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1. Introduction. Let B(n) be the number of oneg in the binary ex-
pangion of #. For example, B(37) = 3 since 37 = 32--4.4-1. Fix an in-
teger k¥ > 1. Numerical data indicates that if a large integer n is chosen
“at random,” then the difference B(kn)—B(n) is just as likely to be
negative as positive, and tends to be surprisingly small. On the other hand,
there are presumably anomalous integers n such that B(kn)> B(n)
for all & 2 1. We call such numbers sturdy, For example, the first 10 in-
tegers are sturdy, but 11 = 8+2 41 is not, since 3-11 = 82 1.

The question as to whether the sturdy numbers have zero dengity geemns
to be open, and rather difficult. Let S(z) denote the number of integers
less than or equal to » that are gturdy. We ghall show that

(1.1) : 8(z) > ol

amd ' .

(1.2) limint § () fo < 1/2.
-l

Inequality (1.1) is proved in Section 2. Inequality (1.2) is an immediate
consequence of the faet (proved in Section 3) that the number of golutions of

(1.8) B(3n)—B(n}) =a, 2"gp <t
is asymptotic to

(1.4) (8 /2nr)22% exp ( — 32 j2r)

for

(1.5) o] <P, a0,
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and is

(1.6) O{r2"exp{ —r**)]
for

(1.7 @] > r¥e,

For more general (but somewhat weaker) results of this nature, where 3
is replaced by k, see [3].

T¢ B(kn)—B(n) < 0 we say » is a k-flimsy number. We call a number
flimsy if it is k-flimsy for some k. It seems natural to conjecture that for
distinet odd integers k., k, > 3 the properties k-flimgy and k,-flimsy
are statistically independent in some reagonable sense. Howover, this
seemsg to be very difficult to establish, and may be the main barrier to
& proof of the zero density hypothesis for stardy numbers.

Call an integer k-sturdy if it is not k-flimsy. The Gaussian distribution
result (1.4) indicates that there are about the same number of each type
of integer, so one might ask whether there is a natural one-to-one correspon-
dence between the two types of integers. During an offhand discussion
Professor W. M. Schmidt indicated eertain partial correspondences of
this kind. In Section 4 we generalize these correspondences somewhat,
prove them, and use them to provide rough estimates on the distribution
of k-sturdy and k-flimsy numbers.

We now review some basie properties of B{n). It ig clear thalt B(1) =1
B(2n) = B(n), and B(2n+1) = B(x)+1; indeed, the function B(n)
may be defined inductively by these three egualities. It is also eagy fo
verify that B(n-+m) < B(n)--B(m) and B(nm) < B(n)B{m). By applying
the firgt of thege to B[(n—2°%)--2%], where n > 2% we obtain

(1.8) B(n)—1< B(n—2°.

Thege properties will be used throughout the paper, generally without
comment.

We conclude in Section 5 with some further observations on sturdy
and flimsy numbers. For a fairly comprehensive guide to the literature
on B(n) see [4] and also [3], [B].

2. Infinite classes of sturdy numbers. Let e, & and » denote posgitive
integers. '
TERorEM 2.1, If B = (27 —~1)/(2° —1), then B{kn) = B(n) for all k.
Prooi. Use induction on k. Since
no= 1420424, 400N

the theorem is clearly firue for 1 < k< 2° For % = 2°, write k = 2% +1
where 0 <t < 2% If { I8 even we have that

Blkn) = B(kn/2) > B(n)
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by the induction hypothesis. Hence we can assume t.— 2t +1 where
' > 0. We shall congider the cases § = 2¢’'+1 (here &' > 0) and 8 = 28’
(here &' = 1) separately.
For ¢ odd, the basic properties of B(n) (ineluding (1.3)) vield
B(kn) = B{{s+t)n+sn(2°—1)}
= B{s+i)nt+s'(2+2" 4 .. +27) (24271 s 2
= B{(s+f)n+s(24+2°4 ... 427+
T{2H274 L2 2 1
2 B{s+t)n4-(s"+1)(2+2°+ ... 27}
= B{(s"+141t)n+(s'+-1)n(2°—1)}
= B{[2%(s'+1)+1']n}.

