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The number of published researching works related with applications of nanomaterials

in agriculture is increasing every year. Most of such works focus on the synthesis

of nanodevices, their characteristics as nanocarriers for controlled release of

active substances, and their interaction (either positive or negative) with plants or

microorganisms under controlled conditions. Important knowledge has been gained

about the uptake and distribution of nanomaterials in plants, although there are still

gaps regarding internalization inside plant cells. Nanoparticle traits and plant species

greatly affect the interaction, and nanodevices can enter and move through different

pathways (apoplast vs. symplast), what influences their effectiveness and their final fate.

Depending on the effect we are expecting for a nanocarrier, the application method

might be critical. However, in order to get that research used in the field, some problems

must be addressed. First, the cost for escalating the production of nanodevices must

be affordable with the current production cost of agricultural goods. Second, we need

to be sure that a technology is safe before spreading it into the environment. Third,

consumers will distrust a technology unfamiliar for them in the same way that happened

with transgenic crops. We need to broaden our horizons and start looking for real

practical approaches, filling themain gaps that hamper our jump from laboratory research

into field applications.
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IT’S PLENTY OF ROOM OUT THERE

It is possible that Richard Feynman was not aware of the catalytic events he was starting with
his lecture “There’s plenty of room at the bottom” back in 1959 (Feynman, 1960). More than
fifty years later, nanotechnology is starting to affect our lives and will shape the nearby future of
many disciplines such as material sciences, electronic, medicine or pharmacology. But what about
agriculture? Will this tiny revolution help to solve the problems that agriculture is facing, such
as increasing production and reducing negative environmental impacts within a climate change
scenario (Baulcombe et al., 2009)? That is something we want to believe in, but science is about
facts and we need to work hard in order to prove it.

Agriculture can benefit through the development of more efficient and less contaminant
agrochemicals (nanoformulations), devices that help to detect biotic or abiotic stresses before they
can affect production (nanosensors), or new techniques for genetic manipulation allowing higher
efficiency during plant breeding programs (Pérez-de-Luque and Hermosín, 2013; Fraceto et al.,
2016). Because the topic is really broad, in this article we will focus on applications for the synthesis
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of a new generation of agrochemicals, either for plant protection
or fertilization, using nanocarriers for controlled release and
smart delivery systems. The idea is quite simple: nanodevices
can help to deliver the agrochemicals in the right place at the
right time and to reduce the action of external agents leading to
losses by degradation, leaching, run-off, volatilization, etc. The
expected effect should be a reduction in the amount of active
chemicals incorporated into the plants and soils leading to a
reduced negative impact on the environment.

However, a lot of research and knowledge is needed to
accomplish those goals. Not only for the development and
synthesis of nanocarriers and nanomaterials, but also for
studying the interactions of such nanodevices with the plants
and the environment. Indeed, it is necessary to study how plants
absorb and uptake nanoparticles, how theymove inside the plant,
and how they interact with the plant cell.

Plant Absorption and Uptake of
Nanoparticles
The plant uptake of nanoparticles is affected by several factors
related to the nature of the nanoparticle itself, but also with the
plant physiology and the interaction of the nanomaterials with
the environment (Figure 1).

It is clear that nanoparticle traits will greatly influence its
behavior, and hence if the plant will be able to absorb it. Size
seems to be one of the main restrictions for penetration into
plant tissues, and there are some reports about the maximum
dimensions that plants allow for nanoparticles to move and
accumulate inside the cells, usually with 40–50 nm as a size
exclusion limit (González-Melendi et al., 2008; Corredor et al.,
2009; Sabo-Attwood et al., 2012; Taylor et al., 2014). Additionally,
the type of nanoparticle and its chemical composition is another
factor influencing the uptake (Ma et al., 2010; Rico et al., 2011),
whereas morphology has also been demonstrated as determinant
in some cases (Raliya et al., 2016). Functionalization and coating
of the nanomaterial surface can greatly change and alter the
properties for its absorption and accumulation by the plant (Judy
et al., 2012).

Plant species can differ in their physiology, and such
differences result in variations regarding uptake of nanoparticles,
as reported for example by Cifuentes et al. (2010), Larue
et al. (2012), and Zhu et al. (2012). These works showed how
crops species belonging to different botanical families, and
exposed to either magnetic carbon-coated, titanium dioxide or
gold nanoparticles respectively, presented diverse absorption
and accumulation patterns inside the plants. But the ways of
application are also crucial in order to determine how effectively
a plant will internalize the nanomaterials: roots are specialized in
absorption of nutrients and water, whereas leaves are developed
for gas exchange and present a cuticle which hampers penetration
of substances (Schwab et al., 2015).

