
1

JXTA-OVERLAY: A P2P Platform for Distributed,

Collaborative and Ubiquitous Computing
Leonard Barolli, Member, IEEE, and Fatos Xhafa, Member, IEEE

Abstract—With the fast growth of Internet infrastructure and
the use of large-scale complex applications from industries,
transport, logistics, government, health and businesses, there is an
increasing need to design and deploy multi-featured networking
applications. Important features of such applications include the
capability to be self-organized, decentralized, integrate different
types of resources (PCs, laptops, mobile and sensor devices),
and provide global, transparent and secure access to resources.
Moreover, such applications should support not only traditional
forms of reliable distributing computing and optimization of
resources but also various forms of collaborative activities such
as business, online learning and social networks in an intelligent
and secure environment. In this paper, we present the JXTA-
Overlay, a JXTA-based P2P platform designed with the aim
to leverage capabilities of Java, JXTA and P2P technologies to
support distributed and collaborative systems. The platform can
be used not only for efficient and reliable distributed computing
but also for collaborative activities and ubiquitous computing
by integrating in the platform end-devices. The design of an
user interface as well as security issues are also tackled. We
evaluate the proposed system by experimental study and show
its usefulness for massive processing computations and e-learning
applications.

Index Terms—P2P Systems, JXTA library, JXTA-Overlay, Java
Applications, End-device Control, SmartBox.

I. INTRODUCTION

The Internet is growing every day and the performance of

computers and networks is significantly increased enabling

the development of complex, large-scale applications. We

are currently witnessing an increasing need to design and

deploy multi-featured networking applications instead of stand

alone applications for specific needs. Such applications com-

bine different paradigms and are developed using various

technologies with the aim of achieving a multi-disciplinary

view. The digital ecosystems [5], [8], [10], [21] are emerging

as a paradigm for supporting multi-disciplinary and multi-

paradigmatic applications capable of being adaptive and socio-

technical, having properties of self-organization inspired by

natural ecosystems. Important features of such applications

include the capability to be self-organized, decentralized,

scalable and sustainable as well as integration of different

types of resources (PCs, laptops, mobile and sensor devices)

L. Barolli is with the Department of Information and Communication
Engineering, Fukuoka Institute of Technology (FIT), 3-30-1 Wajiro-Higashi,
Higashi-Ku, Fukuoka 811-0295, Japan, e-mail: barolli@fit.ac.jp.

F. Xhafa is with Department of Languages and Informatics Systems
Technical University of Catalonia, Jordi Girona 1-3, 08034 Barcelona, Spain,
e-mail: fatos@lsi.upc.edu.

Manuscript received November 10, 2009; Manuscript revised November
19, 2009; Manuscript accepted January 11, 2010.

providing global, transparent and secure access to resources.

Supporting various forms of collaborative activities such as

business, on-line learning and social networks in an intelligent

and secure environment is also important in such systems. In

fact, digital ecosystems are considered as the next generation

of collaborative environments.

The development of such applications requires the combi-

nation of many computing paradigms and technologies such

as Web, mobile and sensor technologies to achieve ubiquity

features. However, the current Internet architecture based on

Client/Server topology shows several limitations to efficiently

address the high degree of heterogeneity of computational

resources and devices, which are useful for the everyday real

life activities. Besides, in large scale networks such as Internet,

it is very difficult to control network devices due to security

problems. Networks have their own security policies and the

information should overcome firewalls, which are used for

checking the information between private and public networks.

Peer-to-Peer (P2P) systems are an important paradigm for

the development of large scale applications endowed with

features of digital ecosystems. Indeed, P2P systems [7] can

achieve a good scalability and are decentralized in nature.

In P2P systems, the computational burden of the system can

be distributed to peer nodes. Therefore, the users become

themselves actors by sharing, contributing and controlling

the resources of the systems. This characteristic makes P2P

systems very interesting for the development of decentralized

applications [4], [22].

P2P systems have evolved from simple systems of file

sharing among Internet users to a disruptive technology for

collaborative and social activities. Indeed, such systems are

capable to deliver content, profiling, grouping and control

to ordinary users in intelligent and interactive environments.

Thus, P2P technologies lay the basis for developing appli-

cations to support any group of people having in common

technical, scientific, cultural, and political interests.

P2P technologies can also efficiently address the ubiquity

features of large scale Internet-based applications by integrat-

ing any connected devices on the network, ranging from cell

phones and wireless PDAs (Personal Digital Assistants) to

Personal Computers (PCs) and servers. Recently, there has

been an increasing interest in deploying P2P networks that

integrate mobile devices such as PDAs and end-devices.

Finally, using P2P technologies, it is possible to overcome

firewalls and other security devices without changing the

network policy. The P2P architecture is thus very important

for controlling end-devices in Wide Area Networks (WANs).

