
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2. Number 2. April 1989 

KNOTS ARE DETERMINED BY THEIR COMPLEMENTS 

C. MeA. GORDON AND J. LUECKE 

INTRODUCTION 

Two (smooth or PL) knots K and K' in S3 are equivalent if there exists 
a homeomorphism h: S3 - S3 such that h(K) = K'. This implies that their 
complements S3 - K and S3 - K' are homeomorphic. Here we prove the 
converse implication. 

Theorem 1. If two knots have homeomorphic complements then they are equiva-
lent. 

This answers a question apparently first raised by Tietze [T, p. 83]. 
It was previously known that there were at most two knots with a given 

complement [CGLS, Corollary 3]. 
The notion of equivalence of knots can be strengthened by saying that K 

and K' are isotopic if the above homeomorphism h is isotopic to the identity, 
or, equivalently, orientation-preserving. The analog of Theorem I holds in 
this setting too: if two knots have complements that are homeomorphic by an 
orientation-preserving homeomorphism, then they are isotopic. 

Theorem I and its orientation-preserving version are easy consequences of 
the following theorem concerning Dehn surgery. 

Theorem 2. Nontrivial Dehn surgery on a nontrivial knot never yields S3 . 

Corollary 2.1. If two prime knots have isomorphic groups then they are equivalent. 

Theorem 2 has the following corollary; see [W, p. 26; J; FW]. 
The arguments used to prove Theorem 2 also lead to restrictions on when 

Dehn surgery on a knot yields a reducible manifold. (It is conjectured that this 
happens only with torus knots and cable knots.) 

Theorem 3. If a 3-manifold obtained by Dehn surgery on a nontrivial knot is 
reducible then it has a lens space as a connected summand. 
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372 C. MeA. GORDON AND J. LUECKE 

Corollary 3.1. Any homology 3-sphere obtained by Dehn surgery on a knot is 
irreducible. 

Theorem 3 also gives a new proof of the following result of Gabai [Ga), which 
includes the Property R Conjecture. 

Corollary 3.2 (Gabai). Any 3-manifold obtained by O-framed surgery on a non-
trivial knot is irreducible. 

Let K be a nontrivial knot in S3 , with tubular neighborhood N(K) , and let 
X = S3 - int N(K) be the exterior of K. Let p be a slope on 8X, that is, the 
unoriented isotopy class of an essential simple loop on 8X. Let K(p) denote 
the closed 3-manifold obtained by p-Dehn surgery on K, in other words, the 
result of attaching a solid torus V to X so that p bounds a disk in V. Let y be 
the slope of a meridian of K. Then the trivial Dehn surgery yields K(y) ~ S3 . 
Let n be another slope on 8X , having minimal geometric intersection number 
n::::: 1 with y. 

§ 1 is devoted to the proof of the following proposition, which has been inde-
pendently proved by David Gabai. 

Proposition 1. If K(n) is homeomorphic to S3, then there exist planar surfaces 
P and Q properly embedded in X such that 

(i) 8P (resp. 8Q) consists of parallel copies of n (resp. y); 
(ii) P and Q intersect transversely, and each component of 8P intersects 

each component of 8Q in n points; 
(iii) no arc of P n Q is boundary-parallel in either P or Q. 

The construction of P and Q is based on [Ga, §4(A)), using the idea of a 
thin presentation of a knot. 

In §§2 and 3 we prove the following proposition (in which we do not assume 
that K(n) is S3). 

Proposition 2. Suppose that X contains properly embedded planar surfaces P 
and Q satisfying conditions (i), (ii), and (iii) of Proposition 1, where Q is 
the intersection with X of a level sphere in a thin presentation of K. Then K(n) 
has a lens space as a connected summand. 

The proof of Proposition 2 is based on a combinatorial analysis of the inter-
section of the planar surfaces P and Q. Capping off the boundary components 
of P and Q with disks, we regard these disks as forming the "fat" vertices of 
graphs G p and G Q in S2, the edges of G p (resp. G Q ) corresponding to 
the arcs of P n Q in P (resp. Q). The (disk) faces of Gp correspond to 
subdisks of P, which we may regard as lying in K(y) with their boundaries 
contained in Q U iJN(K). Similarly, the faees of GQ may be regarded as lying 
in K(n). This allows us to infer topological properties of K(y) (resp. K(n)) 
from graph-theoretic properties of GI' (resp. GQ ). For n ::::: 2 this program 
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is already carried out in [CGLS, §§2.5 and 2.6]; in particular, Proposition 2 in 
this case follows from [CGLS, Proposition 2.5.6]. 

In §2 we therefore assume that n = 1 , and develop the graph-theoretic tech-
niques necessary to handle this case. The main result of the chapter is Propo-
sition 2.0.1, which asserts that either the graph G Q contains a special kind of 
face (a Scharlemann cycle) which implies that K(n) contains a punctured lens 
space, or else there is a certain desirable set of faces in the graph Gp • In §3 
we show that under the hypotheses of Proposition 2, such a set of faces in G p 

cannot exist, thus proving the proposition. 
The idea of analyzing certain types of labeled graphs to study intersections of 

planar surfaces (in the context of Dehn surgery) is originally due to Litherland 
[L]. 

We conclude this introduction with the proofs of Theorems 2 and 3. 
Proof of Theorem 2. This follows immediately from Propositions 1 and 2 and 
the fact that the surface Q in Proposition 1 does indeed arise as the intersection 
with X of a level sphere in a thin presentation of K. 0 

ProofofTheorem 3. Let n be a slope on ax such that K(n) is reducible. Then 
there exists a properly embedded, incompressible (and nonboundary-parallel) 
planar surface P in X whose boundary components have slope n. By [Ga, 
§4(A)] there is a planar surface Q in X, coming from a level sphere in a thin 
presentation of K, such that P and Q satisfy conditions (i), (ii), and (iii) of 
Proposition 1. Proposition 2 then gives the desired result. 0 

The first author would like to thank the members of the topology group at 
the University of California at Santa Barbara for providing the opportunity 
to present this work in their seminar during July 1988 and for their helpful 
comments. 

The second author would like to thank the Courant Institute for its hospitality 
while this work was being carried out. 

