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accuracy of test information functions was investigated, using data
from the 1985 administration of the Graduate Management Admissions
Test with 2 sample sizes (500 and 2,000). Two factors seemed
especially important in determining the size of impact: examinee
sample size used in calibrating test items, and the ratio of item
bank size to the length of the test constructed using items from the
bank. Results from computer simulation clearly indicate that both
factors influence test information accuracy, often substantially,
with serious problems in accuracy arising when test items were
calibrated on modest sample sizes (n=500) and when test {tem banks
were large in relation to the number of items in the tests being
constructed. Four figures illustrate the discussion, and three tables
present analysis results. (Author/SLD)
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Item Parameter Estimation Errors and Their Influence
on Test Information Functions

Ronald K. Hambleton and Russell W. Jones
University of Massachusetts at Amherst

Abstract

For test developers working within an item response theory framework,
the concepts of item and test information are important and useful.
Unfortunately, errors in item parameter estimates have a negative impact on
the accuracy of item and test information functions. The estimation errors
may be random, but, because items with the higher levels of discriminating
power are more likely to be selected for a test, and these items are most
apt to contain positive errors, the result is that item information
functions and corresponding test information functions tend to be inflated
in relation to their true values. The purpose of this paper was to
investigate the impact of this "capitalization on chance" in item selection
on the accuracy of test information functions. Two factors seemed
especially important in determining the size of the impact: (1) examinee
sample size used in calibrating test items, and (2) the ratio of item bank
size to the length of the test constructed using items from the bank. The
results of the study were clear: both factors influenced test information
accuracy, often substantially, with serious problems in accuracy arising
when test items were calibrated on modest examinee sample sizes (N=500) and

test item banks were large in relation to the number of items in the tests
being constructed.

U.8. DEPARTMENT OF EDUCATION “PERMISSION TO REPRODUCE THIS
Oftce of Educational Rasearch and Improvement MATERIAL HAS BEEN GRANTED BY

TIONAL RESOURCES INFORMATION
EoucpTio l-CENTEFl {ERIC) L D k
nis document has paen reproduced a3 Be&ﬂ 4 P
tecuived trom (he person or Organization
onginstiag it
T Minor changes have been made 10 /mprove _H d m B‘ E 1 9‘ )
reproduchon quahty —
e Points of view or opinions siated nthis ?'oc:l TO THE EDUCATIONAL RESOURCES
e S, o INFORMATION CENTER (ERIC)
LabReport212 2

BEST COPY AVAILASL:




Item Parameter Estimation Errors and Their Influence
on Test Information Functions'??

Ronald K. Hambleton and Russell W. Jones
University of Massachusetts at Amherst

The number of test developers using item response theory (IRT) models
and methods in their test development and related technical work has
increased substantially in the last 15 years (Hambleton, 1989; Hambleton &
Swaminathan, 1985; Lord, 1980). Item response theory, particularly as
reflected in the one-, two-, and three-parameter logistic models for
dichotomously scored items, is receiving increasing attention from test
developers in test design and test item selection, in addressing the
detection of biased test items, in computer-administered testing, and ia
the equating and reporting of test scores. Nearly all major test
publishers, state departments of education, and large school districts
currently use IRT models in gsome capacity in their testing work.

A problem that arises when applying IRT models in test development
involves "capitalizing on chance" due to positive errors in some item
parameter estimates. The problem arises because test developers, not
surprisingly, prefer to select test items, other factors aside, with the
highest discrimination indices. But high discrimination indices, on the

average, are spuriously high because of positive errors in the item

The research described in this paper was funded by the Graduate
Management Admission Council. The GMAC encourages researchers to formulate
and freely express their own opinions. The opinions here are not necessarily
those of the GMAC.

Laboratory of Psychometric and Evaluative Research Report No. 212.
Amherst, MA: University of Massachusetts, School of Education.

Jpaper presented at the meeting of the National Council on Measurement in
Education, Atlanta, Georgla, April 1993.
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parameter estimates. As a result, the measuring power of tests is
overestimated and the errors associated with ability estimates are
correspondingly underestimated (if the inflated item parameter estimates
are used). The practical consequence is overconfidence in the ability
estimates when confidence bands are set (Tsutakawa & Johnson, 1990). The
same problem arises in computer-adaptive testing which is one of the most
popular and important uses of IRT. The problem may also help to explain
the shortcomings of ﬁre-equated tests. Quite simply, the original item
discrimination parameter estimates may be overestimates of the true values
and tend to be lower, on the average, when they are recalibrated at a later
time.

