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Item Parameter Estimation Errors and Their Influence
on Test Information Functions

Ronald K. Hambleton and Russell W. Jones
University of Massachusetts at Amherst

Abstract

For test developers working within an item response theory framework,
the concepts of item and test information are important and useful.
Unfortunately, errors in item parameter estimates have a negative impact on
the accuracy of item and test information functions. The estimation errors
may be random, but, because items with the higher levels of discriminating
power are more likely to be selected for a test, and these items are most
apt to contain positive errors, the result is that item information
functions and corresponding test information functions tend to be inflated
in relation to their true values. The purpose of this paper was to
investigate the impact of this "capitalization on chance" in item selection
on the accuracy of test information functions. Two factors seemed
especially important in determining the size of the impact: (1) examinee
sample size used in calibrating test items, and (2) the ratio of item bank
size to the length of the test constructed using items from the bank. The
results of the study were clear: both factors influenced test information
accuracy, often substantially, with serious problems in accuracy arising
when test items were calibrated on modest examinee sample sizes (N-500) and
test item banks were large in relation to the number of items in the tests
being constructed.
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Item Parameter Estimation Errors and Their Influence
on Test Information Functionst2.3

Ronald K. Hambleton and Russell W. Jones
University of Massachusetts at Amherst

The number of test developers using item response theory (IRT) models

and methods in their test development and related technical work has

increased substantially in the last 15 years (Hambleton, 1989; Hambleton &

Swaminathan, 1985; Lord, 1980). Item response theory, particularly as

reflected in the one-, two-, and three-parameter logistic models for

dichotomously scored items, is receiving increasing attention from test

developers in test design and test item selection, in addressing the

detection of biased test items, in computer-administered testing, and is

the equating and reporting of test scores. Nearly all major test

publishers, state departments of education, and large school districts

currently use IRT models in some capacity in their testing work.

A problem that arises when applying IRT models in test development

involves "capitalizing on chance" due to positive errors in some item

parameter estimates. The problem arises because test developers, not

surprisingly, prefer to select test items, other factors aside, with the

highest discrimination indices. But high discrimination indices, on the

average, are spuriously high because of positive errors in the item

1The research described in this paper was funded by the Graduate
Management Admission Council. The GMAC encourages researchers to formulate
and freely express their own opinions. The opinions here are not necessarily
those of the GMAC.

2Laboratory of Psychometric and Evaluative Research Report No. 212.
Amherst, MA: University of Massachusetts, School of Education.

3Paper presented at the meeting of the National Council on Measurement in
Education, Atlanta, Georgia, April 1993.
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parameter estimates. As a result, the measuring power of tests is

overestimated and the errors associated with ability estimates are

correspondingly underestimated (if the inflated item parameter estimates

are used). The practical consequence is overconfidence in the ability

estimates when confidence bands are set (Tsutakawa & Johnson, 1990). The

same problem arises in computer-adaptive testing which is one of the most

popular and important uses of IRT. The problem may also help to explain

the shortcomings of pre-equated tests. Quite simply, the original item

discrimination parameter estimates may be overestimates of the true values

and tend to be lower, on the average, when they are recalibrated at a later

time.

"Capitalizing on chance" was well known in classical measurement

(Gulliksen, 1950) within the context of using point biserial and biserial

correlations in item selection. The most discriminating items in a field-

test administration tended to discriminate less well in the actual test

administration. Of course, this is because the first estimates tended to

be over-estimated due to positive errors in the estimates. The problem is

also well-known in the context of regression analysis. Here, it is common

to assess the merits of a regression equation in a cross-validation sample

(to minimize the problem of "capitalizing on chance"), and where formulas

to predict shrinkage in multiple correlations due to "capitalization on

chance" abound. But, to our knowledge, the problem has not been discussed

with IRT item parameter estimates except in one earlier paper of ours

(Hambleton, Jones, & Rogers, in press).