Since 2°(s"+1)+1' < 2% 1, the result follows by induetion in this case.
For ¢ even, the same sort of reasoning gives

(2.1)

(2.2)  B{kn) = B{2(s'+) 0+ (2°4+ 2% ... 420Uy

+8 (24224 ... 2911
= B{(s’"+t)n4+2°71(1 20+ ,,, -2l __gre=1
+8 @424, F2 41
2= B{(s'+1)n+2 "+ 'n (2° ~1)} '
= B{(2%" +2°"L L 7")n}.
Since 2°s’+-2°1 44’ < 2°8 -1, the result again follows by induction. This

completes the proof.
‘We shall now obtain more information in the case ¢ = 1.

' LzyMa 2.1. If @ < 2" and a is even, then 2" ooours in the binary 6L BN
sion of a(2"—1). If b<< 2™, then 2" ocours in the binary empansion of
b(2"—1). -

Proof. The second statement, which immediately implies the first,
follows from

b(2"—1) = 2"—bmod2*.
Lemma 2.2, For k< 3" we have
Blk(2—1)] = B(2"—1) = r.

Proof. This is clear for ¥ =1 and % = 2. Re}ieat the induction
step of Theorem 2.1, with e = 1. Note that -

(28 +1f)n = 1+ (28+t+1)n—2".
In the “s 0dd” part of that Proof there is equality throughout if 2" cccura

(2.3)
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in the binary expansion of (2841 -t)n. But 26411 is even,
1< 2 +14+1<2,

and n = 2" —1, g0 2" does ocour by the previous lemma. In the “s even”
paxt of the proof there is equality throughout if 27* ocours in the binary
expaunsion of (¢-+1+4i)n. But since

12 4+1<2"—1
we have
1<<s+14+8 2™

Hence we again have equality, and this completes the proof.

‘We comment that nothing as simple ag Lemma 2.2 is valid if k > 27
or 6> 1.

We now estimate S(x), If &< 2" we have

(2.4) BEE(2 —1)]= B2 —-1) = B[k(2"—1)]
80 k(2" —1) is sturdy. Chooge r go that
g ]/E‘( gl

Then k(2" —1) < @ for k< 2", 0 there are atleast 2" > 52" sturdy numbers
less than. or equal to #. This proves

THEOREM 2.2. 8(2) > .Ba'.

3. The number of sohations of B(3n)~—B(n) = a. Let @, (a) denote
the number of selutions of

(3.1) B(3n)—B(n) =0
for -
3.2) 2 m< I,

More generally, let &,(a, k) denote the number of solutions of

(3.3) B(3n-+h) —B{n) = a
for = in the range described by (3.2); thus
{3.4) ' G,.(2) = &, (a, 0).
Levwma 3.1, For b = 0 or b = 2 we have
(8.8) G (6, ) = G,_,(a, h/2)+6G,_, (a, (A+2)[2).

The corresponding formula for b = 11z

(86) . Ga,1) =Gi(a—1,0)+6_,(at1,2).
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Proof. Every n with 2"<{n < 2" car be written uniquely as

n=2g ot % =2¢+1 with 2 ¢< 2 .For b =1 the equation (3.3)
becomes

B(39)—Blg) =a—1
when # = 2¢q; for # = 2¢4-1 it becomes
B(3g+2)—B(g) = a+1.
The case h even is slightly simpler.
Drrmrrron 3.1. Let

(3.7) w03 = D' G(a, ko

Pamt

clearly this is a rational function of . Note thatb

{3.8) Wy (3 0) = o,

For any vector V, let V™ denote its transpose. Define

(3.9) Wol@) = (w,(@; 0), w,(x; 1), w,(2; 2)).
Lenmma 3.2,

110 \"/x
(3.10 W (z) =1{a 0 271} (1].
011 @

Proof. This is merely a restatement of Lemma 3.1. Since it is clear
from (3.10) that

wow; 1) =1,  wo(@;2) = a.

(8.11) w, (@3 0) = w,(; 2),
equation (3.10) is equivalent to the “contracted form?”
3.19 w, (23 0) _ (L Y[

( ) '('w,(w; 1) % 011

whereuw = o4+a2".