In this work, we present the JXTA-Overlay, a JXTA (Juxta-

pose) based P2P platform, designed with the aim to leverage

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/TIE.2010.2050751

2

capabilities of Java, JXTA and P2P technologies to support dis-

tributed and collaborative systems in a decentralized and self-

organized manner, capable to integrate different types of peers.

The platform can be used not only for efficient and reliable

distributed computing but also for collaborative activities and

ubiquitous computing by integrating in the platform also end-

devices and overcoming thus intrinsic difficulties of current

Internet architecture and protocols. Moreover, the design of

an advanced user interface as well as enhancement security

requirements of JXTA library are also tackled. We consider as

an end-device the SmartBox that is able to stimulate learners

during their learning activity and thus increasing their learning

efficiency and outcomes. We evaluate the proposed system by

experimental study and show the usefulness of using SmartBox

end-device in the development of e-learning applications.

The structure of this paper is as follows. In Section II,

we give a description of the main protocols of the JXTA

library. Section III presents the main features of the JXTA-

Overlay platform. The use of the JXTA-Overlay platform for

masive processing computations is presented in Section IV.

We introduce the issue of integration of end-devices into

P2P systems in Section V. In Section VI, we present the

integration of the SmartBox end-device. In Section VII, we

show the evaluation of JXTA-Overlay. The paper ends with

some conclusions in Section VIII.

II. JXTA LIBRARY FOR P2P COMPUTING

JXTA technology [6], [19] is a generalized group of six

XML (Extensible Markup Language) based protocols that

allow different types of peers to communicate and collaborate

among them. Peers can be organized into peergroups in a

decentralized way. Peers communicate using pipes, which

abstract the way in which two peers communicate, where other

peers are allowed as intermediaries if communication would

not be able due to network partitioning and restrictions. By

using these protocols, peers connected to the JXTA network

can exchange messages among them in decentralized way.

Moreover, by using JXTA protocols it is possible that a peer

in a private network can be connected to a peer in the Internet

by overcoming existing firewalls or NATs (Network Address

Translations) or when different communication protocols are

used. The performance of JXTA has been evaluated in several

research work and it has been shown that the library is efficient

and highly scalable [1], [11].

Peers are uniquely identified allowing that peers can change

their address still conserving their unique peer Id. JXTA layers

and services are shown in Fig. 1.

A. JXTA Protocols

JXTA comprises a set of six open protocols that enable any

connected device on the network, ranging from cell phones

and wireless PDAs to PCs and servers, to communicate and

collaborate in a P2P manner. We briefly describe below these

protocols (core and standard protocols).

Instant Messaging File Sharing Resource Sharing

Sample Applications

Collaborative Applications Auctions

Sample Services

Search Indexing Discovery Membership

Peer Groups Peer Pipes Peer Monitoring

Peer Advertisement Peer IDs Security

Any Connected Device

 JXTA
Applications

 JXTA
Services

JXTA
Core

Fig. 1. JXTA layers and services.

Peer Resolver Protocol (PRP): PRP offers a generic

interface that allows peers to send generic requests to one

or more peers and to receive one or multiple answers. Appli-

cations and services can use the protocol for the resolution of

services.

Endpoint Routing Protocol (ERP): ERP defines a set of

messages which are processed by a routing service to enable

a peer’s message routing to the destination. Thus, ERP is used

to find the available routes to send messages to the destination

peers.

Peer Discovery Protocol (PDP): PDP is used to discover

the published resources by the peers. The resources are rep-

resented through advertisements. A resource can be a peer, a

peergroup, a pipe, or any other resource that has associated an

advertisement.

Rendezvous Protocol (RVP): RVP is used to propagate

messages in a group of peers. The RVP provides mechanisms

for controlled propagation of the messages. This protocol

comprises the PeerView Protocol, Rendezvous Lease Protocol

and Rendezvous Propagation Protocol.

Peer Information Protocol (PIP): PIP provides a set of

messages to obtain information about the state of a peer. The

PIP protocol is optional for JXTA peers. In fact, a peer does

not need to reply to the queries made with PIP protocol.

Pipe Binding Protocol (PBP): PBP is used by the ap-

plications and the services in order to communicate with the

other peers. A pipe is a virtual channel between two peers and

is described as “pipe advertisement”. Every time that a pipe is

established, an input pipe and an output pipe are established.

In fact, PBP can be viewed as a layer over the ERP, and it can

use a variety of transport protocols such as “Transport JXTA

HTTP”, the “Transport JXTA TCP/IP” and the “Secure JXTA

TLS Transport” in sending messages.

B. JXTA Entities

The main entities of JXTA networks are as follows.