But nanoparticles interact with other components of the
environment, and it can affect their properties and their traits
for being assimilated by plants (Figure 1). For example, humic
acids and other organic matter present in the soil can lead
to an improved stability and hence a better bioavailability of

nanomaterials, whereas salt ions might induce precipitation and
trigger a contrary effect (Navarro et al., 2008). Even more,
the presence of other organisms, such as bacteria and fungi,
influences the plant uptake of nanoparticles, mainly if those
microorganisms establish symbiosis with plants as in the case of
mycorrhizal fungi (Feng et al., 2013; Wang et al., 2016).

Movement of Nanoparticles inside Plants
Once the nanoparticles penetrate into the plant, there are two
ways for them to move through tissues: the apoplast and the
symplast (Figure 1). Apoplastic transport takes place outside the
plasma membrane through the extracellular spaces, cell walls of
adjacent cells and xylem vessels (Sattelmacher, 2001), whereas
symplastic transport involves movement of water and substances
between the cytoplasm of adjacent cells through specialized
structures called plasmodesmata (Roberts and Oparka, 2003)
and sieve plates. The apoplastic pathway is important for radial
movement within plant tissues, and allows nanomaterials to
reach the root central cylinder and the vascular tissues, for further
movement upwards the aerial part (González-Melendi et al.,
2008; Larue et al., 2012; Zhao et al., 2012; Sun et al., 2014). Once
inside the central cylinder, nanoparticles can move toward the
aerial part though the xylem, following the transpiration stream
(Cifuentes et al., 2010; Larue et al., 2012; Wang et al., 2012;
Sun et al., 2014). Nevertheless, reaching the xylem through the
root implies crossing a barrier to the apoplastic pathway, the
Casparian strip, which must be done following a symplastic way
(Robards and Robb, 1972) via endodermal cells. Indeed, some
nanomaterials can be stopped and accumulated at the Casparian
strip (Larue et al., 2012; Sun et al., 2014; Lv et al., 2015). Another
important symplastic transport is possible too, using the sieve
tube elements in the phloem, and allowing distribution toward
non-photosynthetic tissues and organs (Wang et al., 2012; Raliya
et al., 2016). In the case of foliar applications, nanomaterials must
cross the barrier the cuticle presents, following the lipophilic
or the hydrophilic pathway (Schönherr, 2002). The lipophilic
one involves diffusion through cuticular waxes, whereas the
hydrophilic pathway is accomplished through polar aqueous
pores presented in the cuticle and/or stomata (Eichert and
Goldbach, 2008; Eichert et al., 2008). Because the diameter of
cuticular pores has been estimated around 2 nm (Eichert and
Goldbach, 2008), the stomatal pathway appears as the most likely
route for nanoparticle penetration, with a size exclusion limit
above 10 nm (Eichert et al., 2008).

The way nanomaterials move inside plants is really important,
because it can give indications about what parts of the plant
they can reach, and where they might end and accumulate.
For example, if a kind of nanoparticles are transported mainly
through the xylem and not the phloem, they will likely move
mainly from root to shoot and leaves, and not downwards, so
they should be applied to the roots in order to get a good
distribution in the plant. On the contrary, if the nanoparticles
show a good translocation through the phloem, application
should be done via foliar spraying. In addition, nanomaterials
moving along the phloem will likely accumulate in plant organs
acting as sink, such as fruits and grains, so that is another
important consideration when trying to avoid further human or
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FIGURE 1 | Factors influencing absorption, uptake, transport and penetration of nanoparticles in plants. (A) Nanoparticle traits affect how they are uptaken

and translocated in the plant, as well as the application method. (B) In the soil, nanoparticles can interact with microorganisms and compounds, which might facilitate

or hamper their absorption. Several tissues (epidermis, endodermis...) and barriers (Casparian strip, cuticle...) must be crossed before reaching the vascular tissues,

depending on the entry point (roots or leaves). (C) Nanomaterials can follow the apoplastic and/or the symplastic pathways for moving up and down the plant, and

radial movement for changing from one pathway to the other. (D) Several mechanisms have been proposed for the internalization of nanoparticles inside the cells,

such as endocytosis, pore formation, mediated by carrier proteins, and through plasmodesmata.

animal ingestion of nanomaterials. However, translocation is not
necessarily restricted to a specific cell type, and lateral movement
of nanomaterials between xylem and phloem is possible (Pate,
1975).