DermrTIoN 3.2. Let p,(u) be the sequence of polynomials defined by
Pi() =0, py(u) =1, and

(8.13) Pria(®) = p(u)-+up,_ (w), 7>0.
Set
(3.14) g.(@) = xp,(0+a7) +p, (@4 a7Y).

We remark that g.(1) = 27,
Lewvwma 3.3. For r= 0 we have

(3.15) w,{#; 0) = ¢.(2) = j G, (a)a".

[11odand- <]
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Pro of. This is immediate for » = 0. For v 2> 1 it follows from (3.12)

and
(1 1)’ =( 2, (w) P,_I('w))‘
“ 0 P,y (%) UP,.o (%)
Equation (3.16) is easily proved by induction.

We can now obtain an exact formula for G,.(a). It is easily proved
by induction that

(3.16)

P, (1) = fnl (r-;i) o

Turld

(3.17)

where [x] denotes the greatest integer legs than or equal to x. Hence

pies = S 3]

Leef) fml)

(3.18)

and it follows from Lemma 3.3 that

(3‘19) G,.(GL) = g.._l(a)+g,,(awl)
where
r %
(8.20) g {a) = = i-al,
1ol

here the dash on the summation symbol indicates that the sum is restric-
ted to those ¢ for which

(3.21) % == gmod2.

Now we must estimate g, (a). Bender’s paper [1] provides an excellent
introduction to estimation techniques for sums of this type. We fo]low
his approach, using the estimate

)= [
TS [l

3 2 \M*
(3.22) (k) - (E) 2'{1+0(r
—k[. The estimate (3.22) is a consequence of Rtirling's

+oger) |

where j = |(»/2)
formula.

TeEOREM. Lét % < 8 < §. Then

(8.23) g(0) ~ (2/3nr) 227 exp( —8a32r), |o| <9
and ' _
(3.24) g,(a) = O[r2exp( —¥h], el > ",

icm
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Proof. First asgume 7 is » multiple of 6. Then the change of variable
¢ =t+r/3 shows that

(3.25) T3 +1 )

(@) = 2r[3 —1
Gl = a \rp+i \ro+tj2—ap2
where the dash indicates that the sum is restricted to ¢ such that
(3.26) =g¢—7/3med2.

We first congider the case |a| > #*. From (3.22) we see that

2rf3 —ty 2rf5—
(3.27) (r/3+t) = ((2/-t)
and
628 (g lon " upp) = Ol exp (—ari2rs )
a]
{3.29) g.(@) = O[r2"exp( —r*"1]

follows from (3.24) by the trivial estimate. Henceforth we assumme that
laf <
We now estimate the terms for which [t > r* where + < a < §. We

have, for the individual factors,

2'!"/3"'—'5 _ —1/20 88 __ gz
{(3.30) (HSH) = O[r 129¥texp ( —01%/2r)]
and '
(3.31) (T 8 :—lf/;ia /2) = 0[2"“‘ exp( —a2/r)]

g0 the sum of the terms is
(8.32) O [F227exp (— 9?1 [2)].

We next estimate the terms for which |f| < #% Let f(t) denote o typical
term. Then by (3.22) we have

(3.33) f(t) = (2;/;3 - )(T i _’;’f’/;’ia [2) — K{a, r,{)exp [0t + a*r})]
where
(3.34)

Ko, r, 8 |20 5 )m(g “)m] veu| s ~ G Zt]f
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Now

K(a,r, t-+1) _

ol St Al et U, Y | s
(3.35) (a7, ) +O0(r™'7)

go the asymptotic behavior of the sum remains the same if we drop the
congruence condition and introduce a factor of 1/2.
‘We now have

(3.36) fit) = Eﬁ_ 27 [1+ O (r~*)]exp( — Sa2[2r — 3312 /2%r)

for some > 0. Since

(331 D! exp(—8'j2t) = f exp( — 812 /2%) dt+ 0 (r*~)
|t <% —e0
= §(mr [3)P[1+ O(r" )]

we have
(3.38)

1 rié

L N7 - L2 or o—8adizy — 8\ (Pl fBOF s § (yBa— 1

= %3f(t) (@[5 20 (L4 0]+ 0 [y exp (—9r*~ ).
Now choose o 80 that % < § < a < %, and vecall that |a| < »*; it follows
that the theorem iy valid when 6|r. Now forroula (3.35) gshows that our
approximations will not be affected if every ¢ is replaced by ¢4 6 where
0 < 0 <1, so the restriction of » to multiples of 6 iy easily seen to be
unnecesgary. Thig completes the proof.