"Capitalizing on chance" was well known in classical measurement
(Gulliksen, 1950) within the context of using point biserial and biserial
correlations in item selection. The most discriminating items in a field-
test administration tended to discriminate less well in the actual test
administration. Of course, this is because the first estimates tended to
be over-estimated due to positive errors in the estimates. The problem is
also well-known in the context of regression analysis. Here, it is common
to assess the merits of a regression equation in a cross-validation sample
(to minimize the problem of "capitalizing on chance"), and where formulas
to predict shrinkage in multiple correlations due to "capitalization on
chance” abound. But, to our knowledge, the problem has not been discussed
with IRT item parameter estimates except in one earlier paper of ours
(Hambleton, Jones, & Rogers, in press).

The purpose of this paper was to investigate the impact of
"capitalizing on chance,” which arises in item selection, on the accuracy

of test information functions. Two factors seemed especially important in
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determining the size of the impact: (1) examinee sample size used in
calibrating test items, and (2) the ratio of the size of the item bank to
the length of the test constructed using items from the bank. Therefore,
these two factors were investigoted in the study.

Computer simulation methods were used in the research and the
characteristics of the item bank were based on item parameter estimates
obtained from administrations of the Graduate Management Admissions Test.
The first factor seemed important because sample size is inversely related
to item parameter estimation errors. With modest-sized samples, item
parameter estimation errors are larger, and the possibility is greater for
capitalizing on chance in item selection. The second factor was included
because the ratio of item bank size to test length also seemed like it
would affect the accuracy of test information functions. In general, the
larger the item bank and the shorter the test of interest, the more
opportunity to "capitalize on chance" by selecting spuriously high
discriminating items. The consequence is that, again, test information
functions would be misleading.

Since it is rarely the case that only statistical criteria are used in
item selection, the study was carried out twice: f£first, using only
statistical eriteria in item selection (i.e., optimal item selection), and
second, using both statistical and content criteria (i.e., content optimal

item selection).

Method
This simulation study was based on item statistics obtained from the
80 item problem solving subtest of a 1985 administration of the Graduate

Management Admissions Test (GMAT) (Kingston, Leary, & Wightman, 1988). The
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three parameter model was used in data simulation because this model fits
many datasets (see, for example, Kingston, Leary, & Wightman, 1988) and
because item parameter estimation errors were expected to be larger than
item parameter estimation errors with simpler models. Our interest was in
assessing the magnitude of the inflation of test information functions in
some common situations, hence the reason for our interest in the three;
parameter model.

Variables in the Study

This research investigated the influence of two factors: examinee
sample size used in item parameter estimation and ratio of item bank size
to test length.

Sample Size. Two sample sizes were chosen, N = 500 and N = 2000.
Research has shown that samples as small as 500 are just below the minimum
sample size recommended for use with the three-parameter model (Hulin,
Lissak, & Drasgow, 1982). A sample size of 2000 is generally considered to
be larger than is needed in practice to obtain satisfactory item parameter
estimates.

Ratio of Item Bank Size to Desired Test Length. The item bank
contained 80 items to match the GMAT problem solving subtest. With an
upper limit of 80 items there existed practical limits on the ratios which
could be effectively investigated. There is some evidence in the
literature that ratios as high as 12:1 may be used in practice. 1Indeed,
Bezruczko and Reynolds (1987) report a ratio of 16:1. For the purposes of
this study we selected the mid range ratios of 8:1 and 4:1. The influence
of ratio of item bank size to test length was investigated by creating
either a 10- or 20-item test from the B0 available items. In this way

ratios of 8:1 (80:10) and 4:1 (80:20) were obtained.
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ltem Selection Method

Two methods of item selection were considered in the study. Both are
IRT-based; the first is focused on item statistics only; the second is
focused on both item statistics and item content.