The purpose of this paper was to investigate the impact of

"capitalizing on chance," which arises in item selection, on the accuracy

of test information functions. Two factors seemed especially important in
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determining the size of the impact: (1) examinee sample size used in

calibrating test items, and (2) the ratio of the size of the item bank to

the length of the test constructed using items from the bank. Therefore,

these two factors were investig.:ted in the study.

Computer simulation methods were used in the research and the

characteristics of the item bank were based on item parameter estimates

obtained from administrations of the Graduate Management Admissions Test.

The first factor seemed important because sample size is inversely related

to item parameter estimation errors. With modest-sized samples, item

parameter estimation errors are larger, and the possibility is greater for

capitalizing on chance in item selection. The second factor was included

because the ratio of item bank size to test length also seemed like it

would affect the accuracy of test information functions. In general, the

larger the item bank and the shorter the test of interest, the more

opportunity to "capitalize on chance" by selecting spuriously high

discriminating items. The consequence is that, again, test information

functions would be misleading.

Since it is rarely the case that only statistical criteria are used in

item selection, the study was carried out twice: first, using only

statistical criteria in item selection (i.e., optimal item selection), and

second, using both statistical and content criteria (i.e., content optimal

item selection).

Method

This simulation study was based on item statistics obtained from the

80 item problem solving subtest of a 1985 administration of the Graduate

Management Admissions Test (GMAT) (Kingston, Leary, & Wightman, 1988). The
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three parameter model was used in data simulation because this model fits

many datasets (see, for example, Kingston, Leary, & Wightman, 1988) and

because item parameter estimation errors were expected to be larger than

item parameter estimation errors with simpler models. Our interest was in

assessing the magnitude of the inflation of test information functions in

some common situations, hence the reason for our interest in the three-

parameter model.

Variables in the Study

This research investigated the influence of two factors: examinee

sample size used in item parameter estimation and ratio of item bank size

to test length.

Sample Size. Two sample sizes were chosen, N - 500 and N - 2000.

Research has shown that samples as small as 500 are just below the minimum

sample size recommended for use with the three-parameter model (Hulin,

Lissak, & Drasgow, 1982). A sample size of 2000 is generally considered to

be larger than is needed in practice to obtain satisfactory item parameter

estimates.

Ratio of Item Bank Size to Desired Test Length. The item bank

contained 80 items to match the GMAT problem solving subtest. With an

upper limit of 80 items there existed practical limits on the ratios which

could be effectively investigated. There is some evidence in the

literature that ratios as high as 12:1 may be used in practice. Indeed,

Bezruczko and Reynolds (1987) report a ratio of 16:1. For the purposes of

this study we selected the mid range ratios of 8:1 and 4:1. The influence

of ratio of item bank size to test length was investigated by creating

either a 10- or 20-item test from the 80 available items. In this way

ratios of 8:1 (80:10) and 4:1 (80:20) were obtained.
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Item Selection Method

Two methods of item selection were considered in the study. Both are

IRT-based; the first is focused on item statistics only; the second is

focused on both item statistics and item content.

Optimal Item Selection. Optimal item selection is a method of

selecting items from an item bank based on the principles of IRT. Items

are selected based on their capability of providing maximum information at

a specified point (or range) along the ability scale which is of interest

to the test developer. Recently, computer software has become available

(Verschoor & Theunissen, 1991) that permits item selection to be done via

optimizing algorithms (Theunissen, 1985, 1986; van der Linden & Boekkooi-

Timminga, 1989). Desirable test characteristics can be specified (such as

test length and the target information function) and then the algorithms

are initiated to select the set of items to meet the specified test

characteristics. This software, entitled Optimal Test Design (OTD), was

used to select test items to meet several of the current GMAT statistical

specifications.

Content Optimal Item Selection. Most tests are constructed with both

statistical and content specifications. In this simulation, items were

sequentially assigned to one of four content categories (1, 2, 3, or 4).

