
Interaction of Fluids with Deformable Solids

Matthias Müller Simon Schirm Matthias Teschner Bruno Heidelberger Markus Gross

ETH Zürich, Switzerland

Abstract

In this paper, we present a method for simulat-
ing the interaction of fluids with deformable solids.
The method is designed for the use in interactive
systems such as virtual surgery simulators where
the real-time interplay of liquids and surrounding
tissue is important.

In computer graphics, a variety of techniques have
been proposed to model liquids and deformable ob-
jects at interactive rates. As important as the plau-
sible animation of these substances is the fast and
stable modeling of their interaction. The method
we describe in this paper models the exchange
of momentum between Lagrangian particle-based
fluid models and solids represented by polygonal
meshes. To model the solid-fluid interaction we
use virtual boundary particles. They are placed on
the surface of the solid objects according to Gaus-
sian quadrature rules allowing the computation of
smooth interaction potentials that yield stable sim-
ulations. We demonstrate our approach in an in-
teractive simulation environment for fluids and de-
formable solids.

Keywords: smoothed particle hydrodynamics (SPH), finite
element method (FEM), fluid-solid interaction

1 Introduction

Interactive physically based simulation is a rapidly growing
research area with an increasing number of applications, e. g.
in games and computational surgery. In these simulation en-
vironments, deformable objects play an important role. For
the simulation of deformable solids, a variety of models have
been proposed ranging from efficient mass-spring approaches
to methods based on the physically more accurate Finite Ele-
ment Method (FEM). Some of these methods allow the simu-
lation of elastically and plastically deformable solids at inter-
active speed.

More recently, there has been an increased interest in ef-
ficient methods for the realistic simulation of fluids. These
approaches can be employed to represent blood or other liq-
uids. Besides deformable models, they play an essential role
in applications such as surgery simulation. So far, only a few
interactive methods for the simulation of fluids with free sur-
faces have been proposed.

With the ability to simulate both, deformable solids and
fluids, a new problem has been introduced, namely the mod-

eling of the interaction of these structures. An interaction
model suitable for the use in interactive environments needs
to be computationally efficient and the generated interaction
forces must not induce any instabilities to the dynamic simu-
lation.

In this paper, we present a new technique to model in-
teractions between particle based fluids and mesh based
deformable solids which meets these constraints. We
present our interaction model with fluids represented by a
Smoothed Particle Hydrodynamics approach (SPH) and with
deformable solids represented by a Finite Element approach.
However, the general interaction model we propose works
with any type of deformation technique as long as the ob-
ject surface is represented by a polygonal mesh and the fluid
by Lagrangian particles.

2 Related Work

The majority of publications in the area of physically based
animation focuses on physical systems of one single type.
Deformable objects are interesting to study in their own right.
In fluid simulation, on the other hand, boundary conditions
are often considered a necessary but not a central issue. They
are typically derived from simple geometric primitives. Our
method connects these two areas of research.

In the field of computer graphics, a large number of mesh
based methods for the physically based simulation of de-
formable objects have been proposed since the pioneering pa-
per of Terzopoulos [1]. Early techniques were mostly based
on mass-spring systems, which are still popular for cloth
simulation [2, 3]. More recent methods discretize continu-
ous elasticity equations via the Boundary Element Method
(BEM) [4] or the Finite Element Method (FEM) [5, 6, 7].

Since T. Reeves [8] introduced particle systems as a tech-
nique for modeling fuzzy objects twenty years ago, a variety
of special purpose, partice based fluid simulation techniques
have been developed in the field of computer graphics. Des-
brun and Cani [9] where among the first to use Smoothed Par-
ticle Hydrodynamics (SPH) [10] to derive interaction forces
for particle systems. They added space-adaptivity in [11].
Later, Stora et al. [12] used a similar particle based model to
animate lava flows. In [13], Müller et al. derived inter parti-
cle forces from SPH and the Navier Stokes equation to sim-
ulate water with free surfaces at interactive rates. Recently,
Premoze et al. [14] introduced the Moving-Particle Semi-
Implicit (MPS) method to computer graphics for the simula-
tion of fluids. As a mesh-free method, it is closely related to
SPH but in contrast to standard SPH, it allows the simulation

1

Figure 1: A box falls into a pool and generates a shock wave that causes the pool to fracture.

of incompressible fluids. In all these papers, boundary con-
ditions are not treated explicitly. The fluids typically interact
with solid walls or the ground.