Optimal Item Selection. Optimal item selection is a method of
selecting items from an item bank based on the principles of IRI., Items
are selected based on their capability of providing maximum information at
a specified point (or range) along the ability scale which is of interest
to the test developer. Recently, computer software has become available
(Verschoor & Theunissen, 1991) that permits item selection to be done via
optimizing algorithms (Theunissen, 1985, 1986; van der Linden & Boekkooi-
Timminga, 1989). Desirable test characteristics can be specified (such as
test length and the target information function) and then the algorithms
are initiated to select the set of items to meet the specified test
characteristics. This software, entitled Optimal Test Design (OID), was
used to select test items to meet several of the current GMAT statistical
specificatfons.

Content Optimal Item Selection. Most tests are constructed with both
statistical and content specifications. In this simulation, items were
sequentially assigned to one of four content categories (1, 2, 3, or &),
To enable the impact of content specifications to be studied, it was
necessary to insure that item statistics varied somewhat across content
categories. This was accomplished by reassigning several highly
discriminating items to alternate content categories to insure item
statistics were not identical in the content categories. Means and
standard deviations for the item parameter estimates within each content

category were:
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Examinee Item Parameter

Sample Category _ b _ a _ ¢
—Size X SD X SB X SD
2000 1 16 1.14 .85 .35 .22 .07
2 -.60 1.36 .62 .20 .22 .08
3 .30 .99 .89 .26 .19 .08
4 .56 .81 .86 .23 .18 .07
500 1 -.07 1l.02 .85 .28 .20 .06
2 .22 1.17 .68 .22 .22 .06
3 .33 1.14 .89 .26 .20 .07
4 .€7 .87 .84 .22 .18 .05

The influence of content optimal item selection was investigated by
requiring OTD to select items under the condition that 40 percent of items
were drawn from category 2 and 20 percent from each of categories 1, 3, and
4. This particular allocation had no special significance. Our intent was

simply to force content-like specifications (or restrictions) on the item

selection process.

Procedure

The specific steps of the simulation were as follows:

3

1. An examinee item calibration sample was chosen (N = 500
or N = 2000).

2. The computer program DATAGEN (Hambleton & Rovinelli,
1973) was used to simulate ability scores (normally
distributed with mean = 0 and standard deviation = 1)
and item responses for examinees on all 80 items
(referred to as Sample A). True item parameters were
taken from the report by Kingston, Leary, and Wightman
(1988).

3. BILOG (Mislevy & Bock, 1991) was used to obtain Sample A
three-parameter model item parameter estimates for the
80 test items.

4, Steps 2 and 3 were repeated for a second sample of
randomly equivalent examinees (referred to as Sample B)
to obtain Sample B item parameter estimates.

5. A test length was chosen (either 10 or 20) to vary the
bank size to test length ratio.

LabReport212 6




6. An item selection procedure was chosen (either optimal
or content optimal).

Optimal. The test information function for the 80 item
GMAT subtest was used as a basis to create target
information functions. When a 20 item test was
constructed the specified target information function
was one quarter that of the GMAT test information
function. When a 10 item test was constructed the
specified target information function was one eighth
that of the GMAT test information function. OTD was
used to gelect items.

Content Optimal. The same procedures were used to
specify target information functions as those used in
the optimal item gelection procedure. OID was used to
select items specifying the selection of 40% of items
from content category 2 and 20% from each of content
categories 1, 3, and 4.

7. A test was constructed from the item bank containing the
Sample A item statistics. Then the test information
functions were calculated using the Sample A item statistics
and the corresponding (cross-validation) Sample B item
statistics. The relative efficiency function using the
Sample B-based test information function as the baseline was
also calculated.

8. We repeated the previous steps for (a) item banks
calibrated with two sample sizes, (b) two test lengths,
and (c) two item selection methods.

The result of steps 2 to 4 was the production of four banks of 80
items. All items in the banks were described by three-parameter model item
statistics. In two banks the item statistics were based on relatively
small samples (N=500), and in the other two banks the item statistics were
based on relatively large samples (N=2000). The next phase of the work
involved test development (or, more specifically, item selection). All of
the item selection work was done using Sample A item statistics and the
test informati.n functions were compiled using Sample A item statistics.