To enable the impact of content specifications to be studied, it was

necessary to insure that item statistics varied somewhat across content

categories. This was accomplished by reassigning several highly

discriminating items to alternate content categories to insure item

statistics were not identical in the content categories. Means and

standard deviations for the item parameter estimates within each content

category were:
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Examinee
Sample
Size

Category
X SD

Item Parameter
a

X SD X
c

SD

2000 1 .16 1.14 .85 .35 .22 .07

2 -.60 1.36 .62 .20 .22 .08

3 .30 .99 .89 .26 .19 .08

4 .56 .81 .86 .23 .18 .07

500 1 -.07 1.02 .85 .28 .20 .06

2 -.22 1.17 .68 .22 .22 .06

3 .33 1.14 .89 .26 .20 .07

4 .67 .87 .84 .22 .18 .05

The influence of content optimal item selection was investigated by

requiring OTD to select items under the condition that 40 percent of items

were drawn from category 2 and 20 percent from each of categories 1, 3, and

4. This particular allocation had no special significance. Our intent was

simply to force content-like specifications (or restrictions) on the item

selection process.

Procedure

The specific steps of the simulation were as follows:

1. An examinee item calibration sample was chosen (N - 500
or N - 2000).

2. The computer program DATAGEN (Hambleton & Rovinelli,
1973) was used to simulate ability scores (normally
distributed with mean - 0 and standard deviation - 1)
and item responses for examinees on all 80 items
(referred to as Sample A). True item parameters were
taken from the report by Kingston, Leary, and Wightman
(1988).

3. BILOG (Mislevy & Bock, 1991) was used to obtain Sample A
three-parameter model item parameter estimates for the
80 test items.

4. Steps 2 and 3 were repeated for a second sample of
randomly equivalent examinees (referred to as Sample B)
to obtain Sample B item parameter estimates.

5. A test length was chosen (either 10 or 20) to vary the
bank size to test length ratio.

LabReport212 6
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6. An item selection procedure was chosen (either optimal
or content optimal).

Optimal. The test information function for the 80 item
GMAT subtest was used as a basis to create target
information functions. When a 20 item test was
constructed the specified target information function
was one quarter that of the GMAT test information
function. When a 10 item test was constructed the
specified target information function was one eighth
that of the GMAT test information function. OTD was
used to select items.

Content Optimal. The same procedures were used to
specify target information functions as those used in
the optimal item selection procedure. OTD was used to
select items specifying the selection of 40% of items
from content category 2 and 20% from each of content
categories 1, 3, and 4.

7. A test was constructed from the item bank containing the
Sample A item statistics. Then the test information
functions were calculated using the Sample A item statistics
and the corresponding (cross-validation) Sample B item
statistics. The relative efficiency function using the
Sample B-based test information function as the baseline was
also calculated.

8. We repeated the previous steps for (a) item banks
calibrated with two sample sizes, (b) two test lengths,
and (c) two item selection methods.

The result of steps 2 to 4 was the production of four banks of 80

items. All items in the banks were described by three-parameter model item

statistics. In two banks the item statistics were based on relatively

small samples (N-500), and in the other two banks the item statistics were

based on relatively large samples (N-2000). The next phase of the work

involved test development (or, more specifically, item selection). All of

the item selection work was done using Sample A item statistics and the

test information functions were compiled using Sample A item statistics.

For cross-validation purposes, test information functions were also

compiled using the corresponding Sample B item statistics.
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Results

Descriptive statistics of the item parameter estimates in the four 80-

item banks (N-500 or 2000, Sample A or B) are reported in Table 1.

Insert Table 1 about here

Using common item equating, the Sample B item parameter estimates were

slightly adjusted to be on the same scale as the corresponding Sample A

item parameter estimates (Hambleton & Swaminathan, 1985). As is clear from

Table 1, only slight adjustments to the Sample B item parameter estimates

were necessary. These adjustments were made prior to completing the main

part of the study.