Genevaux et al. [15] address the interaction problem ex-
plicitly. They propose a method to simulate the interaction
between solids represented by mass-spring networks and an
Eulerian fluid grid by applying spring forces to the mass-less
marker particles in the fluid and the nodes of the mass-spring
network. However, solids are typically represented by coarse
meshes, especially in interactive simulations. Thus, the nodes
of a mass-spring network are not very well suited for the ap-
plication of interaction forces. Therefore, Monaghan, one of
the founders of the SPH formalism, uses special boundary
or ghost particles on fixed borders to model interactions [16].
The idea of ghost particles was picked up in several following
projects including our own. The key contribution of our pa-
per is to place these ghost particles onto boundary triangles of
deformable objects and to derive their locations and weights
according to Gauss integration [17], which allows to model
fluid-solid interactions stably at interactive rates.

3 Physical Problem Description

In physically based animation, we are interested in the sim-
ulation of macroscopic effects at interactive speed. There-
fore, we consider macroscopic models for both, solids and
fluids. Materials, which are homogeneous at the macroscopic
level, can mathematically be described as a continuum [18].
Thereby, quantities such as the density ρ, viscosity µ, defor-
mation u or velocity v are all mathematically expressed by
continuous functions over space and time. A physical model
relates these quantities to each other via partial differential
equations (PDEs). The mechanical behavior of an elastic
solid can be described by the following equation

ρ
∂2

∂t2
u = ∇ · σs(u) + f , (1)

which expresses Newton’s equation of motion, namely that
the change of momentum on the left hand side is equal to the
internal elastic forces due to the stresses σs plus the externally
applied body forces f . The stresses σs are functions of the
displacements u. The equation is in Lagrangian form since
the displacement vectors u follow the material points.

Similarly, mechanical properties of incompressible Newto-
nian fluids can be described by the following two equations
in Eulerian form where fluid quantities are observed in a fixed
coordinate frame

ρ

(

∂v

∂t
+ v · ∇v

)

= ∇ · σf (v) + f (2)

∇ · v = 0. (3)

Equation (2) again states that the change of momentum equals
the internal forces derived from the stresses σf plus the ex-
ternally applied body forces f . The stress tensor σf =
2µǫ(v)− pI is composed of the viscosity stress and the pres-
sure stress. The viscosity stress is dependent on the viscosity
µ and the strain rate tensor ǫ while the pressure stress only de-
pends on the scalar pressure p. For an incompressible fluid,
the velocity field is divergence free (Eq. (3)).

Comparison of the right hand side of the two equations
of motion (1) and (2) reveals, that the Eulerian description
makes the additional convection term v · ∇v necessary. In
Sec. 4, we discuss numerical methods to solve both equations
of motion. For fluids we focus on particle based methods such
as SPH for which this term can be omitted.

3.1 Boundary Conditions

Materials such as fluids or solids are bounded by spatial lim-
its. The behavior of materials at these limits is defined by
boundary conditions. The boundary conditions relate the
quantities of the two adjacent materials to each other at the in-
terface. In the case of fluid-solid interaction, the geometrical
domain of the interface Γ is defined as a surface between the
volumetric solid continuum and the volumetric fluid contin-
uum (see Fig. 2(a)). We focus on three main types of bound-
ary conditions.

3.2 No-Penetration Condition

If the solid is considered to be impermeable, no fluid element
is allowed to cross the boundary, which is described in the
following equation:

(
∂

∂t
u − v) · n = 0 at the boundary Γ, (4)

where n is the normal on Γ (see Fig. 2(b)). The equation
states that the components of the velocities of the fluid and
the deformable object perpendicular to Γ are equal.