1. FINDING THE PLANAR SURFACES 

This section is devoted to the proof of Proposition 1 stated in the Introduc-
tion. 

The construction of the planar surfaces P and Q is based on [Ga, §4(A)], 
using the idea of a thin presentation of a knot in S3 . Given P, the argument 
in [Ga, §4(A)] produces Q such that (i) and (ii) hold and no arc of P n Q is 
boundary-parallel in P. Similarly, given Q, one can find P satisfying (i) and 
(ii) so that no arc on P n Q is boundary-parallel in Q. The additional content 
of Proposition 1 is that we can find P and Q so that these conditions hold 
simultaneously. 

For the convenience of the reader we recall the definition of a thin presen-
tation. Let ±oo be the north and south poles of S3. Then S3 - {±oo} is 
naturally homeomorphic to S2 x R I , and we have an associated height func-

• 3 I 2 I hon h: S - {±oo} -+ R . The level 2-spheres are the spheres S x {t}, t E R . 
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Let K be a nontrivial knot in S3 . By an isotopy of K we may assume that 
K c S3 -{±oo} and that hlK is a Morse function (that is, hlK has only finitely 
many critical points, all nondegenerate, and with all critical values distinct). 

Given such a Morse presentation of K, let S, ' ... ,Sm be level 2-spheres, 
one between each consecutive pair of critical levels of h IK. One then calls 
the number E:, lSi n KI the complexity of the Morse presentation. A thin 
presentation of K is a Morse presentation of minimal complexity. 

Let K be in Morse presentation, and let S be a level 2-sphere. If S meets 
the tubular neighborhood N(K) of K in meridian disks then the planar surface 
Q = S - intN(K) c X = S3 - intN(K) is called a level surface. 

More generally, let F be the intersection with X of any 2-sphere in S3 that 
meets N(K) in meridian disks. F separates X into two components, one of 
which we shall regard as lying above F, the other, below F. 

Let F' be a surface properly embedded in X such that F intersects F' 
transversely and each component of of intersects each component of of' 
algebraically and geometrically the same number of times. 

Suppose that F nF' contains an arc a which, together with an arc p C of' , 
bounds a disk ~ in F' such that ~ - a contains no arc components of F n F' 
(but may contain circle components). If P lies above (below) F then we say 
that ~ is a high (low) disk for F, and that F is low (high) with respect to F' . 

Lemma 1.1. Let F be isotopic in X to a level surface in a thin presentation of 
K. Then F cannot be both high and low with respect to the same or disjoint 
surfaces. 
Proof. We may assume that F is a level surface in a thin presentation of K. 

Assume for contradiction that F is both high and low with respect to the 
same or disjoint surfaces. Then there exist high and low disks ~ + and ~ - for 
F such that o~± = a± U p±, a± = o~± n F, p± = ~± n aX , and such that 
either a + = a-or a + n a - = 0 . 

Extending radially inwards across N(K) , F becomes a level2-sphere F and 
p+ and P- become arcs in K. See Figure 1 for the possible configurations. 

We can now use ~+ and ~- to isotop ~+ nK = p+, ~- nK = P- to a+, 
a - respectively. If oP+ = oP- , it follows that K is unknotted. Otherwise, 
perturbing p+ and p- slightly to make them transverse to the level spheres 
then reduces the complexity of K, contradicting our hypothesis. 0 

Let F be a compact surface with boundary, and let f: F x I ~ S3 - {±oo} 
be a (smooth) embedding. Write F(A.) = f(F x {A.}), etc., A. E I. We say 
the family {F(A.)} is Cerfwith respect to the height function h if the following 
conditions hold. 

(i) f extends to an embedding of F+ x I, where F+ is F enlarged by 
the addition of an external open collar C+ , and there exists an internal 
collar C- of of in F such that hl(C+uC-)(A.) has no critical points, 
for all A. E I ; 
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~+ 

~+ 
~+ 

FIGURE 1 

(ii) h jF+ (A.) is a Morse function for all but finitely many values of A.; 
(iii) if hJF+(A.) is not a Morse function then exactly one of the following 

occurs: 
(a) hJF+(A.) has distinct critical values and a single birth-death degenerate 

critical point (all other critical points are nondegenerate). 
(b) h JF+ (A.) has only nondegenerate critical points and distinct critical val-

ues except for a single value which corresponds to exactly two critical 
points. 

Recall that the graphic is the image in I x R I of the singular points of the 
function hJf(F x l) under the map f(v. A.) f-+ (A.. hf(v ,A.)). The graphic is 
locally modeled on the pictures in Figure 2. 

Then the final condition we require in the definition of a Cerf family is 
(iv) the tangent directions on any branch of the graphic are never vertical, 

and never horizontal at a singularity of the graphic. 
We require one more definition before proceeding with the proof of Propo-

sition 1. Let K be in thin presentation, and let a < b be two adjacent crit-
ical values of hJK, such that a corresponds to a local minimum and b to 
a local maximum. Then a family Q x I of level surfaces in X such that 
h(Q x l) c (a, b) is called a middle slab. 

Proof of Proposition I. As in the introduction, let K c S3 be a nontrivial knot 
and X its exterior. Let the slope y on ax represent the meridian of K. Let 
n be another slope on ax , with minimal geometric intersection number n ~ 1 
with y, such that K(n) ~ S3. Then the cores of the attached solid tori V)' 

and V of K(y) and K(n) become nontrivial knots K and Kif in copies S,~ If I 

and S; of S3. Let h;. and hlf denote the height functions on S)~ - {±oo} and 
3 

SIf - {±oo}. 
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FIGURE 2 

Lemma 1.2. There are families of planar surfaces P x I and Q x I in X such 
that 

(I) Q x I is a middle slab in a thin presentation of K; 
(2) P x I is isotopic to a middle slab in a thin presentation of K1l ; 
(3) each component of OP(A) intersects each component of oQ(f.l) trans-

versely in n points; 
(4) P(O) is high and P( I) is low with respect to Q(f.lo) for some f.lo E (0, I) ; 
(5) Q(O) is high and Q(I) is low with respect to P(AO) for some AO E (0, I); 
(6) {P(A)} is Cerfwith respect to hy • 

Proof. Choose thin presentations for K and K 1l , and isotop Vy and V1l so 
that they are locally modeled on Figure 3. 