Optimal Item Selection

Descriptive statistics for the 10- and 20-item tests constructed using

optimal item selection with the Sample A item banks calibrated with 500 and

2000 examinees, respectively, are reported in Table 2. The corresponding

descriptive statistics substituting the Sample B item parameter estimates

are also given in Table 2. Figure 1 shows the test information functions

Insert Table 2 about here

for the various constructed tests. Relative efficiency functions comparing

Sample A with Sample B results are shown in Figure 2.

The most important observation in Table 2 is that "capitalization on

chance" is operating with the item discrimination values. Items selected

for tests using the Sample A item parameter estimates because of their high

discriminating power do not function nearly as well in the cross-validation
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samples. The average differences ranged from .05 to .11 across the four

tests that were constructed. More detailed analyses follow next.

Insert Figures 1 and 2 about here

Sample Size. Figure 1 shows examinee sample size to be an influential

factor in the overestimation of test information functions. Clearly the

Sample A test information functions were overestimated, and the magnitude

of this overestimation was much greater in the smaller calibration sample

size (N - 500) than the larger calibration sample size (N - 2000)

regardless of test length. Because of the extreme instability of the test

information and relative efficiency functions when low amounts of

information are present, only comparisons when test information exceeded

2.0 were considered. The relative efficiency functions were calculated

over the range for which test information exceeded a value of 2.0.

The two main findings with respect to sample size are:

1. With a ratio of bank size to test length of 8:1 and a modest item
calibration sample size (N - 500), the test information function
was overestimated by as much as 40 percent. With an identical
ratio of bank size to test length and a larger item calibration
sample size (N 2000) the overestimation, although still present,
did not exceed 25 percent, and was generally lower over the region
on which relative efficiency was calculated.

2. With the smaller ratio of bank size to test length of 4:1,
overestimation of the test information function occurred but the
magnitude of the overestimation was reduced, as it should have
been since there was less opportunity to capitalize on only the
outliers. With the modest item calibration sample size (N 500),

the overestimation did not exceed 36 percent, whereas with the
larger calibration sample size (N - 2000) the overestimation did
not exceed 13 percent, and again, was generally lower over the
region on which relative efficiency was calculated.

LabReport212 9



Ratio of Item Bank Size to Test Length. Figure 1 shows the ratio of

item bank size to test length to be another influential factor affecting

the magnitude of overestimation of test information functions. Though for

the conditions simulated, the impact was less than sample size. The two

main findings were:

1. With the modest sample size (N 500) and a bank size to test
length ratio of 4:1, the magnitude of overestimation was as great
as 36 percent. However, when the ratio was 8:1 the magnitude of
overestimation was as great as 40 percent.

2. Similar trends were present with the larger calibration
sample (N 2000). Again, the magnitude of the
difference was larger when the ratio was 8:1 compared to
4:1. However, overall the differences were smaller than
those found from the more modest item calibration sample
size.

The relative efficiency functions shown in Figure 2 provide the

results graphically. Overestimation was greatest when smaller examinee

samples were used in item calibration; overestimation was least when larger

examinee samples were used in item calibration and the ratio of bank size

to test length was low (i.e., 4:1).

Content Optimal Item Selection

Descriptive statistics for the 10- and 20-item tests constructed using

content optimal item selection with the Sample A item banks calibrated with

500 and 2000 examinees, respectively, are reported in Table 3. The

corresponding descriptive statistics substituting the Sample B item

parameter estimates are also given in Table 3. Figure 3 shows the test

LabReport212
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information functions for the various constructed tests. Relative

efficiency functions comparing Sample A with Sample B results are shown in

Figure 4. A similar pattern of overestimation to that exhibited with the

Insert Figures 3 and 4 about here

optimal item selection procedure is apparent with the content optimal item

selection procedure. However, comparisons between Figures 1 and 3 and

Figures 2 and 4 show the magnitude of overestimation to be substantially

greater in tests constructed using content optimal item selection

procedures. No generalizations of this finding should be made, however,

since the finding is likely specific to the item banks and content

specifications that were used in the study.