For cross-validation purposes, test information functions were also

compiled using the corresponding Sample B item statistics.
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Results
Descriptive statistics of the item parameter estimates in the four 80-

item banks (N=500 or 2000, Sample A or B) are reported in Table 1.

Using common item ;quating, the Sample B item parameter estimates were
slightly adjusted to be on the same scale as the corresponding Sample A
item parameter estimates (Hambleton & Swaminathan, 1985). As is clear from
Table 1, only slight adjustments to the Sample B item parameter estimates
were necessary. These adjustments were made prior to completing the main
part of the study.
Optimal Item Selection

Descriptive statistics for the 10- and 20-item tests constructed using
optimal item selection with the Sample A item banks calibrated with 500 and
2000 examinees, respectively, are reported in Table 2. The corresponding
descriptive statistics substituting the Sample B item parameter estimates

are also given in Table 2. Figure 1 shows the test information functions

for the various constructed tests. Relative efficiency functions comparing
Sample A with Sample B results are shown in Figure 2.

The most important observation in Table 2 is that "capitalization on
chance® is operating with the item discrimination wvalues. Items selected
for tests using the Sample A item parameter estimates because of their high

discriminating power do not function nearly as well in the cross-validation
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samples. The average differences ranged from .05 to .1l across the four

tests that were constructed. More detailed analyses follow next.

Sample Size. Figure 1 shows examinee sample size to be an influential
factor in the overestimation of test information functioms. Clearly the
Sample A test information functioms were overestimated, and the magnitude
of this oversstimation was much greater in the smaller calibration sample
size (N = 500) than the larger calibration sample size (N = 2000)
regardless of test length. Because of the extreme instability of the test
information and relative efficiency functions when low amounts of
information are present, only comparisons when test information exceeded
2.0 were considered. The relative efficiency functions were calculated
over the range for which test information exceeded a value of 2.0.

The two main findings with respect to sample size are:

1. With a ratio of bank size to test length of 8:1 and a modest item
calibration sample size (N = 500), the test information function
was overestimated by as much as 40 percent. With an identical
ratio of bank size to test length and a larger item calibraticn
sample size (N = 2000) the overestimation, although still present,
did not exceed 25 percent, and was generally lower over the region
on which relative efficiency was calculated.

2. With the smaller ratio of bank size to test length of 4:1,
overestimation of the test information function occurred but the
magnitude of the overestimation was reduced, as it should have
been since there was less opportunity to capitalize on only the
outliers. With the modest item calibration sample size (N = 500),
the overestimation did not exceed 36 percent, whereas with the
larger calibration sample size (N = 2000) the overestimation did
not exceed 13 percent, and again, was generally lower over the
region on which relative efficiency was calculated.

LabReport212 9




Ratio of Item Bank Size to Test Length. Figure 1 shows the ratio of

item bank size to test length to be another influential factor affecting
the magnitude of overestimation of test information functions. Though for
the conditions simulated, the impact was less than sample size. The two
main findings were:

1. With the modest sample size (N = 500) and a bank size to test
length ratio of 4:1, the magnitude of overestimation was as great
as 36 percent. However, when the ratio was 8:1 the magnitude of
overestimation was as great as 40 percent.

2. Similar trends were present with the larger calibration
sample (N = 2000). Again, the magnitude of the
difference was larger when the ratio was 8:1 compared to
4:1. However, overall the differences were smaller than
those found from the more modest item calibration sample
size.

The relative efficiency functions shown in Figure 2 provide the
results graphically. Overestimation was greatest when smaller examinee
samples were used in item calibration; overestimation was least when larger
examinee samples were used in item calibration and the ratio of bank size
to test length was low (i.e., 4:1).

Content Optimal Item Selection

Descriptive statistics for the 10- and 20-item tests constructed using
content optimal item selection with the Sample A item banks calibrated with
500 and 2000 examinees, respectively, are reported in Table 3. The

corresponding descriptive statistics substituting the Sample B item

parameter estimates are also given in Table 3. Figure 3 shows the test
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information functions for the various constructed tests. Relative
efficiency functions comparing Sample A with Sample B results are shown in

Figure 4. A similar pattern of overestimation to that exhibited with the

optimal item selection procedure is apparent with the content optimal item
selection procedure. However, comparisons between Figures 1 and 3 and
Figures 2 and 4 show the magnitude of overestimation to be substantially
greater in tests constructed using content optimal item selection
procedures. No generalizations of this finding should be made, however,
since the finding is likely specific to the item banks and content
§pecifications that were used in the study.

