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Inter- and intra-tumor heterogeneity of metastatic
prostate cancer determined by digital spatial gene
expression profiling
Lauren Brady 1,5, Michelle Kriner2,5, Ilsa Coleman1, Colm Morrissey3, Martine Roudier3, Lawrence D. True3,

Roman Gulati 1, Stephen R. Plymate3,4, Zoey Zhou2, Brian Birditt2, Rhonda Meredith2, Gary Geiss2,

Margaret Hoang2, Joseph Beechem2 & Peter S. Nelson 1,3✉

Metastatic prostate cancer (mPC) comprises a spectrum of diverse phenotypes. However,

the extent of inter- and intra-tumor heterogeneity is not established. Here we use digital

spatial profiling (DSP) technology to quantitate transcript and protein abundance in spatially-

distinct regions of mPCs. By assessing multiple discrete areas across multiple metastases, we

find a high level of intra-patient homogeneity with respect to tumor phenotype. However,

there are notable exceptions including tumors comprised of regions with high and low

androgen receptor (AR) and neuroendocrine activity. While the vast majority of metastases

examined are devoid of significant inflammatory infiltrates and lack PD1, PD-L1 and CTLA4,

the B7-H3/CD276 immune checkpoint protein is highly expressed, particularly in mPCs with

high AR activity. Our results demonstrate the utility of DSP for accurately classifying tumor

phenotype, assessing tumor heterogeneity, and identifying aspects of tumor biology involving

the immunological composition of metastases.
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L
ocalized prostate cancer (PC) is notable for substantial inter-
and intratumor heterogeneity in both phenotype and mole-
cular composition. At the time of diagnosis, biopsies often

demonstrate the presence of multiple histological Gleason patterns,
and independent cancer foci harbor distinct structural genomic
alterations such as those involving TMPRSS2-ERG rearrange-
ments1–5. As observed in most solid tumors, PCs are comprised of
heterogeneous populations of neoplastic cells interacting within
complex ecosystems of resident cell types such as fibroblasts and
vascular endothelium, infiltrating cell types including immune
cells, as well as nutrients, growth factors, collagens, and other
constituents that collectively contribute to an organizational fra-
mework that supports cancer cell survival and growth6. Notably,
the variation in the histological patterns are highly prognostic of
PC outcomes1, and molecular assays of gene expression also
associate with recurrences following prostatectomy and radio-
therapy, indicating a high degree of interindividual variation in
tumor behavior7.

The recognition that cancers originating from the same organ
can harbor a spectrum of oncogenic and tumor suppressor
alterations between individuals led to concerted efforts to
understand the diversity and frequency of pathogenic molecular
features present in common human malignancies. Applying
genome-scale technologies to cancer resulted in the construction
of The Cancer Genome Atlas (TCGA) that provided a working
taxonomy for numerous solid tumors and hematological malig-
nancies. The results of TCGA for localized PC8 and further efforts
involving analyses of metastatic PC identified molecular subtypes
of PC with otherwise indistinguishable histological features and
nominated new therapeutic targets9–12. Collectively, these studies
emphasize that PC is driven by a diverse spectrum of oncogenic
aberrations and provide strong rationale for personalized/preci-
sion approaches for cancer therapy.

While the application of advanced technologies such as laser-
assisted microdissection, proteomics, single-cell sequencing, and
spatial transcriptomics have delineated the molecular diversity
of localized PCs, an understanding of the intraindividual
and intratumoral diversity of metastatic PC is lacking13–17.
Metastatic biopsy-based studies have generally been limited to
evaluating a single metastatic site using methods that integrate
events amalgamated from a large population of individual
malignant and benign cells9,11. Autopsy studies capable of
evaluating multiple disseminated tumors within an individual
patient determined that in the majority of patients, all PC
metastasis share a common monoclonal origin, but subsequent
therapeutic pressures promote a degree of diversity with respect
to resistance mechanisms10,18,19. In addition to genomic aber-
rations, recent studies have identified processes contributing to
therapy resistance involving alterations in tumor phenotypes
through transdifferentiation that may be driven by epigenetic
modifications20–23. However, the intra- and intertumor varia-
tion in these phenotypes and potential associations with tumor-
microenvironment (TME) features such as immune responses
has not been evaluated.

In this study, we seek to investigate the inter- and intratumor
variation in gene expression using an approach termed digital
spatial profiling (DSP) for quantitative, high-plex analysis of
mRNAs and proteins in spatially defined regions of PC
metastasis24,25. We apply this method to the study of formalin-
fixed tumor biospecimens from multiple metastatic sites,
including bone, acquired through rapid autopsy. In addition to
assessing the variation in individual genes encoding molecular
targets for specific therapeutics, we also use DSP to categorize
tumor phenotypes based on gene expression programs that
indicate the activity of androgen receptor (AR) activity, neu-
roendocrine (NE) differentiation, and FGFR/MEK signaling, as

well as the composition of immune cells and immunomodulatory
cytokines and chemokines.

Results
Digital spatial gene expression profiling of PC metastases. To
characterize the phenotypic heterogeneity and spatial distribution
of tumor cells in metastatic PCs (mPCs), we constructed tissue
microarrays (TMAs) representing diverse anatomic sites of tumor
dissemination in 27 patients with therapy-refractory mPC. The
study design included two anatomically distinct metastatic sites
per patient to evaluate intraindividual heterogeneity. Three spa-
tially distinct regions were punched from each tumor to evaluate
intratumoral heterogeneity. For one patient, four tumors were
included to further evaluate the extent of tumor heterogeneity.
Tumor samples were collected over an 8-year time interval,
formalin-fixed and paraffin-embedded (FFPE) at the time of
resection, and stored as tumor blocks. In total, 168 tumor cores
from 56 mPC tumors were arrayed and used for subsequent
analyses (Fig. 1a).

To quantitate gene expression in spatially defined tumor
regions, we assembled a gene panel of utility in assessing the
molecular composition of neoplastic disease that included
transcripts for the functional classification of PC phenotypes
and the categorization of specific cell types. These included
genes comprising signatures of AR activity, NE differentiation,
proliferation, fibroblast growth factor (FGF), and mitogen
activated protein kinase (MAPK) activity, loss of the retino-
blastoma gene (RB1), and markers of cell types including
macrophages (e.g., CD163), T cells (e.g., CD3E), and B cells
(e.g., MS4A1). In total, 2093 unique genes comprised the DSP
panel (Supplementary Data File 1). We designed a series of
barcoded oligonucleotide probes (median of 10 probes/target
mRNA) for each gene of interest for a total of 18,120 probes,
including oligos targeting particular gene isoforms such as AR
splice variants. For measuring protein expression, our panel
included AR, synaptophysin (SYP), and the 55 proteins in the
NanoString Human Immuno-Oncology, Drug Target, Activa-
tion Status, Cell Typing, and Pan-Tumor panels.