Table 3 highlights some substantial effects due to "capitalizing on

chance." These effects were especially significant in the item bank

calibrated with the smaller examinee sample size.

Sample Size. Clearly Sample A test information functions in Figure 3

were overestimated, and the magnitude of this overestimation was much

greater in the smaller calibration sample size (N 500) than the larger

calibration sample size (N 2000). The two main findings with respect to

sample size were:

1. With a ratio of bank size to test length of 8:1 and a
low item calibration sample size (N 500), the test
information function was werestimated by as much as 104
percent. With a larger item calibration sample size (N

2000), the overestimation was not nearly as great,
although the overestimation approached 50% for middle
ability levels.

2. With the smaller ratio of bank size to test length of 4:1,
overestimation of the test information function occurred but
the magnitude of the overestimation was reduced. With a low
item calibration sample size (N 500),* overestimation was as

LabReport212



much as 63 percent. Whereas, with the larger item
calibration sample size (N 2000), overestimation did not
exceed 26 percent.

Ratio of Item Bank Size to Test Length. Figure 3 shows the ratio of

item bank size to test length to be an influential factor affecting the

magnitude of overestimation of test information functions. Though, as was

the finding with the optimal item selection procedure, for the situations

simulatfd, the impact was less than sample size. The two main findings

with respect to the ratio of bank size to test length were:

1. When the ratio of bank size to test length was 4:1 and
using a lower sample size (N 500),the size of
overestimation was as much as 63 percent. However, the
magnitude of overestimation was as great as 104 percent
when the ratio was increased to 8:1.

2. Similar trends were present with the larger calibration
sample (N 2000). Again, the magnitude of the
difference was about two thirds larger when the ratio
was 8:1 compared to 4:1.

A comparison of the relative efficiency functions in Figures 2 and 4

shows the magnitude of overestimation to be greater in those tests

constructed using content optimal item selection procedures compared to the

optimal item selection procedures.

Conclusions

The results of our investigation document clearly the impact of the

size of the examinee sample used in item calibration and the ratio of item

bank size to test length on the accuracy of test information functions. At

least for the conditions studied, examinee sample size was the more

important of the two factors but, clearly, both factors were important.

Again, at least for the situations simulated, the imposition of content

specifications resulted in major inaccuracies in the test information

LabReport212 12



functions. Specific findings in this study are ptobably of limited

interest - they are unique to the simulations. They are Also somewhat

unstable, especially for low and high_ability levels where thekgenerally

short tests produced low levels of information. But, there is a main

general finding from the study - te4 information functions tend to be

overestimated because of "capitalizirli on chance" in item selection and the

amount of overestimation is due to factors investigated in this study.

There are several implications for practice: (1) teats do not perform

as well as expected when the "best" items are selected to match a target

test information function, and (2) standard errors are, correspondingly,

''under-estimated (assuming that the firs; set of values is. taken as "true

values") and so over-confidence in ablity scores will result. If, on the

other hand, the test developer's intention is to recalibrate the item

statistics based on an actual test administration (which is common), one

result will be that the updated test information function will be lower

than was expected or desired. These results provide rather dramatic

evidence of the influence of selecting the "best" items from an item bank

to make up a test. Also, the size of t e.effbct depends both on the number

of examinees used in item calibration, *Id tie ratio of the number of items

."
in the bank relative to the length of the didired test.

At least two steps can be taken to ;ice the problem:

1. Use large samples in item calibratiIon to gain precision in item
parameter estimates. An increase in tge precision of item parameter
estimates will reduce the significance of "capitalizing on chance."

2. Depending on the sample size used in item parameter estimation, exceed
the desired target information function by (at least) 10% to 20%.

If one or both of the above suggestions are implemented, the problem

associated with using over-estimated item parameter values in ability and

standard error estimation can be reduced.

LabReport212 13
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