3.3 No-Slip Condition

The no-slip condition models friction between the fluid and
the solid (see Fig. 2(c)). It holds for most fluids-solid surfaces
and it states that the velocity components tangential to the
fluid surface have to be equal, thus

(
∂

∂t
u − v) × n = 0 at the boundary Γ. (5)

If both independent boundary conditions (4) and (5) hold,
we simply have ∂

∂t
u = v at the boundary, i.e. both materials

have the same velocity at the boundary.

2

3.4 Actio = Reactio

Newton’s Third Law demands the continuity of stresses σs

and σf throughout the boundary (see Fig. 2(d)). In other
words, the traction forces of the solid gf must be opposite
to the traction forces of the fluid gs on the boundary Γ

gs = σsn = σf (−n) = −gf , (6)

where n is the outward normal on the solid and −n the out-
ward normal on the fluid.

(a) (b) (c)

u v

Γsolid fluid

n

v

u
.

n

vu
.

(d)

n

σs
σf

-n

gs

gf

Figure 2: Boundary conditions: (a) A solid object is deformed
by a displacement field u and interacts with a fluid whose
velocity field is v. The no-penetration condition is shown
in image (b) where u̇ is the time derivative of u. Image (c)
illustrates the no-slip condition and image (d) Newton’s Third
Law.

4 Computational Model

The continuous equations and boundary conditions described
in the previous section need to be discretized in space and
time via a numerical method before they can be used in a
computer simulation. We do not go into the details of how
equation (1) for elastic objects can be solved numerically. For
possible solutions using the Finite Element Method (FEM)
we refer the reader to [19], [6] or [7]. All we require for our
interaction method to work is

• that the solid object is represented by a mesh and

• that the displacements, velocities and forces are carried
by the nodes of the mesh.

Most of the methods used in computer graphics to simulate
deformable objects meet these constraints including mass-
spring systems, the Finite Volume Method (FVM) and the
Boundary Element Method (BEM).

For the simulation of fluids, two main numerical methods
have been used in the field of physically based animation so
far, namely Eulerian grid-based approaches [20, 21, 22] and
Lagrangian methods based on particles (see Sec. 2). In this
paper we concentrate on Lagrangian methods because they
allow fluids with free surfaces to move freely in space while
in the Eulerian case fluid computations are restricted to a
spatially fixed and bounded grid. From the fluid simulation
method we require

• that the fluid is represented by a set of particles and

• that positions, velocities and internal forces are carried
by the particles.

Interaction modeling, thus, reduces to the problem of simu-
lating the interaction between particles and triangulated sur-
faces.

(a) (b)

(c) (d)

Figure 3: (a) Iso surfaces of the Euclidean distance field of a
piecewise linear curve (blue) with discontinuous first deriva-
tives near concavities. (b) Weighted sums yield smooth iso
surfaces with bulges. (c) Normalization does not remove the
artifact. (d) Convolution yields bulge-free smooth iso sur-
faces.

4.1 Interaction of Particles with Triangles

In physics, interaction potentials of two objects always de-
pend on the distance between them. While the Euclidean dis-
tance between two points is uniquely defined, the distance
between a point and a triangle or a point and a triangulated
surface needs to be defined. Let us define the distance of a
point p from a triangle t as

d(p, t) = min
x∈t

|p − x|, (7)

and the distance of a point p from a triangulated surface T as

d(p, T) = min
t∈T

d(p, t). (8)

Figure 3(a) shows several isosurfaces of the resulting distance
field which is C0 continuous everywhere. Unfortunately,
concavities as well as close disconnected meshes generate
discontinuous first derivatives of the distance field. Those dis-
continuities lead to discontinuous derivatives in forces since
the forces depend on the distance field. A force field with
discontinuous first derivatives, in turn, yields artifacts such
as the so called cooking of particles in concave regions and
reduced stability of the simulation.