Sections of the TMA were used for histological analysis
following hematoxylin and eosin staining. Serial sections were
stained simultaneously with fluorescently labeled antibodies
specific for the leukocyte markers CD3 and CD45, epithelial cell
marker PanCK, and the nuclear stain SYTO 13 for DSP. For each
tumor core, one 500 µM region of interest (ROI) was selected,
attempting to acquire the largest percentage of tumor cells from
each tumor core section. The cellularity of a typical core averaged
1200 cells, though a small number of cores was composed
primarily of fat cells or acellular stroma. Each ROI was assessed
for the composition of neoplastic cells and annotated based on
the cellular composition as pure tumor (T), predominantly tumor
(>50% of the sampled area) with the remainder benign cells or
stroma (TS), predominantly benign cells or stroma with some
tumor (ST), or purely benign cells or stroma (S) (Supplementary
Data File 2).

DSP was performed as previously described25. Following
probe hybridization, UV cleavage, and barcode collection, gene
expression was quantitated by Illumina sequencing (for protein)
or by PCR amplification and Illumina sequencing (for RNA)
(Fig. 1b). Manual inspection of the TMAs used for DSP
determined that of 168 cores arrayed, 7 were either missing or
were 100% fat and 1 was entirely stroma devoid of tumor cells.
For the RNA DSP assay, seven additional ROIs were missing
and four did not pass sequencing quality control. These cores
were excluded from further analyses for both protein and RNA
experiments.
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For the RNA DSP, probe counts were collapsed to gene
counts by first removing outlier probes and then taking the
geometric mean of remaining probes for each gene in each ROI.
Gene and negative count distributions for each patient (N= 6
ROIs for most patients) are shown in Fig. 1c. Negative probe

counts were used to set a limit of quantitation (LOQ),
which was defined as the geometric mean plus two standard
deviations of the negative probes. The median number of genes
above LOQ was 552 per ROI (range 18–1088) (Fig. 1d)
(Supplementary Data File 3). The distributions of protein
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counts for each patient are shown in Fig. 1e. LOQ was defined
as three times the mean of counts of the negative control
antibodies (mouse and rabbit IgGs). The median number of
proteins above LOQ per ROI was 17 (range 8–35) (Fig. 1f). We
removed eight ROIs with ≤100 genes detected in the RNA
DSP assay from both protein and RNA datasets, leaving 141
ROIs from 53 metastases (26 patients) for further analyses
(Supplementary Data File 4).

Quantitative gene expression measurements from spatially
defined regions of PC metastases identify distinct phenotypes.
mPC exhibits a number of notable features including the
expression of a cell differentiation, survival, and proliferation
program regulated by the AR26–28. Therapeutic pressures
designed to repress AR signaling can promote resistance path-
ways involving transdifferentiation to small cell NE phenotypes
(SCNPC)22. These tumors express a spectrum of NE genes such
as SYP and chromogranin (CHGA). We used DSP-based quan-
titation to assess the activity of these pathways across 53 metas-
tasis. For each of the tumors used for DSP profiling, we previously
generated whole transcriptome RNAseq measurements of gene
expression using frozen tumor tissue. To facilitate comparisons
with tumor expression profiles obtained by RNAseq, we initially
averaged the DSP measurements from all three cores/ROIs from
the same tumor.

Overall, we observed substantial intertumor heterogeneity across
patients with wide ranges of expression and pathway activity
between tumors (Fig. 2a). Notably, the DSP-based assessments of
AR- and NE-activity scores matched the bulk RNAseq-based
measurements with high concordance, r= 0.83 and r= 0.69,
respectively (Fig. 2b, c), as were the DSP and RNAseq measures
of cell cycle progression (CCP) scores (r= 0.67; p < 0.0001) (Fig. 2d)
while a signature of FGFR-MEK signaling (r= 0.16) (Fig. 2e) was
not significantly correlated.

We have previously determined that mPC can be broadly
partitioned into six phenotypic categories based on the activity of
AR and NE programs: AR+/NE−; ARlow/NE−; AR−/NE−; AR
−/NElow; AR+/NE+; and AR−/NE+23,29. Each phenotype is
classified as follows: AR+/NE− tumors are defined by positive
expression of AR-regulated genes, also referred to as AR signature
genes, and lack of expression of NE associated genes; ARlow/NE
tumors are comprised of weak or heterogeneous expression of
AR-regulated genes and a lack of expression of NE associated
genes; AR−/NE− tumors are determined by lack of expression of
both AR signature genes and NE associated genes; AR−/NElow

tumors are defined by lack of expression of AR signature genes
and low or heterogenous expression of NE associated genes; and
AR+/NE+ tumors coexpress genes indicating AR and NE
pathway activity. We next used the DSP expression measure-
ments of 23 AR and NE genes to perform multidimensional
scaling (MDS) to assign phenotypes to the profiled tumors
(Fig. 2f). The classification of phenotypes matched the bulk

RNAseq-based assignment with 46 concordant and 7 discordant
classifications (Fig. 2a).

In addition to the cellular pathways and expression programs
that define phenotypes, several individual genes and their
encoded proteins play important roles in PC pathobiology and
serve as targets for therapeutics. These targets include FOLH1
which encodes prostate-specific membrane antigen (PSMA),
where PSMA-conjugated radioligands are being evaluated for
imaging as well to focally direct therapeutic doses of radio-
isotopes30–32. The histone methyltransferase enhancer of zeste
homolog 2 (EZH2) is involved in cellular reprogramming/
transdifferentiation and may contribute to AR-directed therapy
resistance33,34. The antiapoptotic protein BCL2 and checkpoint
kinase inhibitor Wee1 are upregulated in SCNPCs and ther-
apeutics directed toward these proteins inhibit SCNPC growth in
preclinical models35. DSP quantitation of each of these targets
demonstrated that interindividual heterogeneity with measure-
ments closely aligned with RNAseq-based levels (Fig. 2g–j).
Notably, the expression variation between patients suggests that a
precision approach may be required to establish efficacy
specifically in patients most likely to benefit by virtue of target
expression.