Peer: Any interconnected node is called peer. Peers

work independently and asynchronously with other peers by

publishing one or more interfaces that are used by other peers

to establish P2P connections. Different types of peers are

defined (Limited Edge Peer, Complete Edge Peer, Rendezvous

Peer, Relay Peer) according to their role in the P2P network.

3

Fig. 2. Communication of peers in a JXTA network.

• Rendezvous: The Rendezvous peers are in charge of coor-

dinating other peers in the JXTA network. Additionally,

they provide the necessary services for the propagation of

messages. Each sub-network of JXTA must have at least

a Rendezvous peer.

• Relay: The Relay peers allow that peers behind firewalls,

NATs or special peers having limited computational

power such as mobile devices, PDAs, etc., can be part of

a JXTA network. The relay peers achieve this by using

protocols which allow to cross the limitations imposed

by these systems, e.g., the HTTP protocol (see Fig. 2).

• Edge: Edge peers are peers at the edge of the network

and usually have limited bandwidth as compared to other

types of more powerful peers.

PeerGroup: A PeerGroup is a collection of peers that

provide a secure shared environment for participating peers.

A PeerGroup can decide its own policy of peer membership.

Peers can belong to more than one PeerGroup.

Pipes: A pipe is a virtual communication channel es-

tablished between two processes. A computer connected to

the network can open, at transport level, as many pipes as its

operating system permits. JXTA offers both unidirectional, not

secure pipes, and bidirectional secure pipes.

Messages: Messages are objects used for communicating

and interchanging data. A message is an XML document,

which can also include binary code.

Advertisements: JXTA resources and services are repre-

sented using advertisements. An advertisement is a meta-data

structured information (XML document), which is published

with a certain lifetime specifying its availability.

III. JXTA-OVERLAY PLATFORM

JXTA-Overlay1 [23] is a middleware that abstracts a new

layer on top of JXTA through a set of primitive operations

(services) commonly used in JXTA-based applications.

JXTA-Overlay comprises primitives for: (a) peer discovery;

(b) peers resources discovery; (c) resource allocation; (d)

task submission and execution; (e) file/data sharing, discovery

and transmission; (f) instant communication; (g) peer group

functionalities (groups, rooms etc.); and, monitoring of peers,

groups, and tasks. This set of basic functionalities is intended

to be as complete as possible to satisfy the needs of JXTA-

based applications. The overlay is built on top of JXTA

layer and provides a set of primitives that can be used by

1https://jxta-overlay.dev.java.net/

Fig. 3. Structure of JXTA-Overlay.

other applications, which on their hand, will be built on

top of the overlay, with complete independence. The JXTA-

Overlay offers several improvements of the original JXTA

protocols/services to increase the reliability of JXTA-based

distributed applications and to support group management

and file sharing [23]. The architecture of the P2P distributed

platform we have developed using JXTA technology has these

building blocks: Broker Module, Primitives Module and Client

Module. Altogether these three modules form a new overlay on

top of JXTA. The JXTA-Overlay structure is shown in Fig. 3.

1) The primitives: The set of primitives includes function-

alities that allow peer discovery, peer’s resources discovery,

resource allocation, file/data sharing, discovery and transmis-

sion, instant communication and peer group functionalities,

among others. The primitives are organized in interfaces

according to an affinity criterion. In what follows we give the

main functionalities of these interfaces (we use indistinctly the

terms peer and resource).

Authentication: This interface includes typical methods

for authentication of the final user/application that will be

using the resources managed by the overlay. It should be

noted that another authentication could be established at the

application level, which would be independent of the over-

lay. In this interface we have, among others, the methods

connect (which verifies the authentication by calling the

verifyAuthentification method of JXTA, connects

to a broker, flushes the local cache and fires an event);

configure (which configures the local cache and is called

just once at the beginning); login and disconnect.

Resource discovery and information: This interface in-

cludes functionalities related to the discovery of peers man-

aged by the overlay. The implementation of these function-

alities is later done by using JXTA discovery services. It

should be noted that, as part of resource discovery, the overlay

includes functionalities to discover a resource of certain de-

sired characteristics. Thus we have, among others, the methods

discoveryEvent, getPeerName and getPeerID.

Management of executable tasks: An important place

in the primitives is given to functionalities related to the

management of executable tasks in parallel and distributed

applications. The TaskList module is in charge of managing

the task of pending list, as shown graphically in Fig. 4.

The task functionalities are intended to give service to

users/applications on top of the overlay that submit executable

tasks and receive results in turn. Thus we have, among others,

the following methods:

4

Fig. 4. Task list module.

• executableTaskRequestRandom: a new executable task
is requested to be executed in another peer selected at random.

• executableTaskRequestSelectedPeer: a new exe-
cutable task is requested to be executed in a (group of) selected
peer(s).