The results (1.4) and (1.6) follow immediately from (3.19) and (3.23).

4. Complementary integers. Here we establish generalizations of
some faets observed by W. M. Schmidt. For integers n gatisfying 1< »
< 21 —1 we define the complementary integer #’ by

(4.1) nebm =21,

The binary representation of »’ can be obtained from that of # by replacing
every 0 with 1 and every 1. with 0.

LEMMA 4.1, Let 2 denote an integer. Then

7 2 << 0,

(42) B —1—e)+B@ ™ +2) = Ir+1, 0z,
#, AL a1,

Proof. If —2"'<z< 0, write 2 ==§{—2""1 where 0 < 1t< 21,
Then the left side of (4.2) is

B +[2 —1 1))+ B(f) = 1+ B2 —1) = 7.
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If 0 2< 2 then the loft side is
r—B()+14+B) =r+1.
Finally, if 2" < 2 < 2" —1, the left side is
[r—B(a)]+B(z) =r.
ProposiTION 4.1. Let 1 < n < 271 —1 and 4in. Then

(4.3} B(3n)+ B(8n') = B(n)+B#n'} =r+41
unless

(4.4) LETHB < m o< 27FR3;

if (4.4) is valid, then

(4.5) B(3n)+B(3n") = B(n)+B®)-+1 = r43.

Proof. Let n = 4y, and 2 = 3y —2""%, If
1l<n<2™3
then —2™'<2< 0, 50
B(2 42 —1—3y) - B(3y) =7
by Lemma 4.1. Sinece B(4m) = B{m) we deduce that
B[3(27+ w1) 1 1291+ B(12y) = 7.
Next, since B{2m)~+1 = B(2m-~}-1), the addition of 1 to both sides yields
B[3(2™ —1—4y)}+B[3(4y)] =7+1.
Since » = 4y, we have proved (4.3) for these n. The intervals
213 < < T3S 9PHRS g 2P ]

are handled in exaetly the same way.
‘We remark that equation (4.3) can be written as

B(3n)—B(n) = —[B(3n) —B(n)).

Hence if B(3n) 5= B(n) and » satisfies the hypotheses for (4.3), then n
ig 3-sturdy if and only if »' iz 3-flimsy.

‘We next prove a result similar to Proposition 4.1 with a general odd
integer % in place of 3.

Limvwma 4.2, Let &k and y be positive integers with k odd. Choose integers
a and r so that

(4.6) 2% < k< 2°7
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and a =< r. Let

{4.7) 2 =ky—u

whetre

(4.8) # = 27(27%% —1).

Then

{4.9) B(2'—1—2z)4+B(u+2) =r+B(k) —
Sor

{4.10) — <L L2l

Proof. Since
0<hy<27°-1,
the left side of (4.9) iz
B{27 (kb —1)}+(2""—1 —ky) ]+ B(ky)
= B[2"%(k~1)4+-2"%—1] = B(k) —1-+r—a.
Lemwva 4.3, If
{4.11) U< I LYl
then under the hypotheses of Lemma 4.2 we have for b > a that
(4.12) B2 —1 —2%)]+ B(k2%y) - r+b—a.

Proof. From Lemms 4.2 and the fact that B(2%m) = B(m), we
deduce that

(4.13)  B(rar-o_gb

Hence

—k2by) + B (k2%y) = r+ Bk} —1 —a.

B(p—aq)+B(2"y) =+ B(k)~1 —a
where
P =@M ~1-2%) and ¢q=(@—1)~(F~1).
Now p > 2" and ¢ < 2°; moreover, p = qmod2®. Hence-
B{p-—q) = B(p)—B{g).
Since k is odd and % < 2°+! < 2%, we have
B(g) = b—B(k)+1
and the result follows.
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ProrosiTIoN 4.2. Given a positive odd integer k, let a be the integer such
thal 2° < k< 2°%, and let v = a. If

{4.14) 0 <n < (2" 28ty 1T

and

{4.15) 20+y,

then '

{4£.16) B(kn)+ B(kn') = B(n)+B(n") =r+1.