DSP identifies limited intraindividual diversity in metastatic
PC phenotypes. Most patients with mPC have multiple sites of
tumor dissemination that may include lymph nodes, bone, and
various soft tissues such as liver, adrenal, and lung. The simila-
rities and differences in the phenotypes and genotypes between
the disseminated tumor sites will impact the utility of sampling
any individual site for overall tumor classification and the per-
formance of a predictive biomarker for a given therapy. We next
compared the DSP-based phenotypic classification of metastasis
within each patient and also evaluated expression programs
indicating cell proliferation (CCP) status, FGF/MAPK activity,
and RB1 loss. Overall, there was high concordance in the phe-
notype call within a given patient with 82% of randomly sampled
pairs of tumor ROIs from the same patient having the same
phenotype classification (Fig. 3a). In contrast, only 54% of ROIs
were phenotypically concordant when randomly comparing ROIs
across all tumors and all patients. The scores for pathway activ-
ities were also generally concordant between metastasis from the
same patient, with substantially greater diversity across patients
(Fig. 3 and Fig. S1). However, there were notable exceptions: in
seven patients, tumors were classified into different phenotype
categories. For example, patient 15-096 had one tumor classified
as AR+/NE+, whereas a separate metastasis was AR+/NE−
(Fig. 3b–d). Patient 12-011 had one tumor classified as AR+/
NE− and one tumor AR+/NE+ and patient 15-010 had one
tumor classified as ARlow/NE− and one tumor AR−/NE+
(Fig. 3e, f). At the individual gene level, there was clear evidence
of divergent gene expression for transcripts that comprise NE
differentiation, for example, SYP, ASCL1, and ONECUT2. The

Fig. 1 Digital spatial profiling of archived formalin-fixed paraffin-embedded prostate cancer metastases. a Schematic of study participants. N= 27

patients from the UW Rapid Autopsy Program were selected with two sites of metastasis per patient (N= 56). One 500 µM region of interest (ROI) per

core was selected for DSP. Of the total 168 ROIs, 141 were utilized for analysis. Reasons for exclusion include missing/100% fat (N= 14), 100% stroma

(N= 1), quality control failure (N= 4), or ≤100 genes detected (N= 8). b Schematic of multianalyte DSP workflow. Serial sections of the TMA were run

through GeoMx RNA (top) or GeoMx protein (bottom) assays. Both assays were read out by next-generation sequencing. c Split violin plot overlaid on

scatterplot of RNA assay counts by patient (N= 3-12 ROIs for most patients). Gene counts are displayed on the left side (green) and the geometric mean

of negative probe counts is displayed on the right side (gray). d Histogram of the number of genes above the limit of quantitation (LOQ) per ROI for the

RNA assay. LOQ was defined as the geometric mean of the negative probes × geometric standard deviation of negative probes squared. e Split violin plot

overlaid on scatterplot of protein assay counts by patient (N= 3-12 ROIs for most patients). Antibody counts are displayed on the left side (green) and the

geometric mean of negative control antibodies (mouse and rabbits IgGs) displayed on the right side (gray). f Histogram of the number of proteins above

the limit of quantitation (LOQ) per ROI. LOQ was defined as three times the geometric mean of the negative control antibodies.
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intertumor heterogeneity included transcripts encoding proteins
of potential utility in therapeutics, such as the cell surface protein
NCAM1, to which antibodies and CAR-T cells have been
developed (Fig. 3e, f)36. Though unusual, these findings indicate
that therapy resistance can occur via distinct mechanisms and
may require combinations of treatments to address diverse dri-
vers of progression within an individual patient.

PC is notable for a high predilection to disseminate to bone
and produce a spectrum of osteolytic and osteoblastic bone
responses. Using RNA-based methods to assess gene expression
in bone has been challenging due to formic acid decalcification
procedures that enable tissue sectioning but generally degrade
nucleic acids. To evaluate the utility of DSP in assessing transcript
levels in PC bone, we sampled one bone metastasis and one
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paired soft tissue metastasis from each of three patients (Fig. S2a)
and compared the gene expression output across the 2104 genes
assayed. The bone samples underwent standard decalcification
procedures prior to formalin fixation, paraffin embedding, and
tissue coring for TMA construction. For the nine ROIs
comprising the three soft tissue metastasis, the mean count was
2.4 × 105 (range 7.5 × 104 to 5.0 × 105) compared to a mean count
of 9.3 × 104 (range 4.2 × 104 to 1.4 × 105) for the nine ROIs from
bone metastasis. The number of genes detected above the LOD
was on average 731 (range 400–1088) in soft tissue cores vs 456
(range 216–675) in bone (Fig. S2b, c). Despite overall lower probe
counts per gene, of the genes detected, there was a high
concordance in transcript levels for the pairs of soft tissue and
bone metastasis (R2= 0.90 for 14-043; 0.78 for 14-053; and 0.43
for 15-023) (Fig. S2d), and each classified as AR+/NE−
phenotype (Fig. S2e). In addition to PC-specific transcripts, a
comparison of bone ROIs vs paired soft tissue ROIs identified
microenvironment-specific gene expression such as SPP1 and
IBSP from bone (Fig. S2f).

DSP identifies a subset of metastases with intratumoral phe-
notypic heterogeneity. An attribute of the DSP technology is the
ability to quantitate transcript and protein levels in defined
regions of a tumor that include selected foci within tumor-rich
areas, peritumoral margins, and stroma. Our study design focused
on intratumoral heterogeneity defined first by a spatial dimension
comprising TMA cores and a second intratumoral spatial
dimension determined by a 500-µM-sized ROI for UV-directed
probe cleavage and capture.

To assess intratumoral heterogeneity, we compared the
transcript measurements between three spatially distinct ROIs
obtained from each metastasis. A histological review of the ROIs
selected for DSP analysis classified each ROI into one of four
categories based on tumor cell composition and cellularity as pure
tumor (T), predominantly tumor (>50% of the sampled area)
with the remainder benign cells or stroma (TS), predominantly
benign cells or stroma with some (<50%) neoplastic cells (ST), or
purely benign cells or stroma (S). As our study design focused
on sampling intratumoral ROIs, only one ROI classified as (S),
and this was not included in further analyses of tumor gene
expression heterogeneity. Overall, there was high intratumor
concordance for the transcript-defined tumor phenotypes (Fig. 4a)
with 96% of randomly sampled pairs from the same tumor having
the same phenotype classification. At the level of individual genes,
the concordance of transcript abundance from ROIs from the
same tumor exceeded transcript concordance derived from a
separate metastatic tumor from the same patient, with further
divergence observed when comparing measurements from
tumors across individuals (Fig. 4b).

Although intratumoral ROIs were generally concordant in
classifying phenotypes and the status of particular signaling
programs, there were notable outliers that identified hetero-
geneity within a given tumor with implications for mechanisms of

therapy resistance. For two tumors, the tumor phenotype
classification diverged across ROIs, with one tumor having ROIs
with both AR+/NE− and ARlow/NE− regions (12-005K1) and
one tumor having ROIs with both ARlow/NE− and AR−/NE−
phenotypes (15-010K2) (Fig. 4a). Patient 12-005K1 is highlighted
as an example of this intratumor heterogeneity (Fig. 4c)
comparing the ARlow/NE− ROI to the AR+/NE− ROIs. Reduced
expression of AR associated genes (e.g., KLK3) in this analysis is
consistent with an ARlow phenotype. Though generally highly
concordant, in several tumors the assessments of AR, NE, and cell
cycle activity from different ROIs within the same tumor also
diverged (Fig. 4d).