The characteristics and nature of the nanomaterials, in
addition to the plant species, will greatly influence translocation
and accumulation in plant tissues. For example, for the same kind

of nanoparticle, differences in translocation and accumulation
in different plant species have been observed (Cifuentes et al.,
2010; Zhu et al., 2012), whereas slight differences in similar
nanoparticles lead to different results within the same plant (Zhu
et al., 2012). Cifuentes et al. (2010) reported higher accumulation
of carbon-coated iron nanoparticles in the roots of pea compared
with sunflower and wheat, and faster translocation to the aerial
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parts in pea and wheat compared with sunflower and tomato. On
the other hand, Zhu et al. (2012) found that radish and ryegrass
roots accumulated higher amounts of gold nanoparticles than
rice and pumpkin, and that positively charged gold nanoparticles
were taken up faster by the roots than negatively charged one,
whereas these last ones were more efficiently translocated to the
aerial parts. This phenomenon was explained by the negative
charge present in the plant cell walls, favoring accumulation of
positively charged nanoparticles in the tissues, and hampering its
movement through the plant.

But, where do the nanomaterials go after being translocated to
other parts? Typically, nanoparticles will accumulate in certain
tissues and organs, in the same way it happens with animals
(Varna et al., 2012). As commented above, plant organs acting
as strong sinks for sap and nutrients are likely to accumulate
nanomaterials traveling through the vascular system, mainly
fruits (Servin et al., 2013), grains (Lin et al., 2009), flowers, and
young leaves (Cifuentes et al., 2010; Koo et al., 2015). That is
something to be used in our advantage when deciding the role
of the nanomaterial we want to test. Do we need to deliver a
plant hormone during flower development? Or an inhibitor for
undesirable substances in the fruit? Perhaps a herbicide against
a parasitic plant (Pérez-de-Luque and Rubiales, 2009)? It is also
crucial to know the final fate of the nanomaterials if we do not
want they to persist for human or animal consumption after the
treatment. Some nanoparticles could be transformed or degraded
by the plant after some time (Wang et al., 2012; Zhang et al., 2012;
Lv et al., 2015), or simply being stored in tissues that will not be
used after harvesting. In this last case, could they be recovered
and recycled for further use (Liu et al., 2017)?

Interaction of Nanomaterials with Plant
Cells
In order to enter the symplastic pathway, nanomaterials must be
internalized by the plant cell and cross the plasma membrane
(Figure 1). There are several ways for nanoparticles to achieve
this, although such mechanisms are better studied in animal cells
and less known in plants (Rico et al., 2011; Schwab et al., 2015):

– Endocytosis: The nanoparticles are incorporated into the
cell by invagination of the plasma membrane, originating a
vesicle that can travel to different compartments of the cell
(Etxeberria et al., 2006).

– Pore formation: Some nanomaterials can disrupt the plasma
membrane, inducing the formation of pores for crossing into
the cell (Wong et al., 2016) and reaching directly the cytosol
without being encapsulated in any organelle (Serag et al.,
2011).

– Carrier proteins: Nanoparticles can bind to surrounding
proteins, including cell membrane proteins that could act as
carriers for internalization and uptake inside the cell (Nel
et al., 2009). Specifically, aquaporins have been suggested as
transporters for nanomaterials inside the cell (Rico et al.,
2011), but their tiny pore size, ranging between 2.8 and 3.4 Å
(Wu and Beitz, 2007), makes them unlikely as channels for
nanoparticle penetration (Schwab et al., 2015), unless such
pore size could be modified and increased.

– Plasmodesmata: Another way for nanomaterials entering a
cell is through plasmodesmata, specialized structures for
transport between cells (Roberts and Oparka, 2003). Of
course, it involves that the nanomaterials should be already in
the symplast, but this mechanism is really important in plants
for translocation through the phloem (Zhai et al., 2014).

– Ion channels: They have been proposed as probable pathways
for nanoparticles entry into the cell (Rico et al., 2011;
Schwab et al., 2015). However, the size of such channels is
around 1 nm, which makes very unlikely for nanoparticles to
effectively cross them without important modifications.

How nanoparticles are internalized in the cells is another key
question, because it will again influence the practical application
of the nanomaterials. If we want to deliver chemicals inside
specific cell organelles, then endocytosis appears as the most
suitable way. On the contrary, for delivery in the cytosol, pore
formation should be the most direct way for it. Additionally, we
could be interested in nanomaterials that do not penetrate inside
the plant cell but in other organisms, such as bacteria or fungi, in
order to treat crop systemic diseases and infections (Rispail et al.,
2014).

BUT THE ROOM IS TOO BIG

During the last years, the number of works dealing with
the interaction between nanomaterials and plants has strongly
increased. We are starting to get some views on how it works,
but getting the whole picture is extremely complicated. Because
Agricultural Science takes knowledge previously tested and
performed in Medicine and Pharmacology, there are some
problems when we try to implement such knowledge.