Proof. We use the notation of Lemma 4.2. Write #n = 2"y and
2 = ky —u. Then
' 0<hy<2%—1,
80
—u <L 271 —y,
The result follows from Lemma 4.3 with b = a 1.
We now give two applications of Proposition 4.2,

Proposrrion 4.3. Let ¥ {s) and 8, (x) denocle respeciively the number
of k-flimsy and I-sturdy integers loss than or equal to ». Then for » - co we
have

(4.17) Limint (@) Jo 2= 1/2k3,  limini 8, (@) = > 1[2k2.
Proof. Let B = H(r, k) be the number of integers for which
(4.18) Bkn)—B(n) =0, 1g<n<2™,
The main regult of [3] mmediately yields
(4.19) B =o(2").
Next, there are at least
(4.20)
integers # in the interval [1,27*!] to which Proposition 4.2 applies. If
any of these fails to be k-flirnsy (k-sturdy) its complement will have this
property, so the result follows from (4.19), (4.20), and 2*™ < 2E,
We ramark it is likely that both limits in (4.17) exist and have the
congtant value 1/2 for every k.
ProPORITION 4.4. If k is odd, there 45 an m << 8&® such that m is }’::-fhmsy.
Proof. Take r = 2a¢-+2 and n == 2" in Proposition 4.2. Then
n.r . 22a+a _24+1 -1

(97 [2941) —1 — I

and

24 B(kn') < B(kn)+ B(kn’) = 1+B(n').
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Thus B(kn') < B(n'), so » is k-flimsy. Since #' < 2°** < 8k2, the proof
is complete.

5. Some further remarks. As with all apparently irregular sequences,
one can ask a large variety of questions about the distribution of sturdy
and flimsy numbers. The following facts can be shown by various elemen-
tary (and sometimes simple) arguments.

For s > 0 and @ sufficiently large, there is a 3-flimsy number between
#—a*P+e and w44***% also there is a sturdy number between o — 35
and x. There are > #° consecutive 3-sturdy numbers which are <3
also » ' congecutive 3-flimsy numbers which arve <. Given an integer
n =1, there is an mteger k= 27 B(n) /n sueh that Tn iy sturdy, and an
integer % < 16%22)” guch that kn is flimsy (here the logarithm is taken
to the bage 2).

In response to a question of the author, the reforee has remarked
that gtandard results on prime distribution in arithmetie progressions
imply that at leagt “half” fhe primes are flimsy. Simply consider the
primes congruent to 3 or 5 modulo 8. They satiely '

20~V = (2/p) = —1modp.

Hence there are integers o and & such that the relation kp = 142% holds.
The referee alzo points out that an argument of ¥asse [2] shows that
in fact more than half the primes satigly such a relation.
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Simple groups of square order
and an interesting sequence of primes

by

Morris NEwMAN* (Santa Barbara, Calif.), DAriEn SEANES (College
Park, Md.) and H. C. Woriams (Winnipeg, Man., Canada)

1. Introduction. If a gimple group has @ square order, we call it
a special group. The sequence of integers 1, 7, 41, ... given by

(1+ }/5)2712-1-1_{_ 1- ]/2_)2m+1

(1} Somi1 = 5

for m =0,1,2,... we call special numbers. We are investigating two
questions:

{A) Which finite groups are special?

(B} Which gpecial numbers are prime?

Although Question {A) does not explicitly refer to prima.li{;y, we will
gee that it leads us to Question (B).

A partial motivation for this investigation is the obselvatlon of
R. Brauer [1] that the analysis of a simple group is facilitated if at least
ote prime dividing its order divides it to the first power only. Most simple
groups do satisty this Braver condition but our special groups obviously
do not.

We pursue (A) and (B) by following the closely analogous clasgical
investigation into two much clder questions:

(Ay) Which integers N are perfect?

(By) Which Mergenne numbers

(2) Mzm-;—l = oxm+l_ 1

-are prime?

Ag betore, (A,) does not explicitly meﬁtion primality but it leads us
to (B,) ag follows:

e it s e
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