We have previously reported that a subset of metastatic PCs
resisting AR-directed therapy expresses both AR activity and NE
activity and these cancers are classified as amphicrine tumors23.
Using methods that sample bulk RNA such as RNAseq cannot
distinguish whether the tumor cell population comprises a
homogenous population of neoplastic cells that individually
express both programs, true amphicrine cells, or whether the
tumor mass is comprised of heterogenous cells with foci of AR
+/NE− and foci of AR−/NE+ cells and potentially other cell
types. For patient 15-096, bulk RNAseq classified both 15-096L
and 15-096M metastasis as AR+/NE+, whereas by DSP, each
ROI from 15-096M2 classified as AR+/NE− but all ROIs from
15-096L3 classified as AR+/NE+. Further, when evaluating
scores for CCP, FGFR/MAPK, and RB1 loss activity, as well as
individual genes comprising the AR and NE scores, modest
variation was observed across the individual ROIs (Fig. 4e).

To assess intratumoral heterogeneity more deeply, we took a
full-face section of the 15-096M1 lymph node metastasis, selected
12 circular ROIs of 200–500 µM in diameter, and quantitated
transcript levels by DSP. While the full section was comprised of
densely-populated neoplastic cells throughout (Fig. 5a), one
region, comprising ~10% of tumor area, was PanCK-positive,
whereas the remainder was negative for PanCK immunoreactivity
(Fig. 5b). Multiple ROIs from the PanCK-positive region were
classified as AR+/NE− by gene expression (Fig. 5c, d). ROIs from
regions spatially distant from the PanCK-positive cells were
classified as AR−/NE+ or AR−/NE−, with lower expression of
AR and AR-regulated genes such as TMPRSS2, and increased
expression of genes associated with transdifferentiation, cell
plasticity, and proliferation such as EZH2 and Ki67 (Fig. 5c–k).

AR-V7 expression varies within and across PC metastases.
Alternative splicing of gene transcripts occurs commonly in
carcinomas. Notably, in PC, several splice variants of the AR have
been identified, particularly in the context of resistance to ADT,
and specific splice variants, such as AR-V7, may promote resis-
tance to second generation AR pathway inhibitors (ARSi)37,38.
We determined the presence of AR-V7 in each tumor by tran-
script reads spanning canonical and cryptic exons determined by
bulk RNAseq and found that for most patients (25/26; 96%), both
tumors evaluated were either concordantly AR-V7+ or AR-V7−

Fig. 2 DSP classifies mPC subtypes and quantitates the expression of therapeutic targets. a Heatmap of DSP gene expression correlated with bulk

RNAseq across androgen receptor (AR), neuroendocrine (NE), cell cycle progression (CCP), and FGFR/MEK gene signatures (N= 141 ROIs averaged to 53

tumors from 26 patients). Results are expressed as mean gene signature Z-scores and mean log2 negative-normalized (NN) gene expression and

presented according to color scales. RNAseq class and DSP class are the phenotypes assigned to the samples using each dataset. b–e Scatterplots

comparing gene expression of RNAseq GSVA scores to mean DSP Z-scores across AR, NE, CCP, and FGRF-MEPK gene signatures (N= 141 ROIs averaged

to 53 tumors from 26 patients.) Two-sided test for association using Pearson’s correlation coefficient, r; p value shown on plots. f Multidimensional scaling

(MDS) plot of mCRPC phenotypes as defined by DSP using the mean DSP log2 negative-normalized expression of 23 AR and NE genes (N= 141 ROIs

averaged to 53 tumors from 26 patients.). g–j Scatterplot comparison of single genes EZH2, FOLH1, WEE1, and BCL2 mean DSP log2 negative-normalized

expression (N= 141 ROIs averaged to 53 tumors from 26 patients) vs RNAseq log2 FPKM (N= 53 tumors from 26 patients.) Two-sided test for association

using Pearson’s correlation coefficient, r; p value shown on plots.
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(Fig. 6a). For two patients, 16–052 and 17–081, tumors were
discordant with respect to AR-V7 status. We next used DSP to
further evaluate the intratumoral heterogeneity of AR-V7. We
designed a series of barcoded oligonucleotide probes with speci-
ficity for each of the exons comprising the full-length AR gene
and cryptic exon 3 (CE3) that comprises the AR-V7 transcript
(Fig. 6b). Notably, when evaluating AR-V7 expression in the

individual ROIs by DSP, we observed more substantial hetero-
geneity: regions from the same tumor expressed high AR-V7,
while other regions lacked detectable AR-V7 transcript (Fig. 6a).
Further, for six tumors there was discordance between AR-V7
status measured by DSP and bulk RNAseq (Fig. 6a–d). To further
assess AR-V7 expression, we evaluated AR-V7 protein by
immunohistochemistry of the TMA cores. Overall, there was a

I8_LNAR+/NE+J1_bladder AR+/NE- H1_liver AR-/NE+K2_LNARlow/NE-
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e f

L3

M2
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significant positive correlation between AR-V7 IHC and tran-
script levels measured by DSP (r= 0.54, p < 0.0001, Fig. S3g) and
most tumors demonstrated homogenous absence or presence of
AR-V7 nuclear staining. However, there were several tumors
where AR-V7 expression was heterogenous by IHC (Fig. S3f), a
finding concordant with the high and low AR-V7 quantitation by
DSP that varied by ROI within a tumor. We note that a degree of
divergence can be expected across these measurements as the
bulk RNAseq was obtained from a different portion of the
metastatic tumor compared to the selection of FFPE embedded
tumor cored for TMA construction. Further, the AR-V7 IHC was
performed on a section of the TMA approximately ten sections,
equating to ~50 µM, from the section used for DSP analyses.