Let P x I and Q x I be middle slabs in these thin presentations of K and 
K1l ' respectively. 

Let C be a collar neighborhood of OP in P. First isotop P x I so that 
in S~ C x I looks like several parallel copies of product neighborhoods of the 
sheets shown in Figure 4. 

FIGURE 3 
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FIGURE 4 

FIGURE 5 

Also, ensure that immediately above (resp. below) Q x I , near the first local 
maximum (resp. minimum) of K just above (resp. below) Q x I, C x I is 
in the same sense locally modeled on Figure 5. 

Now pick AO E (0. 1) and isotop P x I by a small isotopy, fixed on C x I , 
so that P(AO) is transverse to Q(O) U Q(I). Then Q(O) is high and Q(I) is 
low with respect to P(AO)' 

Pick Ito E (0. 1). Mentally reversing the isotopy that has been applied to 
P x I so far, consider the image of Q(lto) in S~. This may be isotoped by an 
isotopy fixed on Co x I U P(AO) , where Co is a subcollar of C, so that near the 
local maximum and minimum of Kn adjacent to P x I it looks like Figure 5. 
Reversing this isotopy gives an isotopy of P x I, making P(I) low and P(O) 
high with respect to Q(lto)' 

Conditions (1)-(5) of Lemma 1.2 are now satisfied. 
Regarding (6), note that condition (i) in the definition of Cerf is already 

satisfied. Conditions (ii), (iii), and (iv) can now be achieved by an arbitrarily 
small isotopy of P x I, by the transversality arguments in [Cerf, Chapter 2], 
together with the fact that for compact manifolds, the space of smooth embed-
dings is open in the space of smooth maps. Since (3), (4), and (5) are also open 
conditions, this can be done so that they continue to hold. 0 

By replacing Q x I by a slightly thinner slab if necessary (and reparametrizing 
I ), we may also assume that for those values of A at which the graphic intersects 
I x {O. I}, it does so transversely at a single point, and h"lP(A) is a Morse 
function (see Figure 6). 
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FIGURE 6 

Let r be the intersection of the graphic with ] x] (Figure 6). Thus the 
singularities of r occur at a finite set of values 5i of A., 0 < 5, < ... < 5n < 1 , 
each corresponding to one of the following: 

( 1) interchange of two critical values; 
(2) birth-death; 
(3) a point of intersection of r with ] x {O . I} . 

Note that for (A.. f.-l) E ]2 - r, P(A.) intersects Q(f.-l) transversely. 
Define functions P. q: ]2 - r --+ {H. L . N} as follows. 
p(A.. f.-l) = H, L, or N according as P(A.) is high, low, or neither with 

respect to Q(f.-l); 
q(A.. f.-l) = H, L, or N according as Q(f.-l) is high, low, or neither with 

respect to P(A.). 
We note the following properties of p and q. 
(P.I) By Lemma 1.1, we cannot have p(A..f.-l,) = Hand P(A..f.-l2) = L, nor 

q(A., • f.-l) = Hand q(A.2 . f.-l) = L. In particular, p and q are well defined. 
Also, we say that P(A.) is H (resp. L) if p(A.. f.-l) = H (resp. L) for some 

f.-l, and similarly for Q(f.-l). 
(P.2) As (A.. f.-l) varies continuously in ]2 - r, P(A.) n Q(f.-l) does not change 

up to isotopy (in P(A.) and Q(f.-l)). Hence p and q are locally constant. 
(P.3) Let c,l be a critical value of P(A.) of index 0 or 2. As f.-l passes from one 

side of c" to the other, P(A.) n Q(f.-l) either acquires or loses a single circle and 
is otherwise unchanged up to isotopy. Hence, for all sufficiently small e > 0, 
we have p(A.. c;. - e) = p(A.. c" + e), and q(A.. c" - e) = q(A. c" + e). 

(P.4) By Lemma 1.2(4), P(O) is Hand P( I) is L. 
(P.5) By Lemma 1.2(5), Q(O) is Hand Q( I) is L. 
For A. #- 5i , let 0 = co(A.) < c,(A.) < ... < CI/I(A) = I be the critical values 

of P{A) together with 0 and I. Let I (A.) denote the interval (c_,(A.) .c(A.)), 
.I .1.1 

I ~j ~ m. 
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We say Ii).) is H, L, or N according as for some (and hence by (P.2), 
all) J.l E Ii).) we have q()., J.l) = H, L, or N. 

Lemma 1.3. For). '" Si there exist k, I with 1 ~ k < I ~ m such that Ii).) is 
N for k ~ j ~ I, Ik_1 ().) (if it exists) is H, and //+1 ().) (ifit exists) is L. 
Proof. By (P.5), II ().) is not L, and Im().) is not H. 

By the argument given in [Ga, §4), we cannot have one of the intervals I j ().) , 

Ij+1 ().), H and the other L. 
The lemma follows. 0 

Our goal is to find ()., J.l) E 12 - r such that p()., J.l) = N = q(). 'J.l). The 
surfaces P().) and Q(J.l) then satisfy the conclusion of Proposition 1. From 
now on, we will assume that no such ()., J.l) exists, and ultimately derive a 
contradiction. 

Consider a singular point (s, t) in the graphic r corresponding to the inter-
change of the values of two critical points. Then there is a neighborhood U of 
(s . t) in 12 such that r n U is as shown in Figure 7. 

Recall that for small enough U neither branch of r n U has a horizontal or 
vertical tangent in U. 

Let RI ' R2 , R3 , and R4 be the indicated open regions of U. 

Lemma 1.4. There exists (s, t) Eras above, where both critical points have 
index 1, such that 

p()., J.l) = H 
p().,J.l) = L 
q().. J.l) = H 
q(). .J.l) = L 

in R I • 

in R3 , 

in R2 , 
in R4 . 

Proof. For). '" Si' let J). denote the union of all the intervals I j ().) that are 
N. By Lemma 1.3, J). is nonempty. 

For J.l E J)., since q().. J.l) = N we must have p().. J.l) = H or L. Thus 
P().) is correspondingly either H or L. 