• executableTaskRequestDataEvaluator: evaluates
the execution of a task according to task data/characteristics.

• executableTaskRequestEconomicEvaluator: evalu-
ates the execution of a task according to a given economic model
based on task data/characteristics.

• executableTaskDel: deletes a task from list of pending
tasks.

• executableTaskAccepted: indicates acceptance of a task
execution in a specified resource.

• executableTaskDeny: indicates deny of a request for a
task execution.

• executableTaskFinished: advertises that the execution
of task has successfully been finished.

• executableTaskCanceledRequest: requests cancella-
tion of task execution.

• executableTaskCanceledByDestination: indicates
that the executable task has been cancelled at destination
resource.

• executableTaskCanceledBySender: indicates that the
executable task has been cancelled by task’s sender.

• addExecutableType: adds a new type of executable
tasks that a resource supports. Similarly there is the
delExecutableType method.

File sharing, discovery and transmission: This includes

sharing, discovery and transmission of files, which are

basic functionalities of the overlay. The objective of these

functionalities goes beyond the sharing in P2P systems since

file transmission is necessary for submitting tasks to resources.

Thus we have, among others, the following methods:

addSharedFile, addSharedDirectory, delSharedFile,

getSharedFiles, sendFilePeer, sendFileAccepted,

sendFileDeny, sendFileGroup, findFile,

fileRequestRandom, fileRequestSelectedPeer,

fileRequestEconomicEvaluator, cancelTransfer,

localInfoTransfer.

Instant communication: This interface supports in-

stant communication between peers and includes methods

sendMsgPeer (for sending a message to a specified peer)

and sendMsgGroup (for sending a message to a peergroup).

Peer’s statistics: Statistic information of resources is rele-

vant for applications that will be built on top of the overlay.

Thus we have, among others, the following methods:

• getPeerStatistics: returns statistic information on a
specified resource.

• getGroupStatistics: returns statistic information on a
group of resources.

• getBrokerStatistics: returns statistic information on a
specified broker resource.

• getBrokerStatistics: returns statistic information on the
broker of a specified group of resources.

• getClientStatistics: returns statistic information on a
specified edge peer.

• getClientStatistics: returns statistic information on a
specified group of edge peers.

There are also some primitives related to the peer’s local

cache that we have omitted here.

2) Peer types: For the definition and implementation of the

JXTA-Overlay primitives, the Broker peer and two types of

Client peers have been defined and implemented.

Broker peer: Broker peers are extension of rendezvous

peers and are in charge to control the JXTA network of

peers. As such, broker peers act as bots actually they

don’t interact with users but are permanently waiting for

events/advertisements from peers in the networks. Therefore,

broker peers are able to keep the state of the network and

propagate it to the peers in the network. Thus, broker peer

implements both rendezvous and relay peer functions. Among

other proper functions of the broker peers we can mention the

login control of peers, management of peergroups and rooms,

task assignment and allocation, search of the best peer for

file transfer, file search by content, and so on. Although not

necessary, broker peers should run on fast machines in order

to be able to process the amount of information generated in

the network in short time intervals and maintain the updated

state of the network.

GUI Client peer: This is an edge peer that offers a graph-

ical user interface, hence called GUI Client peer, to facilitate

5

the operability of a user with the JXTA network. The user

can thus collaborate with other peers, send requests for task

executions, share, send and receive files. The accomplishment

of these functionalities is done through the generation of events

propagated to other peers in the network.

Simple Client peer: This peer is again an edge peer, but

it does not offer interaction with the user. This kind of peers is

intended to increase the performance and amount of resources

in the JXTA network, especially, for distributed computing

applications and data storage. The functioning of such peers

is completely transparent to the user. They are used by broker

peers for task execution and the users do not need to be aware

of such peers, although they can know the simple client peers

in the network and those participating in a task resolution.

3) Transmission Control and Management in JXTA-

Overlay: JXTA protocol uses Universally Unique Identifier

(UUID) in order to identify peers in the private network from

the Internet. We implemented a control system that is able

to distinguish a peer in a private network from a peer in

the Internet. The control targets are considered the network

devices such as RS232C port, LPT port and USB port. We

have implemented the integration of these devices in our P2P

platform. Our platform is able to collect data and control the

peers and all devices that are connected to the peers.

4) Graphical User Interface: JXTA-Overlay has been de-

veloped to support multi-features applications and different

needs of users. It comes with a graphical user interface

(through its GUIClient peer type). By using the graphical inter-

face, users interested in parallel and distributed computing can

execute their tasks through Executable Task, share files through

Files or use tools for online learning through Groupware tools

(see Subsection V-B for a snapshot).