Immune cell types and checkpoint protein expression varies
across PC metastases. Metastatic PC is notable for the general
lack of response to immune-based therapeutics including those
designed to block immune checkpoints such as anti-CTLA4, PD1,
and PD-L1 antibodies. The immune cell repertoire of localized
PC has been characterized, but other than PD-L1 expression,
which is generally quite low, the inflammatory cell composition
and the expression of various cytokines, chemokines and other
immune modulatory proteins has not been well-characterized in
metastatic PC39–41. To evaluate the presence of immune cell
populations, we used DSP to quantitate transcripts encoding
proteins that mark distinct immune cell types including T cells,
B cells, macrophages, neutrophils, dendritic cells, NK cells,
myeloid-derived suppressor cells, as well as a spectrum of che-
mokines, cytokines, and checkpoint proteins. The ROIs captured
in this study focused on regions enriched for neoplastic cells, and
overall, these tumor cell rich regions were largely devoid of
immune cells of any phenotype (Fig. 7a). We confirmed this
observation by manual counts of CD3-positive leukocytes in each
tissue section and ROI. The mean number of CD3+ cells was 13.9
per ROI (range 0–250) (Fig. 7b; Supplementary Data File 2).
Overall, macrophages were the most commonly detected cell type
with 69 of 141 tumor ROIs positive for CD68 by DSP and 48 of
141 for CD163 (Fig. 7a). Markers of CD4 or CD8 T cells were
very infrequently detected.

To confirm the findings derived from transcript-based
measurements, we also used DSP to quantitate protein abundance
using a multiplexed panel of 57 antibodies with three control
anti-mouse and anti-rabbit antibodies (Fig. 7c). We confirmed
high concordance between DSP–RNA and DSP protein for
several well-established genes known to exhibit differential
expression based on PC phenotypes: AR, Ki67, and SYP (Fig. S3).
The DSP protein assessments confirmed the overall lack of
intratumoral cells expressing CD3, CD4, or CD8 with relatively
higher levels of CD68 (Fig. 7c).

The paucity of intratumoral immune cells prompted a further
analysis of possible mechanisms contributing to a deficient
immune response. Previous studies determined that the immune
checkpoint protein PD-L1 is rarely expressed in prostate
carcinoma, either localized or metastatic39. We confirmed this
result as PD-L1 protein levels were not detectable above
background in any tumor or tumor ROI (Fig. 7c, d). The
expression of other checkpoint proteins for which therapeutic
antibodies are approved, CTLA4 and PD1, were similarly below
measurable levels in >90% of ROIs, either by transcript or
antibody-based measurements (Fig. 7c, d).

Recently, additional molecules that influence immune cell
activation have been identified including LAG3, TIM-3, TIGIT,
VISTA, B7-H3, BTLA, and others42,43. We evaluated the
expression of these immune checkpoint targets using DSP-
based quantitation of transcript and/or protein levels and found
high expression of B7-H3/CD276 in 25 of 53 tumors at the
transcript level, and in 50 (88%) of the tumors by protein analysis.
Though B7-H3 levels were readily detectable in tumors of all
CRPC phenotypes, the highest expression was consistently
observed in the AR+/NE− subtype. Further, TIM-3 was also
expressed highly in more than 37% of tumors, and expression
correlated strongly with B7-H3 (Fig. 7c and Fig. S3).

Discussion
PCs, as with most other human malignancies, have generally been
categorized by histomorphology, but can now be subtyped based
on gene expression profiles, genomic aberrations, and/or mole-
cular features of tumor microenvironments9,21,23,29,41,44. Criti-
cally, molecular classification may point toward therapeutic
strategies that are likely to result in improved outcomes, or
conversely avoid treatments where resistance is likely to preexist
or emerge rapidly45. Carcinoma of the prostate is a representative
example of the molecular complexity that underlies tumor
behavior with numerous recurrent genomic and epigenomic
aberrations that drive tumor development, progression to
metastasis, and the emergence of treatment resistance9,11,12. To
accurately classify subtypes of PC, multiplexing methods are
required that can determine the molecular states of numerous
genes or gene products simultaneously, ideally using standard
pathology workflows. However, tumor heterogeneity may influ-
ence accurate tumor classification46–48. Further, insights with
respect to the importance of tumor–host interactions are emer-
ging through detailed studies of tumor cells with the immune
system and other microenvironment components49. New tech-
nologies such as spatial transcriptomics, multiplexed immuno-
fluorescence, CODEX, and mass cytometry are capable of
integrating multiplexed molecular assays with a spatial context
which can detect heterogeneity and may enhance the accuracy of

Fig. 3 DSP identifies intertumoral heterogeneity in prostate cancer phenotypes. a Heatmap of 141 ROIs averaged to 53 tumor cores grouped by 26

patients highlighting androgen receptor (AR), neuroendocrine (NE), cell cycle progression (CCP), FGFR/MEK, and RB1 gene signatures. Mean gene

signature Z-scores are shown according to color scale. Data graphed as boxplots indicating differences in b AR gene signature and c NE gene signature

mean Z-score across 138 ROIs averaged from 52 sites from 25 patients with at least two tumors included on the TMAs. Blue circles highlight similar AR

signature expression and differential NE signature expression in two different sites of metastasis in patient 15-096. L3 periaortic, M2 diaphragm. Boxes

represent the median and interquartile range (IQR) and the upper and lower whiskers extending to the values that are within 1.5 × IQR; data beyond the end

of the whiskers are outliers and plotted as points. d Heatmap of 35 ROIs averaged to 14 tumor cores from seven discordant patient samples adapted from

a. Results are expressed as mean gene signature Z-scores and presented according to color scale in a. e Volcano plot demonstrating intrapatient

heterogeneity in individual 12-011. Two sample sites, bladder and lymph node (LN) with different mCRPC phenotypes were compared (N= 3 regions of

interest (ROIs) per site) and genes associated with a NE phenotype are enriched in the sample I8_LN AR+/NE+ when compared to J1_bladder AR+/NE−.

f Volcano plot demonstrating intrapatient heterogeneity in individual 15-010. Two sample sites, lymph node and liver with different mCRPC phenotypes

were compared (N= 3 ROIs per site). Genes associated with AR signature were enriched in sample K2_LN ARlow/NE− and genes associated with a NE

phenotype are enriched in the sample H1_liver AR−/NE+.
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tumor diagnosis, provide insights into treatment resistance, and
furnish biological rationale for new treatment strategies50–52.

In this study, we used a robust approach for quantitative spatial
molecular profiling to assess the inter- and intratumor variation
in gene and protein expression of metastatic PCs. Key attributes
of the DSP technology include the ability to quantitatively assess

transcript and protein levels from standard FFPE biospecimens
and the ability to sample multiple user-defined regions of interest
specifically focused on defining heterogeneity and TME interac-
tions. DSP accurately classified mPCs into subtypes such as
ARPC and SCNPC, and assayed several biomarkers that
are currently associated with specific therapeutics such as
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PSMA/FOLH1. Though this study was not explicitly designed to
evaluate assay performance as a function of biospecimen age, the
FFPE samples spanning an 8-year time interval showed no age-
related variation indicating that the platform is suitable both for
retrospective studies as well as the analysis of biospecimens
acquired in real time.