FIGURE 7 
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By (P.4), P(O) is Hand P(l) is L. Therefore (by (P.2)) there exists s = Sj 

for some i and tJ > 0 such that 

P(A.) = { H, 
L, 

for A. E (s - tJ ,s) , 
for A. E (s ,S + tJ). 

It follows that if IJAI denotes the sum of the lengths of the intervals in JA, 
then IJAI -+ 0, as A. -+ S_ and as A. -+ s+ . 

If S corresponds to a singularity of type (2) or (3), then IJAI -- 0 as A. -+ S 
from the side away from that part of r containing the singularity. Hence s 
corresponds to the interchange of two critical values cA and c~. See Figure 8. 
Since IJAI -+ 0 as A. -+ s± ' we must have for some tJ> 0: 

for A. E (s - tJ ,s) , 

for A. E (s ,s + tJ) . 
Therefore, by (P.3), each of the critical points corresponding to cA and < has 
index 1. 

The assertions about the values of p and q in the regions R I' R 2 , R 3 , 

and R4 follow from the definition of s, Lemma 1.3, and (P.2). 0 

With respect to the lines A. = s, Il = t there are a priori three possibilities 
for r in U, illustrated in Figure 9. 

(a) 

c' . ~ ' . 

. . . 
c~ 

c~ .. 

FIGURE 8 

(b) (c) 

FIGURE 9 
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Lemma 1.5. r n U is as shown in case (a) of Figure 9. 
Proof. In (b) and (c) there are horizontal lines f.1. = f.1.o meeting both R2 and 
R 4 . Then by Lemma 1.4 we would have q(l} ,f.1.o) = Hand q(l2 ,f.1.o) = L, 
contradicting (P.1). 0 

We now proceed to show that the situation described in Lemmas 1.4 and 1.5 
is impossible. 

The intersection P(s) n Q(t), considered as lying in Q(t), is a properly 
embedded I-manifold with two singularities x and x' corresponding to the 
two saddle points of P(s) with critical value t (x and x' corresponding to 
the branches c;. and c~ of the graphic). Figure 10 illustrates P(l) n Q(f.1.) , in 
Q(f.1.) , in a neighborhood of these two saddle points, for (l, f.1.) belonging to 
the different regions R} , R2 , R3 , and R4 and their boundaries. 

For (l, f.1.) E R} (resp. R 3) we have a continuous family of disks A;:.1t 
(resp. A; ) in Q(f.1.) which are low (resp. high) disks for P(l). A.1t 

Similarly, for (l, f.1.) E R2 (resp. R4 ) we have disks B;:.1t (resp. B:) in 
P(l) which are low (resp. high) disks for Q(f.1.). 

) ( 
('\, c~), 

) ( 
X 

('\, c,x), 

A;.1t n P(l) contains a single arc component a;.1t ,and 

B;'1t n Q(f.1.) contains a single arc component P;'It· 

X I) ( ) ( I X I 
I 
I 

'\<8 R4 I ('\, c,x), 

I 
I 

'---/ A 'l 1,,--/ 
,,----......... I~ 

Rl (8,t) I R3 

I 
1 '--/ '--" ~I '--"" 

,,----...... ,...---...,. ,,--.....1 ~ 
1 

'\<8 R2 1 ('\, c~), 

FIGURE 10 

)( 
'\>8 

)( 
~ 
'\>8 
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Consider these arcs at.Jl and ptJl as they lie in Q(JI.). Note that each of 
oo;'Jl and oo;'.Jl lies in a single boundary component of Q(JI.) , while P:'Jl and 
P;'Jl each join distinct boundary components of Q(JI.). 

Let a± and p± denote the possibly singular arcs in Q(t) that are the limits 
of at.Jl and ptJl as (A., JI.) -+ (s ,t) in the appropriate region R( , R2 , R 3 , or 
R 4 • 

Lemma 1.6. p+up- meets at least three distinct boundary components of Q(t). 

Proof. If not, then there are boundary components 8( and 82 of Q such that 
P:'Jl joins 8( x {JI.} and 82 x {JI.} , and P;'Jl joins 8( x {JI.} and 82 x {JI.}. Since 
B:'Jl is a high disk for Q(JI.) and B;.Jl is a low disk for Q(JI.) , this implies 
that 8( and 82 are the only boundary components of Q, and hence that K is 
trivial. 0 

Lemma 1.7. Each of a + ,a -, p+, and P- contains x and x'. 
Proof. Suppose, for example, that x ¢. a +. Then, taking (A., JI.) E R) and 
increasing JI. past c). until (A., JI.) E R4 , A;.Jl remains a nonsingular disk in 
Q(JI.) and is therefore a high disk for P(A.). Recallipg Figure 9(a), this implies 
that for some ~ > 0, P(A.) is L for A. E (s - ~ ,s). But this contradicts the 
fact that p(A., JI.) = H for (A., JI.) E R( . 

The other cases are completely analogous. 0 

For i = I, 2 , 3, or 4, let Gi (resp . ~) denote the smallest union of 
components of P(A.) n Q(JI.), for (A., JI.) E Ri' that contains both branches 
of P(A.) n Q(JI.) in a small neighborhood of x (resp. x'). (See Figure 10, the 
squares labeled R(, R2 , R), and R4 .) 

Lemma I.S. Each of G(, ~, G) and ~ meets at least two boundary compo-
nents of Q(/-l) . 

Proof. We prove this for G( . The other cases are completely analogous. 
Since x E P- by Lemma 1.7, P).-.Jl c G2 • Since P).~JI joins distinct boundary 

components of Q(JI.) , and since G( is obtained from G2 by the transformation 
::=:: 1-+)( in a neighborhood of x, the result follows. 0 

Lemma 1.9. Each of (l + and (l- involves only a single corner at each of x and , 
x. 
Proof. Suppose, for example, that 0:+ involves two corners at x. See Figure 
10 (middle square). Then we would have (t; = G). But o:~ meets only one 

Il .jl A .JI 

component of DQ(JI.) , contradicting Lemma 1.8. 
The other cases are completely analogous. 0 

Let A+ , A- c Q(t) denote the limits of the disks AtJI and A;.JI. 
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x 

FIGURE 11 

FIGURE 12 

Lemma 1.10. In a neighborhood 0/ x, (A+, x) is as shown in Figure 11. Sim-
ilarly/or (A+ ,x'), (A-, x), and (A- ,x'). 