5) Security in JXTA-Overlay: JXTA library supports ba-

sic security requirements which are desirable in any P2P-

based application. Such requirements include confidentiality,

integrity and availability, which are achieved through au-

thentication, access control, encryption, secure communication

and non-repudiation. In fact, JXTA provides a generic and

flexible framework where different security approaches can be

adopted. We have enhanced the basic security requirements

of JXTA-Overlay with more advanced security mechanisms

related to group membership to grant access to group resources

and secure resource discovery and message exchange between

peer group members [2], [3].

IV. JXTA-OVERLAY FOR HIGH PERFORMANCE

COMPUTING

One of the features of JXTA-Overlay is the support to

parallel and distributed computing. Users of the JXTA-Overlay

can submit the execution of their tasks to the peer nodes

of the platform. This is useful to benefit from the large

amount of computational resources, which are beyond those

of a simple peer. Task execution in JXTA-Overlay is efficient

because tasks submitted to the platform by independent peers

are efficiently managed and monitored at application level.

This is essentially achieved by the independence of overlay

primitives from the execution of the tasks, so it is the upper

ENQUEUE

PROCESSED
IN PIPE

SENT

ACCEPTED
FINISHED
IN PIPE

Task destruction

ACCEPTED
IN PIPE

DENIED
IN PIPE

New task
submission

A sub-task
sent to a peer

Sub-task result sent
to destination peer

Sub-task
accepted by
destination
peer

Sub-task denied
by peer selected
by the user

Notification of
acceptance sent
to original peer

Denied
notification sent
to original peer

Sub-task denied
by peer assigned
by broker

The
received
sub-task is
finalized

Notification
of sub-task
completion
sent

DENY FINISHED

All sub-taks are
in final state

Fig. 5. Task execution state at Broker peer.

ENQUEUE SENT

ACCEPTED

Task destruction

New task
submission

Submission
sent to Broker

Sub-task
accepted

Sub-task
denied

Sub-task
finished

Error in task
completion

PENDING
ACCEPT

Sub-task completed
(at a peer)

FINISHED

All sub-tasks are
in final state

DENY

All sub-tasks
are in final state

Fig. 6. Task execution state at origin peer.

layer of the applications that carries out the management of

task executions. In this way, any different applications running

on top of the middleware can use task primitives but manage

the task execution on their own. Moreover, this consideration

of independence allows that the overlay is transparent to all

peers, since different peers with different types of executable

tasks use the same overlay. Any executable task consists

of its type, the task properly said (e.g. signed JAR –Java

ARchive– file of program and/or data) and the result type.

Tasks can be composed of other small tasks (sub-tasks). It

should be noted that the task itself and the result are treated

like objects. That is, they pass through the overlay layer neither

being treated nor modified and are handled in superior levels,

from where primitives for task executions are invoked (see

Subsection III-1).

We show in Figs. 5, 6 and 7 the life cycle process of

task executions at broker, origin peer and destination peer,

respectively.

V. INTEGRATION OF END-DEVICES INTO P2P SYSTEMS

The high degree of heterogeneity of computational resources

is a real challenge for the today’s Internet applications.

The great variety of computational resources ranging from

servers, PCs, laptops to hand-held and end-devices makes

their integration very complex. Among other issues we could

distinguish the difficulties of integration with current Internet

architecture, the lack of a standard middleware that would

facilitate and make transparent the programming task of the

6

ENQUEUE PENDING
ACCEPT

ACCEPTED

Task destruction

New task
submission

Petition sent to
superior layer

Task accepted
for processing

Task finished
message sent

ACCEPTED
IN PIPE

FINISHED
IN PIPE

Task processing
finished

Acceptance
message sent

Denied
message sent

Denied task
execution

DENY IN
PIPE

Fig. 7. Task execution state at destination peer.

diverse computational devices and, not less importantly, the

security issues.

Current research work is addressing the integration of hand-

held and end devices in Web applications, in Grid applications

and P2P applications. The objective is to develop pervasive

and ubiquitous applications using Web, Grid, P2P, smart

environments and sensor technologies.

In this section, we briefly discuss some research work in

the literature on the use end-devices in P2P systems. Kumar et

al. [14] presented a middleware for digital rights management

in P2P networks. The authors considered P2P networks com-

prising different types of user devices. Charas [9] introduced

the concept of local policy enforcement to define terminal

centric control with the aim to develop a mobile architecture

including ubiquitous end user devices. Hu [12] presented

techniques for NAT traversal techniques and P2P applications.

Another research work in this direction is reported in [15]

where a NAT traversal for Pure P2P e-Learning system is

proposed.

Considerable research efforts are currently being devoted to

the extension of P2P networks with mobile devices such as

PDAs [13], [17], [20].