Prior studies have reported that mPCs within an individual
share a common monoclonal origin and exhibit limited inter-
tumoral heterogeneity with respect to driver mutations10,18.
However, following AR-directed therapy, divergent mechanisms
can contribute to resistance that include convergent evolution
involving various alterations in the AR itself such as mutation,
copy gains, and the expression of AR splice variants, as well as
transdifferentiation to phenotypes that no longer rely on AR
activity11,19,21,53. Through the analysis of the spatial composition
of 53 metastases, we found common agreement in gene expres-
sion and phenotype classification between metastases from the
same individual. Further, gene expression programs of spatially
distinct intratumoral regions were also highly concordant.
However, there were clear exceptions to this general conclusion as
evidenced by the juxtaposition of AR+/NE− and AR−/NE+
tumor phenotypes within the same metastasis. The recognition
that a tumor classified as amphicrine—AR+/NE+—by bulk
tumor analysis, actually consisted of distinct subtypes, was readily
demonstrated by DSP. This type of intratumoral heterogeneity
has clear implications for therapy resistance. Furthermore, we
identified intratumoral AR-V7 variant heterogeneity that gen-
erally correlated with IHC expression. There were a number of
discordant cases present (DSP vs bulk tumor RNAseq), likely due
in part to the heterogenous nature of AR-V7 expression in
metastasis that has been described previously54. The discordant
cases presented in this dataset reflect the need for further studies
examining the capability of DSP in detecting splice variants, when
compared to traditional approaches and determining if intratu-
moral variation in AR-V7 associates with treatment responses to
ARSI therapy.

In addition to evaluating the attributes of neoplastic cells
within the tumor mass, we used DSP to quantitate the intra-
tumoral immune cell composition. A notable finding was the
general lack of any substantial leukocyte population within PC
metastases. Based on the assessment of both transcript and
protein markers, macrophages constituted the most abundant
immune cell type, but these were also generally uncommon.
The low-to-absent expression of immune checkpoint proteins
CTLA4, PD1, and PD-L1 is also congruent with the very low
response rates of mPC patients to immune checkpoint block-
ade, excepting those with DNA mismatch repair deficiency and
hypermutation55–57. A prior study of PC metastasis determined
that tumors with deficient MMR expressed higher levels of
several immune checkpoint proteins and harbored increased T-
cell infiltrates41. None of the patients in the present study were
MMR deficient.

In contrast to low/absent expression of immune checkpoint
proteins for which there are FDA-approved antibodies, two
immune checkpoint proteins, CD276/B7-H3 and TIM-3, were
expressed at high levels across the majority of metastasis. Further,
DSP demonstrated highly consistent expression of both CD276/
B7-H3 and TIM-3 across the multiple ROIs within each tumor,
indicating low intratumoral heterogeneity. Several functions have
been attributed to B7-H3 including the inhibition of antitumor
T-cell activity58–60. Notably, high B7-H3 expression in localized
PC is associated with adverse outcomes following primary
therapy61,62. A previous study evaluating B7-H3 expression by
immunohistochemistry reported that 31 of 34 (91%) PC bone
metastasis expressed moderate-to-high staining63. Our findings
confirm this result and also demonstrate B7-H3 expression in
metastases to other organs. Antibodies targeting B7-H3 have
shown a favorable clinical safety profile and are currently in
clinical trials for several solid tumors (NCT01391143,
NCT04129320). Preclinical studies of CAR-T cells engineered to
recognize B7-H3 demonstrate strong antitumor responses with
very limited toxicity64. Conflicting reports exist on the role of
TIM-3 in PC. Increased levels of TIM-3 were detected on CD4+
and CD8+ cells in patients with PC when compared to patients
with benign prostatic hyperplasia65. Conversely, low protein
expression of TIM-3 was associated with poor prognosis in
patients with mPC, and identified as an independent predictor of
CRPC66. While clarification of the role of TIM-3 in subtypes of
mCRPC is required, the expression levels of B7-H3 and TIM-3
observed in the current study suggest the capability of DSP to
identify potential therapeutic targets and support further studies
of these immune modulatory proteins as therapeutic targets
in mPC.

In conclusion, the present study focused on intratumoral
assessments of gene expression and cell phenotype identification
across and within metastatic tumors. In addition to delineating a
high degree of concordance in the intratumoral phenotypic
composition, we found a general lack of immune cell infiltrates in
the vast majority of metastases and high expression of the
immune checkpoint proteins B7-H3 and TIM-3. However,
important contributors to tumor pathobiology reside at the
tumor–host interface including immune cell components and
paracrine-acting factors derived from cancer-associated fibro-
blasts and other microenvironment cell types. Future studies
employing high-plex DSP focused on interactions that occur in
spatially restricted domains may identify additional mechanisms
contributing to the lack of responses to immune-based therapy
observed in patients with metastatic PC.

Methods
Study population. Samples were obtained from patients who died of metastatic
castration resistant PC and who had provided written informed consent as per the
aegis of the Prostate Cancer Donor Program at the University of Washington. The
Institutional Review Board of the University of Washington approved this study.

Fig. 4 Intratumoral gene expression homogeneity and heterogeneity. a Heatmap of 141 ROIs from 53 individual tumor cores grouped by 26 patients

highlighting androgen receptor (AR), neuroendocrine (NE), cell cycle progression (CCP), FGFR/MEK, and RB1 gene signatures. Results are expressed as

gene signature Z-scores and presented according to color scale. b Boxplot demonstrating interpatient, intrapatient, and intratissue correlation across 141

individual DSP ROIs from 53 tumors from 26 patients. c Volcano plot indicating intrapatient heterogeneity in sample 12-005K1. The green arrow highlights

genes enriched in ARlow/NE− tumor core relative to the other two cores from the same tissue. d Data graphed as boxplots indicating differences in AR, NE,

and CCP gene signature Z-scores across 141 ROIs from 26 patients included on the TMAs. Dotted lines separate each patient. The NE and CCP plots retain

the patient ordering by the AR score as shown in the AR score plot. e Heatmap of six ROIs from two individual tumor cores (L3 and M2) from patient 15-

096. Results are expressed as gene signature Z-scores and log2 negative-normalized (NN) gene expression and presented according to the color scales in

Fig. 2a. Exact intratumoral homogeneity was 40% based on the associated hypergeometric distribution for possible pairs of samples. Boxes in b and

d represent the median and interquartile range (IQR) and the upper and lower whiskers extending to the values that are within 1.5 × IQR; data beyond the

end of the whiskers are outliers and plotted as points.
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TMA construction. The study design comprised specimens from 27 patients with
two metastatic sites included per patient: 52 soft tissues metastases (liver N= 17,
lymph node N= 16, lung N= 6, other N= 13) and four bone metastases. Visceral
metastases were identified at the gross level, bone biopsies were obtained according
to a previously described template from 16 to 20 different sites67, and all metastases
were verified at a histological level. Tissues were FFPE (bone metastases were
decalcified in 10% formic acid). TMAs were constructed from three 1-mm dia-
meter cores punched from each FFPE tissue block for a total of 168 tumor cores
arrayed across three recipient TMA blocks.