Proo/. The alternative is as shown in Figure 12. But then G3 would lie in A:'/l ' 
contradicting Lemma 1.8. 0 

It follows from Lemmas 1.9 and 1.10 that A+ is as shown in Figure 13 with 
0: + = Y1 U Y2 U Y3 as shown. Similarly, A- has the same form. 

Lemma 1.11. 0:+ no: - = Y2. 

Proo/. If not, then 0:+ no: - would be Y1 U Y3 (A+ and A- are locally on 
opposite sides of P(s) at x and x'), and we would have the situation shown 
in Figure 14. 
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· · · 
X ... 

'Y 2 

. . • X' 

FIGURE 13 

X 

FIGURE 14 

But this implies that P has only two boundary components, and hence that 
K 1[ is trivial. 0 

By Lemma l.ll, A+ and A- must be as shown in Figure 15 (where the two 
boundary components 0. and °2 of Q(t) possibly coincide). 

By Lemma 1.6 we have another boundary component °3 of Q(t) which is 
(without loss) as indicated in Figure 15. 

Then p-; and P-; are contained in the submanifolds of P()..) n Q(J-l) A.J1. A.J1. 
indicated in Figure 16. 

But since p+ U P- meets °3 and each of p+ and p- contains x and x' 
by Lemma 1.7, this is clearly impossible. 

This contradiction completes the proof of Proposition I. 
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x 

FIGURE 15 

FIGURE 16 

2. THE COMBINA TORICS 

+ 
(3). ,11 

385 

2.0. Basic definitions. For the purposes of §2, X will be an orientable 3-
manifold containing a toral boundary component T. T contains slopes 1l 

and y with intersection number I, and P and Q will be compact connected 
planar surfaces properly embedded in X with oP, oQ cT. Furthermore, 
each component of oP and oQ represents 1l and y (resp .), P and Q in-
tersect transversely, and each component of oP intersects each component of 
oQ exactly once. Finally, no arc of P n Q will be boundary-parallel in either 
P or Q. 
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1 

3 3 

FIGURE 17 

Number the components of 8P, {I, ... ,p}, and the components of 8Q, 
{I , ... ,q}, in the order in which they appear on T. This allows us to label 
the end points of arcs of P n Q in P (Q) with the corresponding boundary 
components of Q (P, resp .). Thus around each component of 8P we see the 
labels {I,... ,q} appearing sequentially (either clockwise or anti clockwise ). 
See Figure 17. 

Assigning (arbitrary) orientations to P and Q allows us to refer to + and -
boundary components of P and Q, according to the direction of the induced 
orientation of a boundary component as it lies on T. For any arc, a, of 
P n Q the orientability of P, Q, and X give us the parity rule: the boundary 
components of P joined by a on P have the same sign if and only if the 
boundary components of Q joined by a on Q have opposite sign. 

Capping off the boundary components of P (Q) with disks, we regard these 
disks as forming the "fat" vertices of a graph Gp (GQ ) in S2, the edges of 
Gp (GQ) corresponding to the arcs of P n Q in P (Q). We thus obtain two 
labeled graphs in S2, whose edges are in one-one correspondence, such that 
the labeling satisfies the parity rule noted above, and such that neither graph 
contains a trivial loop, i.e., a I-sided face (no arc is boundary-parallel). It is 
these graphs with which we will be working in this section. In such a graph, G, 
we then have the following concepts: 

(I) fat vertex v and sign v = ±; 
(2) label, x E {l, ... ,p} or {I, ... ,q}, and parity x = ± (= sign of 

the fat vertex of the other graph corresponding to x); 
(3) (x ,v): the occurrence ofa label, x, at vertex v. Character of (x ,v) = 

char(x ,v) = (parity x) . ( sign v) (if v is understood we refer to 
char x); 

(4) parity rule: edges join pairs (x ,v) of opposite character. 
If two vertices have the same sign we say they are parallel, otherwise antipar-

allel. 
Let G be such a graph. Let N(G) be a regular neighborhood of G in S2. 

Aface F of G is a component of S2 - N(G). Each component of 8F gives 
rise (via the projection N(G) - G) to an alternating sequence of corners (the 
subarcs of 8F that project to the vertices of G) and edges of G. There are 
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no repetitions among the corners, but an edge may occur twice (once with each 
orientation). 

We orient 8F by giving a clockwise orientation to F (so each corner is 
oriented anticlockwise around its vertex). 

For each vertex v of G, let L(v) be a set of labels at v. G({L(v)}) , the 
graph generated by {L(v): v a vertex of G}, is defined to be the subgraph of 
G consisting of all edges e such that some end point of e is (/' v) where 
I E L (v) and v is a vertex of G, together with all the vertices of G. 

Let L be a set of labels. Define G(L) to be G({L(v)}) where L(v) is L 
for every vertex v of G. A label x is an exceptional label of G( L) if x ¢ L 
but some end point of some edge of G(L) has label x. An L-interval is an 
interval on the boundary of an abstract fat vertex between adjacent labels of 
L. 

An m-type is an ordered m-tuple (8" 82 ' ... ,8m ) E {+, - } m. A trivial 
m -type is one for which 8, = 82 = 83 = ... = 8m . 

Let I be the number of L-intervals. An L-type is an I-type in which each 
coordinate is associated to a distinct L-interval. If Lo is a subset of L-intervals 
and. is an L-type we define 'ILo to be the ILol-type obtained by restricting 
• to the coordinates associated to the elements of Lo. A trivial L-type is one 
corresponding to a trivial I-type. Note that every corner of a face of G(L) 
belongs to a unique L-interval. 

Let E be a disk face of G(L) and. be an L-type. Let LE be the set of 
L-intervals I with the property that some corner of E is contained in I. We 
say that E represents • if 

(1) for each L-interval I in LE , the vertices v of G such that a corner 
of E at v is contained in I all have the same sign, say 8(1); 

(2) (8(1): IE LE) = ±'ILE . 
G(L) represents. if and only if some disk face of G(L) represents •. 
An x-cycle in G, 1:, is a cycle of edges in G such that 
( 1) if we think of the vertices of G as points, 1: is homeomorphic to a 

circle; 
(2) we can orient this circle so that the tail of each edge (under the induced 

orientation) is labeled x; 
(3) the vertices of G in 1: are all parallel. 