The source of the discontinuity in the first derivatives is the
minimum operator in Eqn. (8). One way to remove the prob-
lem is to replace the minimum by a weighted sum. Let the
kernel W (d, h) ∈ C1 be a positive smooth monotonously de-
creasing function which is zero for d ≥ h and has a vanishing
derivative at d = h. We can then define the potential Φ of a
point p with respect to a triangulated surface T which is not
a Eucledian distance anymore

Φ(p, T) =
∑

t∈T

d(p, t)W (d(p, t), h), (9)

but which is C0 and C1 continuous everywhere. However, as
Fig. 3(b) shows, the resulting field is distorted near triangle
boundaries. This effect can be removed by normalization

Φ̄(p, T) =

{

1
w

Φ(p, T) if w > 0

0 otherwise,
(10)

3

where w =
∑

t∈T W (d(p, t), h). Unfortunately, normaliza-
tion just distributes the distortions to adjacent regions of tri-
angle interfaces as Fig. 3(c) shows. Another difficulty intro-
duced by the weighted field method is the choice of the sup-
port radius h with respect to the size of the features of the
boundary T . For large supports, small features are smoothed
out while small supports reduce the interaction range of T .

4.2 Convolution Surfaces

The problems mentioned in the previous section are well
known in the field of implicit surface modeling introduced
by Blinn [23]. An elegant way to generate a bulge-free sur-
face around a skeleton S, is to define a scalar function FS as
the convolution

FS(p) =

∫

x∈S

W (p − x)dx. (11)

The implicit surface is defined by selecting an iso-surface of
FS . By replacing the skeleton S with the triangulated surface
T we get a smooth potential field around T (see Fig. 3(d)).
The problem with the weighted sum approach arises when
when multiple triangles meet. In this case, all triangles con-
tribute as a whole to the sum and generate bulges. In contrast,
the convolution integral sums up infinitesimal parts of the
skeleton each properly weighted (see Fig. 4). When the con-
volution integral is used, the interaction of p with the surface
T is modeled as the interaction of p with all the infinitesimal
points in T . For skeletal elements other than points, the inte-
gral in Eqn. (11) yields complex computations. Approaches
to approximate this integral were proposed by Bloomenthal
[24] and Sherstyuk [25]. Bloomenthal uses radial Gauss ker-
nels which can be separated with respect to different dimen-
sions. The separation allows post evaluation of the convolu-
tion in 3D space, only considering the distance to the triangle
plane. Sherstyuk discovered a special kernel which can be an-
alytically convoluted over a triangle domain. Neither method
is suitable for computing physical interactions because we are
not free in the choice of the kernel. The potential function is
given by physical laws.

(a) (b) (c)

h

p p p

Figure 4: (a) 2D cut through a 3D mesh. Fluid particles
within interaction range h from the surface interact with the
triangles (shown in red). (b) The convolution integral sums up
the contributions of infinitesimal parts of the triangles prop-
erly weighted. (c) Interactions with Gaussian particles (yel-
low) approximate the convolution in an optimal way.

4.3 Gaussian Boundary Particles

Our idea to solve the convolution integral is to use Gauss
quadrature rules [17]. For the interaction potential of a parti-

cle p with a single triangle t we get

U(p, t) =

∫

x∈t

U(p − x)dx (12)

≈ A
∑

i

wiU(p − xi), (13)

where A is the surface area of t, xi the sampling points and
wi their weights according to a chosen quadrature rule. We
use the seven point rule which has convergence order O(L6)
with respect to the triangle size L. (see Fig. 5(a) and Tab. 1).
These sampling points can be interpreted as boundary parti-
cles, which are placed and weighted according to the chosen
Gauss quadrature rule. The weighted summation of their po-
tentials approximates the convolution of the potential over the
domain of the boundary triangle in an optimal way.