Immunohistochemistry. Five-micron thick sections of the TMAs were depar-
affinized and rehydrated in sequential xylene and graded ethanol. Antigen retrieval
was performed in 10 mM citrate buffer (pH 6.0) in a pressure cooker for 30 min.
Endogenous peroxidase and avidin/biotin were blocked respectively (Vector
Laboratories Inc.). Sections were then blocked with 5% normal goat–horse–chicken
serum, incubated with primary antibody Anti-Androgen Receptor (Biogenex)
MU256-UC (1:60), Anti-Androgen Receptor V7 antigen (clone RM7) (RevMab
Biosciences) (1:2000), Anti-Prostate-Specific Antigen (Dako) A0562 1:1000, Anti-
Synaptophysin (Santa Cruz) sc-17750 (1:200), incubated with biotinylated

ROI 7 ROI 8 ROI 12ROI 11ROI 10ROI 9
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secondary antibody (Vector Laboratories Inc.), followed by ABC reagent (Vector
Laboratories Inc.) and stable DAB (Invitrogen Corp.). All sections were lightly
counterstained with hematoxylin and mounted with Cytoseal XYL (Richard Allan
Scientific). Mouse (MOPC-21 developed by the Genitourinary Cancer Research
Lab at the University of Washington) or rabbit (I-1000-5 Vector Labs) IgG were
used as negative controls at the same concentration as the primary antibodies. IHC
staining was evaluated by a pathologist (M.R.) using a scoring system created by
multiplying three intensity staining levels (0, no staining; 1, weak staining; and 2,
strong staining) by the percentage of cells at each staining level and summing the
two values. The sum provided a final score for each sample (score range was
0–200). The final score for each sample was the average of the scores of each
triplicate or the average value of two, if one was missing68.

RNAseq analysis. Total RNA was isolated from 56 metastases fresh frozen in OCT
(Tissue-Tek) with RNA STAT-60 (Tel-Test) and extracted by column purification
using an RNA isolation kit RNeasy (Qiagen) according to the manufacturer’s
protocol. RNA was quantified by NanoDrop2000 spectrophotometer (Thermo
Fisher) and integrity determined on a 2100 Bioanalyzer (Agilent Technologies).
RNAseq libraries were constructed from 1 μg total RNA using the Illumina TruSeq
Stranded mRNA LT Sample Prep Kit according to the manufacturer’s protocol.
Barcoded libraries were pooled and sequenced on the Illumina HiSeq 2500

generating 50 bp paired end reads. Sequencing reads were mapped to the hg38
human using STAR v2.7.3a69. Gene level abundance was quantitated from the
filtered human alignments in R using the GenomicAlignments Bioconductor
package (version 1.22.1)70. AR-V7 was quantified by summing gapped reads within
the exon 3 to CE3 junction (chrX:67686127-67694672) from the aligned BAM files
using the GenomicAlignments Bioconductor package (version 1.22.1) and nor-
malized as the spliced reads per million12. The RNAseq data used in this study are
available under GEO accession number GSE147250.

In situ hybridization. To prepare slides for DSP, 4-μm thick TMA sections were
deparaffinized, heated in ER2 solution (Leica) at 100 °C for 20 min, and treated
with 1 µg/ml proteinase K (Ambion) at 37 °C for 15 min on a BOND RXm
autostainer (Leica). An overnight in situ hybridization was performed as descri-
bed71 with a final probe concentration of 4 nM per probe. The panel included
probes that target 2106 mRNA transcripts as well as 220 negative probes (18,120
probes total, median 10 probes per target). Slides were washed twice at 37 °C for
25 min with 50% formamide/2X SSC buffer to remove unbound probes.

Sample preparation and analysis for multiplexed protein profiling with

GeoMx. Slides were deparaffinized and rehydrated in staining jars by incubating
for 3 × 5 min in CitriSolv, 2 × 5 min in 100% ethanol, 2 × 5 min in 95% ethanol, and

Fig. 5 Intratumoral heterogeneity within full-tumor section 15-096M1. a Hematoxylin and eosin (H&E) staining of 15-096M1 lymph node metastases.

Distinct areas of morphology are demonstrated, cribriform well differentiated prostatic adenocarcinoma (lower left) and undifferentiated high-grade

carcinoma (upper right). N= 1 tissue section for H&E staining. b Fluorescent labeling of 15-096M1 lymph node metastases. High PanCK staining is present

in the lower left and low PanCK staining is present in the upper right. N= 1 tissue section for fluorescent labeling. c Individual tumor region of interest

(ROIs) (200–500 µm) with varying levels of PanCK intensity and differential tumor morphology. N= 1 tissue section for fluorescent labeling and ROI

selection. Expression plots of genes known to be associated with AR+/NE− (d), AR−/NE− (e), and AR−/NE+ (f) phenotypes of ROIs 7–12 from 15-

096M1. Counts were Q3 normalized and scaled (Z-score) to enable plotting of all genes on the same axes. g–k Comparison of transcript levels of specific

genes in ROIs 1–6 (N= 6) from the CK+ tumor region and ROIs 10–12 (N= 3) distant from the CK+ region. Counts were log2 Q3 normalized. Significance

was determined by two-sided Wilcoxon-rank tests (g–k: p= 0.024). Boxes represent the median and interquartile range (IQR) and the upper and lower

whiskers extending to the values that are within 1.5 × IQR; data beyond the end of the whiskers are outliers and plotted as points.

Fig. 6 Alternative splicing of AR isoforms is present across metastases, as determined by DSP. a Heatmap of 141 individual tumor ROIs grouped by 26

patients comparing bulk RNAseq AR-V7 expression to DSP. Results are expressed as gene signature Z-scores and log2 negative-normalized (NN) gene

expression and presented according to color scales. b DSP–RNA probe design of AR full length and AR-V7 variant isoform. c Fluorescent labeling and ROI

selection of three cores from two sites of metastasis from patients 14-043 that demonstrated divergent AR-V7 expression determined by RNAseq and

DSP. N= 1 TMA section for fluorescent labeling. d Heatmap demonstrating discordance in AR-V7 expression DSP AR-V7 and AR-V7 measured by bulk