A. The Use of End-Devices in Online Learning

Virtual campuses are nowadays a common approach widely

used for online distance teaching and learning. In fact, this

approach is used not only for open universities but also in

semi-open teaching and learning courses taught by different

institutions and organizations world-wide.

Most of the online applications that support distance teach-

ing and learning are Web-based. Due to the very fast devel-

opment in Web technologies as well as the emergence of new

paradigms such as Grid, P2P and mobile computing, the online

learning systems are currently undergoing important changes.

The rationale behind these changes is to shift from the ”old”

paradigm of offering remotely teaching and learning supported

through virtual classrooms, to the new paradigm of learning

and teaching ”anytime, anywhere”. This new paradigm of

distance teaching and learning is being possible due to the

everyday increase of hand-held devices such as PDAs, mobile

phones as well as many types of end-devices.

The implementation of this new paradigm has certainly

many benefits for online learning as compared to only Web-

based online applications. Among the most remarkable fea-

tures of such new online learning applications using hand-held

and end devices, we could distinguish: permanent connection

with the virtual classroom, downloading material courses,

awareness, monitoring activity in classrooms and alerting

about important calendar dates and events.

It should be noted however that currently the implementa-

tion of such advanced online learning systems is a challeng-

ing task due to the intrinsic complexities of the hand-held

and end devices. Indeed, the programming of computational

devices and their integration into distributed applications is

very difficult. In such applications the target is to use different

technologies: Web, Grid, P2P and computational devices. The

heterogeneity of computational resources in such applications

is a major research issue still to be addressed and solved

for practical purposes. The first steps in this directions are

done by combining Web, Grid and P2P computing and nowa-

days we can find some applications using such technologies.

Apart from the heterogeneity and the variety of computational

devices, other difficulties arise from the limitations of the

computational devices and security issues.

Fortunately, libraries for supporting the programming of

computational devices and their integration into distributed ap-

plications are proposed in the literature. Among these libraries,

there is JXTA, which offers a set of protocols that enable the

connection and communication with any type of computational

devices able to be connected acting as JXTA edge peers.

B. Groupware Tools in JXTA-Overlay Platform

As part of JXTA-Overlay Platform, we have developed also

groupware tools to support online learning. The groupware

tools in the current version comprise: instant messaging,

management of rooms, management of learning scenarios and

task coordination among peers of a group (i.e., students of

a study group) within a learning scenario (see Fig. 8) for a

snapshot of the JXTA-Overlay and groupware tools.

It should be noted that currently, the JXTA-Overlay can be

deployed for P2P networks of standard peers such as PCs

and laptops. In this work, we extend the capabilities of the

JXTA-Overlay to support also end-devices and use them for

enhancing learners’ motivations.

VI. END DEVICES

Our target implementation is to build and design some end-

devices for control in a smart environment. As end devices,

we consider mobile car, robot and SmartBox, but for the sake

of space we will present in this paper only SmartBox.

The SmartBox uses RFID (Radio Frequency Identification)

and Vital Sensors. The size of SmartBox is 37 × 7 × 15 cm.

The SmartBox has the following sensors and functions (see

Fig. 9).

• RFID Sensor: for identifying user’s IC tag card.

• Chair Vibrator Control: for vibrating the user’s chair.

• Light Control: for adjusting the room light.

• Aromatic Control: for controlling the room smell.

7

Fig. 8. Snapshot of the peer’s Graphical User Interface (GUIClient) in JXTA-Overlay and groupware tools.

Fig. 9. SmartBox functions.

• Buzzer Control: to emit relaxing sounds.

• Remote Control Socket: for controlling AC 100V socket

(on-off control).

A snapshot of the implemented SmartBox is shown in

Fig. 10. The SmarBox can detect the computer users’ move-

ment by its body sensor and hand sensors. The body sensor

is used for controlling the body movement of the user. On the

other hand, the hand sensors control the hand motion of the

user. The RFID sensor can read IC tag information and record

the time a user uses the computer. We used the SmartBox

as an end device in a P2P e-learning system and we control

its functions by using JXTA-Overlay. We developed a control

system for controlling the SmartBox (see interface in Fig. 11).

VII. EXPERIMENTAL RESULTS

We have conducted extensive experimental evaluations of

the JXTA-Overlay middleware. Here, we present some com-

putational results from the experimental evaluation of two

aspects: speed-up gain in massive processing of large size log

data files and end-device integration.

Fig. 10. A snapshot of implemented SmartBox.

Fig. 11. SmartBox control system interface.