Although the seven point rule yields good approximations
of the convolution integral, triangles that are large in compari-
son to the interaction range of the surface would induce a poor
sampling of the boundary field. Therefore, we subdivide the
boundary triangle until a sufficient sampling rate is provided.
We define a threshold for the maximal acceptable distance be-
tween boundary particles. This threshold is chosen relative to
the maximal interaction radius of the fluid particles and can
be regulated by the user. The boundary particles are gener-
ated by subdividing the triangle domain and by application
of the Gauss quadrature rule to the resulting triangles (see
Fig. 5(b)). This has to be done at every time step, because tri-
angles on the boundary are moved and deformed. Therefore,
an efficient scheme is needed. We compute the relative vec-
tors from the triangle nodes (shown in blue) to the boundary
particles (shown in red) only once because they are the same
for all subdivision triangles. These vectors are then added to
the blue nodes to generate the complete set of boundary parti-
cles. Analog to positions, the velocities of boundary particles
are interpolated from the velocities of the triangle nodes.

Now that we have replaced the triangulated surface by a
set of particles, the problem of triangle-particle interaction
reduces to particle-particle interaction. We can, thus, use
SPH-based approaches to approximate the boundary condi-
tions stated in Sections 3.2, 3.3 and 3.4.

(a) (b)

Figure 5: (a) Boundary particles on a triangle according to
the seven point rule. (b) Large triangles are subdivided and
boundary particles are generated for each resulting triangle.

4.4 Boundary Repulsion and Adhesion

The no-penetration condition stated in Sec. 3.2 prevents fluid
particles from penetrating the solid object. Monaghan [16]
uses a Lennard-Jones-like force to generate repulsive forces
which approximate the no-penetration condition. We propose
a Lennard-Jones-like force that models both repulsion and ad-
hesion to the contact surface. We define the force acting on

4

Point Barycentric coordinates Weights

1 (1/3, 1/3, 1/3) 9/40
2 (a, b, b) e
3 (b, a, b) e
4 (b, b, a) e
5 (c, d, d) f
6 (d, c, d) f
7 (d, d, c) f

Table 1: Barycentric coordinates and weights of the seven
point Gauss quadrature rule for triangles, where a =
0.05971587, b = 0.47014206, c = 0.79742699, d =
0.10128651, e = (155 +

√
15)/1200 and f = (155 −√

15)/1200.

particle p due to triangle t by the convolution

fra(p, t) =

∫

x∈t

τ ra(|p − x|) dx. (14)

The traction τra is dependent on the distance of the surface
element from the particle p and has unit force per area in
order to yield a force when integrated over the triangle. To
model repulsion and adhesion, we use the following traction
function

τ ra(r) =

{

k (h−r)4−(h−r0)
2(h−r)2

h2r0(2h−r0)
if r < h

0 otherwise
, (15)

where h is the interaction range and k controls the stiffness of
the interaction. The traction has an order four repulsion term
and an order two attraction term. It is designed to be zero
for r = r0 which is the preferred distance of fluid particles
from the interface. The fact that for r = 0 the traction is fi-
nite (τ ra(0) = k) and that both, traction and first derivative
vanish for r = h are important for robust real time simula-
tions. Using Gaussian boundary particles, the force acting on
a particle p is computed as

fra(p) ≈
∑

i

Ai

∑

j

wijτ
ra(|p − xij |), (16)

where i iterates over all triangles within distance h of particle
p. For each triangle the contributions of its boundary particles
are summed up according to equation (13).

4.5 Boundary Friction

The no-slip condition (Eq. (5)) can be approximated by in-
cluding the boundary particles into the viscosity evaluation of
the SPH particles [16]. We use the normalized kernel W visc

proposed in [13] for viscosity computations. To evaluate the
viscosity force fvisc(p) on a fluid particle, the velocities of
the boundary particles have to be interpolated from the veloc-
ity of mesh nodes (see Sec. 4.3). The traction τvisc depends
on the velocity vb of the boundary particle, the vp of the fluid
particle and the distance r between them

τvisc(r) = µ(vb − vp)∇2Wvisc(r, h), (17)

where the scalar µ controls the boundary viscosity and

∇2Wvisc(r, h) =

{

45
πh6 (h − r) if 0 ≤ r ≤ h

0 otherwise.
(18)