Firstly, Medicine focuses on one species, humans (or two
or three if we consider animals for preliminary test and trials),
whereas agriculture deals with more than 7,000 cultivated plant
species (Khoshbakht and Hammer, 2008). This situation really
complicates the research, because as stated previously, plant
physiology affects the interaction with nanoparticles, so results
observed in a crop are not necessarily valid for another one.

Secondly, the cost for escalating the production of
nanomaterials can hamper their application in the fields.
There are many good results with nanoparticles that appear
promising as nanocarriers in plants. However, some studies
are performed with a few plants/organisms in vitro or growth
chamber because the cost (both, in time and money) for
producing large amounts of the nanomaterial for greenhouse or
field tests is not affordable. In the case of medical applications,
a (relatively) high production cost can be accepted, but for
agricultural production that is not possible and nanomaterials
should be produced in great amounts and for a very low price.
Promising works in this direction are those dealing with natural
polymers such as chitosan (Grillo et al., 2014; Maruyama et al.,
2016) and alginate (Silva et al., 2010), and lipids (Pérez-de-Luque
et al., 2012; Campos et al., 2015a; de Oliveira et al., 2015).
This kind of polymers are easily synthesized and produced
from natural existing compounds like chitin from crustaceans’
exoskeleton (for chitosan) and from brown algae (for alginate)
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(for a review, see Campos et al., 2015b), and they can be obtained
in high amounts with a low cost.

Thirdly, this technology involves releasing nanomaterials into
the field and inside the crops, so the first alarm bells: are
these nanodevices safe for the environment and human/animal
consumption? Despite nanotoxicological studies are being
developed and carried out in different ways, even involving
the food chain (Koo et al., 2015), the best way to avoid toxic
effects is using materials that we already know are innocuous.
Using certain metal/oxide nanoparticles or nanotubes for edible
crop treatments does not seem a good idea. Perhaps under
certain circumstances (for example, ornamental plants) would
be possible to use some slightly hazardous nanomaterials in a
controlled environment, but common sense and caution should
be applied here. Again, compounds allowing synthesis of carriers
in the nanoscale, innocuous for living organisms and with
biodegrading traits are very good candidates. As pointed out
previously, chitosan and alginate are ideal materials for this
task, being already used in the food industry due to their lack
of toxicity, biodegradability and edibility (Zohri et al., 2010;
Azevedo et al., 2014).

Finally, consumers tend to distrust a technology unfamiliar for
them, so it is necessary to explain them what nanotechnology
is and what it involves. We do not want to repeat the story
of the genetically modified organisms again, and learn from
that (Kah, 2015). As researchers, we have a responsibility for
communicating this knowledge, so outreach and popular science
activities are tools we have at our disposal for that goal.

In conclusion, nanotechnology has a good potential for
applications in agriculture, but there is still a long way down to
reach the field. It is impossible to know all the details about how
a nanodevice will work in a particular crop, but we need to start
with real field and in planta tests, solving some of the problems
stated above (mainly escalating the production and avoiding
hazardous and toxic materials). If we stay behind the frontier
of basic research only, the risk of agricultural nanotechnology

becoming hype increases, hindering any further attempts for
applications and research. A first step in that direction should be
testing nanocarriers already available on crops under controlled
conditions, i.e., greenhouse and/or growth chamber. Lipidic,
alginate or chitosan nanoparticles should be ready for mass
scale production in order to get the necessary amounts for
such experiments. Comparisons of treatments between the
commercial products and the nanoformulated ones are a must,
in order to check if the conventional dose of the active
compounds can be effectively reduced. That would involve
inoculation with common pathogens affecting the crops in the
case of pesticide testing, and measurements of the effectiveness
controlling diseases compared with conventional treatments. For
fertilizers, development of the crop, physiological parameters
and yield measurements are necessary. If the performance of
the nanoformulated compounds is better than the conventional
ones, then a next step further is needed: the field experiments.
The field testing is critical and the last step before we can be
sure a nanoformulation will work. All the experiments developed
previously in laboratory, growth chamber and greenhouse are
performed under controlled conditions, and despite they can
show promising results, it does not grant complete success
in the field. Tests under field conditions should be similar to
those performed in greenhouse or growth chamber, but using
the procedures and techniques needed for the crop we are
testing. They should involve all the steps of the crop cycle, from
sowing/planting to harvest, including conventional treatments
for comparison, and others than should be commonly applied,
in order to check in they will interfere with the nanoformulated
products and vice versa. After that, if the results are positive, we
can say the nanoformulation works and is ready.
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