A Scharlemann cycle in G is an x-cycle 1: in G for some label x such 
that 1: bounds a disk D with G n intD = 0. Since G contains no trivial 
loops, a Scharlemann cycle has at least two edges. Furthermore, notice that D 
represents all, say, {I, ... ,q }-types where {I, ... ,q} is the set of labels of 
G. 

The goal of the present section is to prove the following proposition. 

Proposition 2.0.1. Let G p and G Q be a pair of graphs as described above. Either 
G Q contains a Scharlemann cycle or G p represents all {I , . .. . q }-types. 
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Note that G p has no exceptional labels so the generality of the above defini-
tion of representing an L-type is unnecessary in the statement of Proposition 
2.0.1. However the proof of the proposition will require this generality. 

A great x-cycle is an x-cycle such that all the vertices on one side of the 
x-cycle in S2 are the same sign as those in the x-cycle. 

Lemma 2.0.2. If G contains a great x-cycle for some label x, then it contains 
a Scharlemann cycle. 

Proof. See [CGLS, Lemma 2.6.2]. 

2.1. Stars. We consider two model fat vertices V ± ' with sign V ± = ± (see 
Figure 17). 

The set of labels around V± is {1, ... ,q}. Thus V_ = -V+,where-
denotes reflection. 

A star X is an ordered triple (V(X), L(X), w(X)), where V(X) = V±, 
L(X) is a subset of the labels around V(X), and w(X) is a dual orientation 
(indicated by an arrow denoting either a sink or source) on each L(X)-interval 
(see Figure 18). 

The sign of X is the sign of V(X). Let r = (e 1 ' '" ,eIL(X)I) be an L(X)-
type. If there is a way of equating the two dual orientations with the signs + and 
- (i.e. {sink, source} = {+ ,-} ) such that w(X) = r (under the correspondence 
between the L(X)-intervals and the coordinates of r) then we say that X 
represents r and write [X] = r. 

We shall use the term right (left) to refer to the direction defined by proceeding 
around 8V(X) in an anticlockwise (clockwise) direction. 

A label x E L(X) is a clockwise switch if w(X) is a sink on the L(X)-interval 
immediately to the left of x and a source on the L(X)-interval immediately 
to the right of x. Similarly for anticlockwise switches (see Figure 19). 

C(X) and A(X) denote the subsets of L(X) consisting of the clockwise 
and anticlockwise switches of X, respectively. S(X) = C(X) U A(X) is the set 
of switches of X. Note that the clockwise and anti clockwise switches alternate 
as we go around 8V(X). 

X = X with w(X) reversed. Thus C(X) = A(X), A(X) = C(X) . 

FIGURE 18 
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x x 

T 1 J 1 
clockwise switch anticlockwise switch 

FIGURE 19 

-x denotes the reflection of X with w(X) reversed. Thus (as subsets of 
{I, ... ,q}), C(-X) = C(X) , A(-X) = A(X). 

We define the positive and negative (clockwise) derivatives of X by 

d±(X) = (V(X), C(X), w(d± X)) 

where w(d± X) on a C(X)-interval is determined by the character of the ele-
ment a E A(X) in that interval. Specifically (writing chara = char(a, V(X))) , 

w(d+ X) is a source if chara = +, 
w(d- X) is a source if chara = -, 

w(d+ X)is a sink if chara = -; 
w(d- X) is a sink if chara = +. 

We will use d to denote either d+ or d-. Note that d- X = (d+ X) and 
d ( - X) = -dX . There is also a relative notion. Let Lo be a subset of the labels 
{I , ... ,q} around V(X). Then the (±)-derivative of X relative to Lo is 

dLoX = doX = (V(X), C(X) U L o' w(doX)) 

where w(doX) on a (C(X) U Lo)-interval I is defined as follows: 
(i) if there is an element a of A(X) in intI, let w(doX) be determined 

by char a , exactly as for w(dX); 
(ii) if there is no element of A(X) in intI, then w(X) induces the same 

orientation on all L(X) U Lo-intervals contained in I; let w(doX) on 
I be that orientation. 

In particular, d = de;. Note also that if C(X) = C(Y) and A(X) = A(Y) 
(and V(X) = V(Y)) then doX = doY . 

The following observation will be useful in §2.8. 

Lemma 2.1.1. If L) and L2 differ only by elements of C(X) then dL,X = 
dL~X . 

Proof. It is enough to prove the lemma for the case L2 = L) u{c}, C E C(X). 
But this is clear from the definition. 0 

Again let X be a star and Lo C {I ..... q}. Let A(X) denote A(X) - Lo' 
The main result of this subsection is the following proposition. 
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Proposition 2.1.2. Let D be any composition of d+ 's and d- 's, and Do the 
corresponding composition of d; 's and d~ 'So Then 

qDX) c C(DoX) , and A(DX):) A(DoX) . 

The proof of Proposition 2.1.2 will involve a series of lemmas. 

Lemma 2.1.3. C(doX) c C(X) . 
Proof. Suppose x E C(doX). If x ~ C(X) , then x E Lo. 

Consider w(X) immediately to the right of x, and suppose it is a sink (see 
Figure 20). Let y be the first element of S(X) U Lo we encounter to the right 
of x. Then either y E Lo ' in which case w( doX) is a sink immediately to the 
right of x, or y E C(X) , in which case w(doX) is also a sink immediately to 
the right of x. Similarly, immediately on the left of x, a source in w(X) will 
give rise to a source in w(doX). Thus, if x E C(doX) , we must have x E C(X) 
(see Figure 21). 0 

We now want to compare dX with doX. 

Lemma 2.1.4. Immediately to the right (left) of an element of C(X) , w(doX) 
either agrees with w( dX) or is a source (resp. sink). 

i x 

FIGURE 20 

x 

i 
FIGURE 21 

x 

FIGURE 22 
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Proof. Suppose x E C(X) and let y be the first element of S(X) U Lo we 
encounter to the right of x (see Figure 22). 