The kernel Wvisc is designed such that its Laplacian
∇2Wvisc takes the linear form above, but satisfies the nor-
malization criterion on the kernel itself. The normalization
warrants second order interpolation convergence. The nu-
merical approximation of the convolution integral over the
triangle surface defines the final form of the viscosity force

fvisc(p) =
∑

i

Ai

∑

j

wijτ
visc(|p − xij |). (19)

4.6 Actio = Reactio

So far, we have applied forces to fluid particles only. How-
ever, according to Newton’s Third Law, proper reaction
forces need to be applied to the deformable solid as well.
The force contributions of boundary particles have to be dis-
tributed among the boundary triangle vertices so they can be
picked up by the simulator of the deformable object. Bridson
et al. [26] solve a similar problem in the context of cloth sim-
ulation. To resolve vertex-triangle collisions, an impulse is
applied to the colliding vertex. Then, a distribution scheme is
used to compute the corresponding reaction impulses for the
three vertices of the triangle. We use the same scheme to dis-
tribute the forces to the vertices of the triangle surface. Given
the force contribution fb computed for one boundary particle
we compute the force contributions to the triangle nodes and
the fluid particle as

f
triangle
k =

2wkfb

1 + w2
1 + w2

2 + w2
3

(20)

fparticle =
−2fb

1 + w2
1 + w2

2 + w2
3

, (21)

where the wk are the barycentric coordinates of the boundary
particle with respect to the triangle and k ∈ (1 . . . 3). Ac-
cording to [26] this distribution scheme provides continuity
across triangle boundaries and introduces appropriate torques
for off-center interactions. However, the scheme is not com-
pletely error free. Force magnitudes can get amplified – at
most by a factor of 8/7 – at the triangle center. However, this
error did not cause any artifacts or stability problems in our
simulations.

5 Implementation

At every time step of the solid and fluid simulator, the follow-
ing five steps are executed:

1. Surface triangle extraction: Boundary triangle refer-
ences are stored in a flat list.

2. Particle grid hashing: A grid index on the fluid parti-
cles is created.

3. Neighbor search: For each boundary triangle a list of
possible fluid interaction partners is generated.

4. Boundary sampling: For every boundary triangle with
possible interaction partners, boundary particles are gen-
erated.

5. Interaction computation: For every interaction pair,
composed of a boundary particle and a fluid particle,
forces are computed and applied to related triangles and
fluid particles.

Processing the five phases one after the other would have
a negative impact on storage requirements. Neighbor refer-
ences and boundary particles for all triangles would have to

5

be stored at the same time. If the computations of steps three
to five are grouped around single triangles, only data relevant
for the current triangle has to be stored at a time (Fig. 6).

... ...

Neighbor

search

Sampling

Interaction

computation

Figure 6: Algorithm overview: Triangles are processed sepa-
rately. This avoids the storage of fluid particle neighbor lists
and boundary particles for all triangles simultaneously.

The output of step 3 is a list, containing all fluid particles
within interaction range h of a triangle t. To speed up the
search for these particles we use a regular grid with spatial
hashing [27]. There is a trade-off between computation time
for the neighbor search and the quality of the neighbor list.
We extend the axes aligned bounding box (AABB) of t along
all axes about the interaction range. Then, we query all grid
cells intersecting the extended box. We also tested tighter
queries which generate fewer neighbor candidates but their
increased time complexity was not compensated by the re-
duced cost of interaction computations.

In step 4, boundary particles are only generated for those
triangles that have fluid particle neighbors. The boundary par-
ticles for a triangle t are kept only temporarily for the inter-
action computation. After t is processed, they are discarded.
In this step, positions and velocities are interpolated from the
triangle nodes for each boundary particle.

To compute interaction forces in step 5 we iterate over all
the boundary particles of a triangle. For each fluid parti-
cle within the interaction radius of the boundary particle, we
compute the interaction forces as described in Sec. 4 and dis-
tribute them among the fluid particle and the triangle nodes
according to Eqns. (20) and (21).

