temperature. Cells were stained 

with DAPI and mounted using fluorescence mounting medium 

(#S3023;	Dako).	 Fluorescent	 images	were	 taken	with	 a	Zeiss	Axio	
Observer	Z1	microscope	and	processed	using	AxioVision	4.8.2.

4.13 | Confocal Imaging and 3D Reconstructions

Images	were	acquired	using	a	LSM	710	Confocal	microscope	(Zeiss)	
and	 the	ZEN	2011	 software	 package.	 Laser	 and	 detector	 settings	
were maintained constant for the acquisition of each immunostain-

ing.	 Z	 stacks	 were	 obtained	 from	 30-μm-thick sections using 

Colocalization analysis, and 3D reconstructions were created using 

Imaris 8 software. For quantification of plaque volume, images were 

imported	 to	 Fiji	 software	 (Image	 J)	 and	 data	 channels	were	 sepa-
rated (image/color/split channels). The volume of IBA1- and CD68-

positive microglia around plaques were measured in the Cortex over 

the	length	of	layers	3–5	using	Image	J.

4.14 | Statistical analysis

For the statistical analysis, Student's t tests (comparing two groups) 

or	one-way	analyses	of	variance	(ANOVAs)	with	Tukey	post	hoc	tests	

TA B L E  1   Primer sequences used for quantitative PCR

Gene Primer sequences

Bmal1 F: 5'-CCT AAT TCT CAG GGC AGC AGA T-3'

R: 5'-TCC AGT CTT GGC ATC AAT GAG T-3'

Clock F: 5'-TTG CTC CAC GGG AAT CCT T-3'

R: 5'-GGA GGG AAA GTG CTC TGT TGT AG-3'

Cry1 F: 5'-AAA AAT TCA CGC CAC AGG AG-3'

R: 5'-CGA ATG AAT GCA AAC TCC CT-3'

Cry2 F: 5'-GCT CCC AGC TTG GCT TGA-3'

R: 5'-TGT CCC TTC CTG TGT GGA AGA-3'

Per1 F: 5'-GTG TCG TGA TTA AAT TAG TCA G-3'

R: 5'-ACC ACT CAT GTC TGG GCC-3'

Per2 F: 5'-GCG GAT GCT CGT GGA ATC TT-3'

R: 5'-GCT CCT TCA GGG TCC TTA TC-3'

Rev-erbα F: 5'-AGC TCA ACT CCC TGG CAC TTA C-3'

R: 5'-CTT CTC GGA ATG CAT GTT GTT C-3'

RORα F: 5'-GCA CCT GAC CGA AGA CGA AA-3'

R: 5'-GAG CGA TCC GCT GAC ATC A-3'

P2Y12R F: 5'- CAC AGA GGG CTT TGG GAA CTT A -3'

R: 5'- TGG TCC TGC TTC TGC TGA ATC -3'

P2X7R F: 5'- TGT GTG CAT TGA CTT GCT CA -3'

R: 5'- CTT GCA TTT TCC CAA GC -3'

COX-2 F: 5'-GCA AAT CCT TGC TGT TCC AAC C-3'

R: 5'-GGA GAA GGC TTC CCA GCT TTT G-3'

CD206 F: 5'-AGT TGG GTT CTC CTG TAG CCC AA-3'

R: 5'-ACT ACT ACC TGA GCC CAC ACC TGC 

T-3'

Nrf-2 F: 5'-CAA GAC TTG GGC CAC TTA AAA 

GAC-3'

R: 5'-AGT AAG GCT TTC CAT CCT CAT CAC-3'

CD36 F: 5'- TCG GAA CTG TGG GCT CAT -3'

R: 5'- CCT CGG GGT CCT GAG TTA TAT TTT 

C -3'

TREM2 F: 5'- TGG GAC CTC TCC ACC AGT T -3'

R: 5'- GTG GTG TTG AGG GCT TGG -3'

DAP12 F: 5'- GAT TGC CCT GGC TGT GTA CT -3'

R: 5'- CTG GTC TCT GAC CCT GAA GC -3'

CD45 F: 5'- TCA GCA CTA TTG GTA GGC TCC -3'

R: 5'- ATG GTC CTC TGA ATA AAG CCC A -3'

Clec7a F: 5'- GTG CAG TAA GCT TTC CTG GG -3'

R: 5'- TCC CGC AAT CAG AGT GAA G -3'

Arginase1 F: 5'- TCA CCT GAG CTT TGA TGT CG -3'

R: 5'- TTC CCA AGA GTT GGG TTC AC -3'

YM1 F: 5'- ACC CCT GCC TGT GTA CTC ACC T -3'

R: 5'- CAC TGA ACG GGG CAG GTC CAA A -3'

IL-10 F: 5'- AAT TCC CTG GGT GAG AAG CTG -3'

R: 5'- TCA TGG CCT TGT AGA CAC CTT G -3'

IDE F: 5'- GAA CGA TGC CTG GAG ACT CTT -3'

R: 5'- TTC CCT TAC GTC GAT GCC TTC -3'

MMP2 F: 5'- CAA GTT CCC CGG CGA TGT C -3'

R: 5'- TTC TGG TCA AGG TCA CCT GTC -3'

MM9 F: 5'- GAG ACG GGT ATC CCT TCG AC -3'

R: 5'- TGA CAT GGG GCA CCA TTT GAG -3'

GAPDH F: 5'-CAT GGC CTT CCG TGT TCC TA-3'

R: 5'-CCT GCT TCA CCA CCT TCT TGA-3'



14 of 15  |     LEE Et aL.

were performed using GraphPad Prism software 8 and Sigma Plot 

8.0.	Differences	were	considered	significant	at	*p	<	 .05,	**p < .01, 

and	***p < .001. All experiments were replicated six times and are 

shown as the mean ± SEM.
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