Table 3 highlights some substantial effects due to "capitalizing on
chance." These effects were especially significant in the item bank
calibrated with the smaller examinee sample size.

Sample Size. Clearly Sample A test information functions in Figure 3
were overestimated, and the magnitude of this overestimation was much
greater in the smaller calibration sample size (N = 500) than the larger
calibration sample size (N = 2000). The two main findings with respect to

sample size were:

1. With a ratio of bank size to test length of 8:1 and a
low item calibration sample size (N = 500), the test
information function was overestimated by as much as 104
percent. With a larger item calibration sample size (N
= 2000}, the overestimation was not nearly as great,
although the overestimation approached 50% for middle
ability levels.

2, With the smaller ratlo of bank size to test length of 4:1,
overestimation of the test information function occurred but
the magnitude of the overestimation was reduced. With a low
item calibration sample size (N = 500), overestimation was as

LabReport212 11
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much as 63 percent. Whereas, with the larger item
calibration sample size (N = 2000), overestimation did not
eXxceed 26 percent.

Ratio of Item Bank Size to Test Length. Figure 3 shows the ratio of

item bank size to test length to be an influential factor affecting the
magnitude of overestimation of test Information functions. Though, as was
the finding with the optimal item selection procedure, for the situations
.simulatnd, the impact was less than sample size. The two main findings
with respect to the ratio of bank size to test length were:
1. When the ratio of bank size to test length was 4:1 and
using a lower sample size (N = 500),the size of
overestimation was as much as 63 percent. However, the
magnitude of overestimation was as great as 104 percent
when the ratio was increased to 8:1.
2. Similar trends were present with the larger calibration
sample (N = 2000). Again, the magnitude of the
difference was about two thirds larger when the ratio
was 8:1 compared to 4:1.
A comparison of the relative efficiency functions in Figures 2 and 4
shows the magnitude of overestimation to be greater in those tests

constructed using content optimal item selection procedures compared to the

optimal item selection procedures.

Conclusions
The results of our investigation document clearly the impact of the
size of the examinee sample used in item calibration and the ratio of item
bank size to test length on the accuracy of test information functions. At
least for the conditions studied, examinee sample size was the more
important of the two factors but, clearly, both factors were important.
Again, at least for the situations simulated, the imposition of content

specifications resulted in major inaccuracies in the test information
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functions. Specific findings in this study are p¥obably 6? limited
interest - they are unique to the simulations. They are also éOmewhat
unstable, especially for low and high .ability lgyels where theggénerally
short tests produced low levels of {Pformation. \Busf'pﬁere is a main
general finding from the study - tesé information funcéions tend to be
overestimated because of “capitaliziﬂ% on chance®™ in item selection and the
amount of overestimation is due to faézors investigated in this study.
There are several implications for practice: (1) tests do not perform
as well as expected when the "best" items are selected to m;tch a target
test information function, and (2) standard errors are, correspondingly,
under-estimated (assuming that the firsg sep’of values is_taken as "true
values") and so over-confidence in abi~.ty ;;;res will res@lt. I£f, on the
other hand, the test developer’s inteﬁéion is to recalibr;te the item
statistics based on an actual test administration {(which is éommon), ane
result will be that the updated test information function will be lower

than was expected or desired. These results provide rather dramatic

evidence of the influence of selecting the "best" items from an item bank

r. ¢
4

to make up a test. Also, the size of giE-efﬁbct depends both on the number
of examinees used in item calibration, égd the ratio of the number of items
o \*
in the bank relative to the length of the dgﬁired test.
LI 4
At least two steps can be taken to i?dgce the problem:
=]
1. Use large samples in item calibrati®bn to gain precision in item
parameter estimates. An increase in ule precision of item parameter
estimates will reduce the significance of “"capitalizing on chance."

2. Depending on the sample size used in item parameter estimation, exceed
the desired target information function by (at least) 10% to 20%.

If one or both of the above suggestions are implemented, the problem
associated with using over-estimated item parameter values in ability and

standard error estimation can be reduced.
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