6 Results

All experiments described in this section have been per-
formed on an AMD Athlon 1.8 GHz PC with 512 MB RAM
and a GeForce Ti 4400 graphics card with 128 MB RAM.
Note that most of the simulations are recorded in a real-time
interactive environment. Thus, we cannot afford several sec-
onds or even minutes per frame for the reconstruction and
rendering of the free fluid surface as in off-line simulations
[14, 15] which explains the simplistic renderings of the flu-
ids.

(a) (b)

Figure 7: (a) When the user pulls the pool wall, water flows
out. (b) Boxes float on the water surface.

6.1 A Pool Filled with Water

To demonstrate the stability of our model in connection with
concave surfaces, we filled a pool composed of 800 tetrahe-
dral elements with 2000 fluid particles (see Fig. 7(a)). The
simulation runs at 20 frames per second. By pulling the pool
wall, the user indirectly influences the water. The generated
waves, in turn, deform the pool walls. Deformable boxes float
freely on the water surface (see Fig. 7(b)). Fig. 8 shows the
fluid and boundary particles used in the simulation.

6.2 Floating Boxes

(a) (b)

Figure 8: A box floats in a pool: (a) The fluid particles are
shown in blue. (b) For the interaction computation virtual
boundary particles (white) are placed on the surfaces of the
deformable objects.

We dropped an additional large box into the pool (see
Fig. 1). When it touches the water, it emits a wave that hits the
pool boundary and causes it to fracture. This scene demon-
strates the interplay of various physical phenomena provided
by the fluid simulator, the solid simulator and the interaction
model.

6.3 Simulation of Blood Vessels

An important application of our method is the simulation of
bleeding during virtual operations. Our simulation of a blood
vessel is a first step into this direction. We simulate the flow
of 3000 particles through a virtual vessel, consisting of a de-
formable mesh composed of 560 tetrahedra. The simulation
took about 70 ms per time step. Fig. 9 shows the resulting
blood flow. The velocity of the fluid particles is color coded
visualizing the friction of the fluid with the boundary.

In the experiment shown in Fig. 10, we turned on fracture
of the Finite Element mesh. Now, the vessel is torn open
when the elastic stresses caused by blood pressure exceed the
material threshold. The free surface of the particle system is

6

Figure 9: Blood flow through a vessel. The image shows sub-
sequent time slices of an interactive animation. The velocity
of the fluid particles is color coded. Yellow colored particles
are fast, while red ones are slow. Pulsation waves and viscos-
ity at the vessel boundary can be observed.

Figure 10: Vessel injury. The Finite Element mesh fractures
due to pressure forces in the blood stream.

rendered using the Marching Cubes algorithm. The anima-
tion of the mesh and the particles are possible in real time at
60 ms per time step, while surface reconstruction took about
half a second per frame. On today’s hardware only a limited
number of fluid particles can be simulated in real-time which
yields a relatively coarse fluid surface.

7 Conclusion

We have presented a new method for the simulation of in-
teractions of deformable solids with fluids. Our interaction
model simulates repulsion, adhesion and friction near the
fluid-solid interface. The smoothness of the force fields is
important for the stability of the simulation. The core idea
to get smooth interaction fields is to place boundary parti-
cles onto the surface triangles according to Gauss quadrature
rules. This idea might be useful in other graphic domains as
well. We mentioned the application to modeling with implicit
surfaces. Character skinning is another application where
bulges or knees are known problems in regions where several
close bones meet.

We demonstrated the usability of our method in an interac-
tive simulation environment with several scenes. A difficulty
in connection with the interactive simulation of fluids is the
extraction and rendering of a plausible fluid surface in real
time. Thus, ongoing work focusses on fast algorithms for
surface reconstruction.

Acknowledgements

This project was funded by the Swiss National Commission
for Technology and Innovation (KTI) project no. 6310.1
KTS-ET.

References
[1] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. In Computer

Graphics Proceedings, Annual Conference Series, pages 205–214. ACM SIGGRAPH 87, July

1987.

[2] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of SIGGRAPH

1998, pages 43–54, 1998.