A. Experimental Results with JXTA-Overlay Performance

In order to evaluate the performance of JXTA-Overlay

primitives for massive processing computations, we deployed

the P2P network using nodes of the PlanetLab platform [16]

and used the cluster nozomi.lsi.upc.edu (a main control node +

five computing nodes) where we deployed broker services. The

computational results of the experimental study given below

were obtained using a group of 8 geographically distributed

machines in seven EU countries. The distributed application

consisted in processing a log file of 100 Mb from a real virtual

campus. In this application, a GUIClient peer (that is a peer

with graphical user interface), provides the required data for

8

������

�����

�	���

����

�����

�����

�����

������

������

���

�
�
�
�

������������� �!������������ �!������
������

Fig. 12. Total processing time of all chunk files at peer nodes.

����
����

����

���� ����

	���

����

����

	���

	���

���

���

����

����

����

	 � 	�

��������	�
����

�
�

�

�������� �������������

Fig. 13. Final processing time at GUIClient peer.

the application including the file to be processed, number of

chunks to split the file and transfer mode (FTP or direct peer

transfer). The application starts by splitting the log file into

a specified number of parts (chunks) of equal size, the file

chunks are sent to an FTP site or directly to peer nodes for

processing and results of peer nodes are uploaded to an FTP

site or are directly sent to the GUIClient peer, which processes

them and produces a final result.

Below we show graphical representation of the two main

steps, namely: measuring of the processing time of the as-

signed chunks by peers (see Fig. 12), and the final processing

time at GUIClient peer which merges the results sent by peers

(see Fig. 13).

As can be seen in Fig. 12, a considerable speed-up in

processing of the log file is gained when the file is split in

4 and 16 parts, respectively, with respect to the sequential

processing of the complete file. Thus, the processing time

when the file is split in 16 chunks is roughly twice as faster

as the processing time when file is split in 4 chunks. It should

be noted here that economic-based models were used to select

peers in order to achieve a good load balancing.

In Fig. 13, we show the processing time of merging partial

results of peers in a final processing result. We measured

whether it is more efficient to download the partial results

of peers from an FTP address or get them in a direct commu-

nication with the peer (P2P mode). As can be seen, using

direct communication resulted more efficient. For instance,

using direct communication when file is split into 16 chunks is

roughly three times faster as compared to FTP mode transfer.

Fig. 14. Reaction number for body sensor.

Fig. 15. Measurement of learners concentration using SmartBox.

B. Experimental Results with SmartBox

We present here some experimental results about the moni-

toring and performance of the SmartBox in the JXTA-Overlay

P2P system. We carried out experiments in real environment

and confirmed the effectiveness of JXTA-Overlay. We verified

the effectiveness of SmartBox by stimulating different users

with its functions.

The proposed system can detect the learner’s movement by

using body sensors. The measurement data for learners’ body

movements are shown in Fig. 14. We obtained these data after

observing learners studying for a total of 40 hours distributed

along different periods.

In our experiments, we used SmartBox and measured the

stimulation effects that the SmartBox has to the learners. We

checked the Smell function, Light function (high luminance

LED) and Sound function (different kind of music). In order

to check the effects of the SmartBox on the learners, we

carried out real experiments with learners while they were

studying. In the first experiment, we used the SmartBox and

in the second experiment we did not use the SmartBox. The

learner’s body movement for these two cases are shown in

Fig. 15 and Fig. 16, respectively. The comparison between

these two figures shows that the use of SmartBox is an

effective way to improve the learner motivation, because the

learner’s concentration is higher using the SmartBox.

VIII. CONCLUSIONS

P2P systems have evolved from simple systems of file

sharing among Internet users to a disruptive technology for

9

Fig. 16. Measurement of learners concentration without using SmartBox.

collaborative and social activities. Such systems are capable

to deliver content, profiling, grouping and control the ordinary

users in intelligent and interactive environments.

In this work, we presented the JXTA-Overlay, a JXTA-based

P2P platform designed with the aim to leverage capabilities of

Java, JXTA and P2P technologies to support distributed and

collaborative systems in a decentralized and self-organized

manner, capable to integrate different types of peers. The

platform can be used not only for efficient and reliable

distributed computing but also for collaborative activities and

ubiquitous computing by integrating in the platform also end-

devices.

ACKNOWLEDGEMENTS

This research work is supported by Japanese Society for the

Promotion of Science (JSPS). Leonard Barolli would like to

thank JSPS for the financial support.

Fatos Xhafa’s research work completed at Birkbeck, Uni-

versity of London, on Leave from Technical University of

Catalonia (Barcelona, Spain). His research is supported by

a grant from the General Secretariat of Universities of the

Ministry of Education, Spain.

REFERENCES

[1] G. Antoniu, P. Hatcher, M. Jan, and D.A. Noblet. Performance evaluation
of JXTA communication layers. In Proc. of the 5th IEEE International

Symposium on Cluster Computing and the Grid (Ccgrid’05), vol. 1. pp.
251-258, 2005.