RNAseq and AR-V7 immunohistochemistry (IHC) in six tumor ROIs from two sites (CC3 and H3) within patient 14-043. Results are presented according

to color scales in a.
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Fig. 7 DSP describes immune cell microenvironments of distinct phenotypes of mCRPC. a Heatmap of DSP immune signaling genes across 141 individual

regions of interest (ROIs) from 26 patients. Results are expressed as gene signature Z-scores and log2 mean-centered gene expression and presented according

to color scales. b Fluorescently labeled patient core with matched hematoxylin and eosin (H&E) staining representing high and low levels of inflammatory

infiltrate. High—17-081P2 is comprised of 70% tumor, 30% stroma, with 100 CD3+ leukocytes present, and 13-012M2 is comprised of 80% tumor, 20% stroma,

with 40 CD3+ leukocytes present. Low—15-096M2 is comprised of 90% tumor, 10% stroma with zero CD3+ cells, and 13-104K2 is comprised of 90% tumor,

10% stroma with three CD3+ cells present. Immune cells counted based on CD3 immunohistochemical staining. N= 1 TMA section for fluorescent labeling and

H&E staining. c DSP protein depicts overall low levels of intratumoral immune cells. Data are graphed as log2 signal-to-noise ratio (SNR). d Consistently high

expression of B7-H3 is present in the ARpos_NEneg phenotype when compared to other CRPC phenotypes. Expression is consistent across RNA and protein DSP

in B7-H3, PD-L1, PD1, with slightly higher expression in protein DSP observed for CTLA4. Data are presented as log2 normalized counts.
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2 × 5min in deionized water. Antigen retrieval was performed by placing a staining
jar containing the slides and 1X Citrate Buffer (pH 6) into a pressure cooker at high
temperature and high pressure for 15 min. After releasing the pressure, the staining
jar was left at room temperature with its lid removed for 25 min. Slides were then
washed 5 × 1min in 1X TBS-T. Blocking was performed by placing slides hor-
izontally in a humidity chamber and covering the tissue with Buffer W (Nano-
String) for 1 h at room temperature. A mixture of the detection antibodies and
morphology markers was diluted in Buffer W to a final concentration of ~0.25 µg/
ml for each antibody. The antibody panel consisted of 60 oligo-conjugated anti-
bodies described previously71 with the addition of antibodies recognizing AR and
SYP (Supplementary Data File 5: Note, NanoString provides a NanoString Protein
Probe ID for each unique antibody conjugation clone in lieu of specific identifying
information about the antibodies as NanoString considers this confidential infor-
mation). Each antibody was assigned a single probe ID. After removing the
blocking solution, the diluted antibody mixture was pipetted onto the slides and the
humidity chamber was incubated at 4 °C overnight. Slides were washed 3 × 10 min
in 1X TBS-T and then postfixed in 4% PFA for 30 min at room temperature,
followed by 2 × 5min washes in 1X TBS-T. Nuclei were stained with 500 nM SYTO
13 for 15 min at room temperature in a humidity chamber and rinsed with 1X
TBS-T before loading onto the GeoMx instrument.

Digital spatial profiling. Prepared slides were stained with immunofluorescent
antibodies to facilitate the identification of tissue morphology: pan-cytokeratin
(AE1+AE3, Novus Biologicals) for epithelial cells and CD3 (UMAB54, OriGene
labeled with Alexi Fluor 647) or CD45 (2B11+ PD7/26, Novus Biologicals) for
T cells, as well as the DNA stainSyto13 (NanoString, 121303303). Stained slides
were loaded onto a GeoMx instrument and scanned. One circular ROI measuring
500 μm in diameter was selected per tissue core. Each ROI was annotated post
selection by a pathologist (M.R.) to estimate tumor and stromal content (%). ROI
locations for RNA and protein slides were selected to be the same wherever pos-
sible. GeoMx DSP technology is for research use only and not for use in diagnostic
procedures.

Library preparation and sequencing. Collected oligos from each ROI were PCR
amplified using a forward primer with the sequence CAAGCAGAAGACGGCAT
ACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
and a reverse primer with the sequence AATGATACGGCGACCACCGAGAT
CTACACXXXXXXXXACACTCTTTCCCTACACGACGCTCTTCCGATCT,
where Xs represent custom Illumina i5/i7 unique dual indexing sequences to
preserve ROI identity. PCR products were pooled and purified twice with AMPure
XP beads (Beckman Coulter). PCR products for each analyte type (RNA and
protein) were pooled and sequenced separately. Library concentration and purity
were measured using a high sensitivity DNA Bioanalyzer chip (Agilent). Paired end
(2 × 38 bp reads) sequencing was performed on an Illumina NextSeq instrument.

Data processing and analysis. After sequencing, reads were trimmed, merged,
and aligned to retrieve the probe identity. The unique molecular identifier region of
each read was used to remove PCR duplicates and duplicate reads, thus converting
reads into digital counts. The sequencing saturation was sufficient for both RNA
and protein analytes at 63 and 82%, respectively. For each gene in each sample, the
reported count value is the mean of the individual probe counts after removal of
outlier probes.

The LOQ was set at the geometric mean plus two standard deviations of the
negative probes. Of 2093 genes targeted by DSP, 1636 (78%) were above the
detection threshold in at least one ROI. The 457 genes below the detection
threshold in all ROIs were excluded from further analysis. Enrichment scores were
calculated in R using the Z-scores function within the GSVA package (version
1.32.0)72 with default parameters and log2 negative-normalized expression values
above background as input. All signatures used are described in Nyquist et al.29.
Sample phenotypic groups were visualized using classical MDS calculated with the
cmdscale function in R using the expression of 23 out of 26 genes in a published
gene signature23. Three genes (ACTL6B, S100A14, and FGFBP1) were removed
due to lack of expression in the DSP dataset. The distance metric was “Euclidean”
calculated by dist function on the columns (samples). Pearson’s correlation
coefficient was used to study the relationships between variables shown in
scatterplots using the cor.test function in R. The counts for each antibody were
divided by the geometric mean of the three IgG negative control antibodies on a
per ROI basis to create a signal-to-noise ratio (SNR). Antibodies below a SNR of 3
are considered not detected in that ROI. Protein signal between ROIs was
normalized using three positive reference or housekeeping proteins (ribosomal
protein S6, histone H3, and GAPDH). Homogeneity of samples from the same
tumor or patient was quantified using the mean proportion of randomly sampled
pairs of samples that agree in terms of nonmissing phenotype classification (six
categories); uncertainty was quantified using bias-corrected and accelerated 95%
confidence intervals based on 1000 bootstrap replicates. All analyses utilizing R
were performed with version 3.5.1 or 3.6.2 and RStudio 1.3.1093.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All of the relevant data for this study are publicly available and have been provided by the

authors. The RNAseq data used in this study are available under GEO accession number

GSE147250. The DSP transcript data are provided in Supplementary Data File 3. The

DSP protein data are provided in Supplementary Data File 4. The remaining data are

available within the article, Supplementary Information, or available from the authors

upon request.
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