[3] Mathieu Desbrun, Peter Schrder, and Alan H. Barr. Interactive animation of structured de-

formable objects. In Graphics Interface ’99, 1999.

[4] Doug L. James and Dinesh K. Pai. Artdefo, accurate real time deformable objects. In Computer

Graphics Proceedings, Annual Conference Series, pages 65–72. ACM SIGGRAPH 99, August

1999.

[5] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan Barr. Dynamic real-time de-

formations using space & time adaptive sampling. In Computer Graphics Proceedings, Annual

Conference Series, pages 31–36. ACM SIGGRAPH 2001, August 2001.

[6] E. Grinspun, P. Krysl, and P. Schrder. CHARMS: A simple framework for adaptive simulation.

In ACM Transactions on Graphics, volume 21, pages 281–290. ACM SIGGRAPH 2002, August

2002.

[7] Matthias Mller, Julie Dorsey, Leonard McMillan, R. Jagnow, and B. Cutler. Stable real-time

deformations. Proceedings of 2002 ACM SIGGRAPH Symposium on Computer Animation,

pages 49–54, 2002.

[8] W. T. Reeves. Particle systems — a technique for modeling a class of fuzzy objects. ACM

Transactions on Graphics 2(2), pages 91–108, 1983.

[9] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new paradigm for animating

highly deformable bodies. In 6th Eurographics Workshop on Computer Animation and Simula-

tion ’96, pages 61–76, 1996.

[10] J.J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Physics, 30:543, 1992.

[11] Mathieu Desbrun and Marie-Paule Cani. Space-time adaptive simulation of highly deformable

substances. Technical report, INRIA Nr. 3829, 1999.

[12] D. Stora, P. Agliati, M. P. Cani, F. Neyret, and J. Gascuel. Animating lava flows. In Graphics

Interface, pages 203–210, 1999.

[13] Matthias Mller, David Charypar, and Markus Gross. Particle-based fluid simulation for interac-

tive applications. Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation,

pages 154–159, 2003.

[14] Simon Premoze, Tolga Tasdizen, James Bigler, Aaron Lefohn, and Ross T. Whitaker. Particle-

based simulation of fluids. Eurographics, 22(3):401–410, 2003.

[15] Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating fluid-solid interaction.

In Graphics Interface, pages 31–38. CIPS, Canadian Human-Computer Commnication Society,

A K Peters, June 2003. ISBN 1-56881-207-8, ISSN 0713-5424.

[16] J. J. Monaghan, M. Thompson, and K. Hourigan. Simulation of free surface flows with sph.

ASME Symposium on Computational Methods in Fluid Dynamics, 1994.

[17] C. Pozrikidis. Numerical Computation in Science and Engineering. Oxford Univ. Press, NY,

1998.

[18] T. J. Chung. Applied Continuum Mechanics. Cambridge Univ. Press, NY, 1996.

[19] J. F. O’Brien and J. K. Hodgins. Graphical modeling and animation of brittle fracture. In

Proceedings of SIGGRAPH 1999, pages 287–296, 1999.

[20] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 121–128. ACM Press/Addison-Wesley Publishing Co., 1999.

[21] N. Foster and R. Fedkiw. Practical animation of liquids. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 23–30. ACM Press, 2001.

[22] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces.

In Proceedings of the 29th annual conference on Computer graphics and interactive techniques,

pages 736–744. ACM Press, 2002.

[23] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics,

1(3):235–256, 1982.

[24] J. Bloomenthal. Skeletal Design of Natural Forms. PhD thesis, University of Calgary, Canada,

1995.

[25] A. Sherstyuk. Fast ray tracing of implicit surfaces. In Implicit Sufaces ’98, pages 145–153,

1998.

[26] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact and friction

for cloth animation. In ACM Transactions on Graphics, volume 21, pages 594–603. ACM

SIGGRAPH 2002, August 2002.

[27] M. Teschner, B. Heidelberger, M. Mller, D. Pomeranerts, and M. Gross. Optimized spatial

hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visualization

VMV, pages 47–54, 2003.

7