[2] J. Arnedo-Moreno, K. Matsuo, L. Barolli, F Xhafa. A Security-aware
Approach to JXTA-Overlay Primitives. In ICPP-2009 Proc., ADPNA-2009

Workshop, pp. 431-436, 2009.

[3] J. Arnedo-Moreno, K. Matsuo, L. Barolli and F. Xhafa. A Security
Framework for JXTA-Overlay. In Proc. of NBiS-2009 Conference, pp.
212-219, 2009.

[4] L. Barolli, F. Xhafa, A. Durresi, G. De Marco. M3PS: A JXTA-based
Multi-platform P2P System and Its Web Application Tools. International

Journal of Web Information Systems, vol. 2 (3/4), pp. 187-196, 2006.

[5] G. Briscoe and P. De Wilde. Digital Ecosystems: Evolving service-
orientated architectures. In Proc. of the 1st International Conference on

Bio Inspired Models of Network, Information and Computing Systems, vol.
275, Article No. 17, 2006.

[6] D. Brookshier, D. Govoni, N. Krishnan, J. C. Soto. JXTA: Java P2P

Programming. Sams Publishing, 2002.

[7] J. Buford, H. Yu, E. Lua. P2P Networking and Applications. Elsevier,
2008.

[8] E. Chang, M. Quaddus and R. Ramaseshan. The Vision of DEBI Institute:
Digital Ecosystems and Business Intelligence. Technical Report of DEBII,
2006.

[9] P. Charas. Peer-to-Peer Mobile Network Architecture. In Proc. of the 1st

International Conference on Peer-to-Peer Computing, pp. 55-61, 2001.

[10] H. Dong, F. Hussain, E. Chang. A Service Search Engine for the
Industrial Digital Ecosystems. to appear in IEEE Trans. on Industrial

Electronics, vol. 57, 2010.
[11] E. Halepovic, R. Deters, and B. Traversat. Performance Evaluation of

JXTA Rendezvous. In Proc. of International Symposium on Distributed

Objects and Applications, pp. 1125142, 2004.
[12] Z. Hu. NAT Traversal Techniques and Peer-to-Peer Applications. In

Proc. of the New Zealand Comp. Sci. Research Student Conference, pp.
242-245, 2008.

[13] T. Iwata, S. Miyazaki, M. Takemoto, K. Ueda and H. Sunaga. P2P
Platform Implementation on PDAs Organizing Ad Hoc Wireless Network.
In Proc. of Workshops of the Symposium on Applications and the Internet,
pp. 568-573, 2004.

[14] P. Kumar, G. Sridhar, V. Sridhar, and R. Gadh. DMW - A middleware
for Digital Rights Management in Peer-to-Peer Networks. In Proc. of the
DEXA-2005 Workshops, pp. 246-250, 2005.

[15] K. Kuramochi, T. Kawamura, K. Sugahara. NAT Traversal for Pure P2P
e-Learning System. In Proc. of 3rd International Conference on Internet

and Web Applications and Services, pp. 358-363, 2008.
[16] PlanetLab Platform. http://www.planet-lab.org/.
[17] M.K. Purvis, N. Garside, C. Stephen, M. Nowostawski, M. Oliveira.

Multi-agent System Technology for P2P Applications on Small Portable
Devices. In Proc. of 3d International Workshop on Agents and P2P

Computing. Springer Verlag, LNCS vol. 3601, pp. 153-160, 2005.
[18] T. Karagiannis, A. Broido, M. Faloutsos, K. Claffy. Transport Layer

Identification of P2P Traffic. In Proc. of the 4th ACM SIGCOMM Confer-

ence on Internet Measurement, pp. 121-134, 2004.
[19] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technolo-

gies. O’Reilly Publishing, 2001.
[20] M. Tuisku. Wireless Java-enabled MIDP Devices as Peers in a Grid

Infrastructure. Springer Verlag, LNCS vol. 2970, pp. 273-281, 2004.
[21] A. Waluyo, W. Rahayu, D. Taniar, B. Srinivasan. A Novel Structure and

Access Mechanism for Mobile Broadcast Data in Digital Ecosystems. to
appear in IEEE Trans. on Industrial Electronics, vol. 57, 2010.

[22] F. Xhafa, R. Fernandez, T. Daradoumis, L. Barolli, S. Caballé. Improve-
ment of JXTA Protocols for Supporting Reliable Distributed Applications
in P2P Systems. Springer Verlag, LNCS, vol. 4658, pp. 345-354, 2007.

[23] F. Xhafa, L. Barolli, T. Daradoumis, R. Fernandez and S. Caballé. JXTA-
Overlay: An Interface for Efficient Peer Selection in P2P JXTA-based
Systems. International Journal on Computer Standards & Interfaces, vol.
31, no. 5, pp. 886-893, 2009.