Then either y E A(X) , in which case w(doX) and w(dX) agree immediately 
to the right of x, or y E L o' in which case w( doX) is a source immediately 
to the right of x. We argue similarly to the left of x. 0 

We now want to compare doX with do Y for certain related pairs X, Y. 
(In the following lemmas, we assume that V(X) = V(Y) .) 

Lemma 2.1.5. Suppose C(X) c C(Y) and A(X) ::) A(Y). Then immediately to 
the right (left) of an element of C(X), w(doY) either agrees with w(doX) or 
is a source (resp. sink). 
Proof. Suppose x E C(X) C C(Y) . 

Let a be the first element of S(X) US(Y) ULo we encounter to the right of 
x (see Figure 23). There are three possibilities. 

(i) a E Lo' Then w(doX) and w(doY) are both sources immediately to 
the right of x. 

(ii) a E A(Y) (c A(X». Then w(doX) and w(doY) immediately to the 
right of x are both determined by char a , and hence agree. 

(iii) a E A(X) , a ¢. A(Y). Let b be the first element of S(Y) U Lo we 
encounter to the right of a. There are two possibilities. 

( 1) b E Lo' Then w( do Y) is a source immediately to the right of x. 
(2) b E A(Y). Then b E A(X) (since A(Y) c A(X) ) and thus there is a 

c E C(X) between a and b. But c E C(Y) (since C(X) c C(Y», 
contradicting the choice of b. 

The argument to the left of x is similar. 0 

Lemma 2.1.6. Suppose C(X) c C(Y) and A(X) ::) A(Y). Then A(doY) c 
C(X). 
Proof, Suppose x E A(doY) ' Thus x E C(Y), and the dual orientations on 
both sides of x get reversed in going from Y to do Y_, Thus the first element in 
S(Y) U Lo we meet to the right of x is b, say, in A\!), and the first ele~ent 
of S( Y) U Lo we meet to the left of x is a, say, in A( Y), Thus a, b E A(X) 
and hence there is aCE C(X) between a and b, It follows that C E C(Y), 
so C = x, Thus x E C(X), 0 

We can now prove the two main lemmas we need. 

J 
X or Y 

FIGURE 23 
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Lemma 2.1.7. C(dX) c C(doX) , and A(dX) ::> A(doX). 

Proof. Both statements follow from Lemma 2.1.4. 0 

Lemma 2.1.8. Suppose C(X) c C(Y) and A(X) ::> A(Y). Then C(doX) c 
C(doY) ' and A(doX) ::> A(doY). 

Proof. By Lemma 2.1.6, A(doY) c C(X) , and by Lemma 2.1.3, C(doX) c 
C(X). Both statements now follow from Lemma 2.1.5. 0 

Proof of Proposition 2.1.2. This follows from Lemmas 2.1.7 and 2.1.8 by induc-
tion on the number of d± 's in D. 0 

2.2. Graphs with dual orientation. A graph with dual orientation (g.d.o.) is a 
pair r = (G(r) , w(r)) , where G(r) is a subgraph of a graph. G of the type 
described in §2.0 and w(r) is an orientation (sink or source) on each comer of 
each face of G(r). 

We often suppress reference to G(r) and refer to edges, faces, etc. of r. 
Given a g.d.o. r, the dual graph r* is defined as follows. For each disk 

face F of r, choose a dual vertex v E intF . Then {vertices of r* }={ vertices 
of r} u {dual vertices}. For each comer of F at a (fat) vertex V, put in an 
edge of r* joining V to v. Finally, we orient the edges of r* according to 
the dual orientation w(r). Thus r* is a directed graph. 

Notes. (1) r* is uniquely determined (up to isotopy) by r. 
(2) We could define r* (nonuniquely) by putting in a dual vertex for every 

face of r. However, we choose not to do this. 
(3) Every face of r is a disk if and only if r is connected. 

Let r be a g.d.o. Then rjv is a star for all vertices v. Conversely, given a 
star X (v) at each vertex v of G, we have the g.d. o. generated by {X (v)} , 

re {X(v)}) = (G( {L(X(v))}) , {w(X(v))}) , 

where if c is a comer of a face of G({L(X(v))}) at a vertex v such that c 
is properly contained in an L(X(v))-interval, then assign to c the orientation 
defined on that L(X(v))-interval by w(X(v)). 

In particular, if X is a star, we define 

{ X, if sign v = sign X , 
reX) = re {X(v)}) where XCv) = _ X, if sign v = - sign X . 

Thus G(reX)) = G(L(X)). 
Let L be a set of labels with ILl ~ 2 and r be an L-type. Let T be a star 

with [T] = r. (Note that there are exactly four such stars, T, T, - T, and 
-T .) 

The following lemma follows immediately from the definitions. 

Lemma 2.2.1. G(L) represents r if and only if reT)* has a sink or source at a 
dual vertex. 
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The notion of derivative for stars extends naturally to g.d.o. 's, i.e. we define 
or = r( {d (rlv)} ) , and if Go is a subgraph of G(r), 

(where Golv denotes the set of labels of endpoints of edges of Go at v). The 
following lemma will be needed in §2.8. 

Lemma 2.2.2. If the exceptional labels of G(Lo) are contained in C(X), then 
oor(X) = r(doX). (Here do = dLo ,00 = 0G(Lo) .) 

Proof. For all vertices, v, c(r(X)lv) = C(X) , and A(r(X)lv) = A(X) , hence 
oor(X) = r({dGo/vX}) (Go = G(Lo))' But by Lemma 2.1.1, dGo1vX = dLoX = 
doX. Therefore 0or(X) = r(doX). 0 

2.3. Index. Let Ll be a directed graph in S2. A switch at a vertex v of the 
graph is a pair of adjacent edges incident to v whose orientations are opposite 
at v (Figure 24). 

A switch around a face F of the graph is a pair of adjacent edges of BF 
incident to the vertex v, say, whose orientations agree at v (Figure 25). 

The index ofa vertex I(v) = 1-s(v)/2 where s(v) isthenumberofswitches 
at v. The index of a face I(F) = X(F) - s(F)/2 where s(F) is the number of 
switches around F. The following lemma and its proof are taken from [GI]. 

Lemma 2.3.1. L,verticeJ(v) + L,faceJ(F) = 2. 

Proof. Let V and E be the number of vertices and edges, respectively, of the 
graph Ll. 

LHS = V + LX(F) - 4 (LS(V) + LS(F)). 
F v F 

v 

switch at v 

FIGURE 24 
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switches around F 

FIGURE 25 

Note that each comer contributes 1 to exactly one of El1 s(v) or EF s(F) 
(Figure 25). That is, 

LS(v) + Ls(F) = the number of comers = 2E. 
'/1 F 

Thus LHS above = V - E + EF X(F) = X(S2) = 2. 0 

Let L be a set of labels with ILl ~ 2 and r a nontrivial L-type. Let T be 
a star with [T] = rand r = reT). Let p = the number of fat vertices of G. 

A switch-edge is an edge of r whose endpoints are both in C( T) or both in 
A(T). Let i = IS(T)I/2 - 1 (~O), s be the number of switch-edges of r, 
and r be the number of disk faces of G(L) representing r. 

Lemma 2.3.2. r + s ~ i p + 2 . 
Proof. Let A be a minimal connected graph containing r. The dual orienta-
tion of r induces a dual orientation on A. All faces of A are disks; let A· 
be the (directed) dual graph of A. 

{vertices of A·} = V ( u V 2 U V 3 • where 

V ( = {dual vertices of A * corresponding to disk faces of r} . 

V 2 = {dual vertices of A· corresponding to nondisk faces of r} . and 

V3 = {fat vertices}. 

{faces of A*} ..... {edges of A} = E( U E2 • where 

E( = {edges of r}. E2 = {edges of A - r}. 

For an edge e of A, write I (e) for the index of the corresponding face of A * . 
Applying Lemma 2.3.1 to A· gives 

LI(v) + LI(?!) + LI(?!) + LI(e) + LI(e) = 2. 
v~ 
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LJ(v) = -ip; 
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FIGURE 26 

{v E VI: J(V) = I} ...... {disk/aces 0/ G(L) representing r}; 
{e E EI : J(e) = I} = {switch-edges o/r}. 

Hence the lemma will follow if we show 

395 

To do this, first note that e E E2 implies that J(e) ~ 0 since at each end of 
e the dual orientations on either side of e agree (by definition of the induced 
dual orientation on A). Thus if (*) fails there is a nondisk face F of r such 
that the corresponding dual vertex 11 of A * has J (11) = 1. But then every 
e C F such that e E E2 has index -I (see Figure 26), and there is at least one 
such edge in F. Therefore (*) holds here also. 0 
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We have talked about the corners of a face of a graph. We now want to 
refer to the corners of a face of a subgraph of a g.d.o. We therefore make the 
following formal definition. Recall the model fat vertices V+ and V_ in the 
definition of a star. A corner X is (V(X), /(X) , L(X), w(X)) where V(X) 
is V±; /(X) is an interval at V(X); L(X) a subset of the labels in /(X); 
8/(X) c L(X); and w(X) a dual orientation on the L(X)-intervals in /(X). 
As for stars, we have X and -X; C(X) and A(X) (switches in int/(X)). 
Y is a subcorner of X if V(Y) = V(X), /(Y) c /(X) , L(Y) = L(X) n /(Y), 
and w(X) = w(Y)I/(Y). 

Let r be a g.d .0., and F a disk face of a subgraph of r. Thus of can 
be expressed as a sequence of edges e of r and corners X. For a comer X, 
define indX = indrX = 1 - s(X) where s(X) is the number of switches of 
w(r) IX . For an edge e of of , define ind e = indr e to be -1 or 0 according 
as the restrictions of w(r) immediately inside F at the two ends of e agree 
or disagree (see Figure 27). 

e 

e F 

i t 
ind e -1 

ind e = a 

FIGURE 27 

e 
T 

i 
F 
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Finally, define 

index of = indr of = Lind X + Lind e . 
x a comer of F ecaF 

Let r be a graph with dual orientation. 

Lemma 2.3.3. Let F be a disk face of a subgraph of r containing no vertices 
of r in its interior and such that indr of ~ O. Then r* has a face of positive 
index or a dual vertex sink or source in F. 
Proof. Let 2F denote the double of F, = F uaF -F , and let 2r* denote the 
double of r* c 2F . Applying Lemma 2.3.1 to 2r* c 2F gives 

2 L I (v) + 2 L I (f) + L indr X + L indr e = 2. 
II dual vertex 
ofr" in F 

In other words, 

f face ofr" 
in inlF 

X comer 
of F 

e edge ofr 
caF 

2 LI(v) + 2 LI(f) + indroF = 2. 
Thus indr of ~ 0 implies E I (v) + E I (f) > 0, hence the result. 0 

Note that it follows from the above proof that index of is always even. 

2.4. Pushing back sinks/sources. Let G be a graph as in §2.0 and Go a sub-
graph. Let r be a graph with dual orientation with Go C G(r) c G. Set 
00 = °Go ' 

Lemma 2.4.1. If (oor)* has a sink or source at a dual vertex corresponding to a 
face E of 0or, then r* has a sink or source at a dual vertex corresponding to 
a face of r contained in E. 
Proof. E is a disk face of oor corresponding to a sink or source of (oor)* . 

Claim 1. r* n E contains no cycle that is a face of r* . 

Proof. Such a clockwise cycle would correspond to an edge of oor in int E , 
giving a contradiction. 

An anticlockwise cycle which is a face of r* would correspond to an edge 
of r joining two anticlockwise switches of r, a) and a2 (Figure 28). 

FIGURE 28 
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FIGURE 29 

\ , , 

Thus a l and a2 have distinct characters, and the comers of E containing 
al and a2 would acquire distinct orientations in c5or, contradicting the fact 
that E corresponds to a sink or source of (c5or) *. 0 (Claim I) 

Claim 2. indr 8E ~ 0 . 
ProoJ. Suppose E corresponds to a source of (c5or)* . We show 

number oj sink/source corners oj E ~ number oj edges oj index - I in 8E 
(all with respect to r). 

(a) Let Xo be a sink comer of E with respect to r. Let e be the edge 
of 8E immediately anti clockwise around 8E from Xo. Suppose indr e = 0 
(as shown in Figure 29). Then no endpoint of e is a clockwise switch. Hence 
e eGo. 

Now consider the comer XI of E at the other end of e. If r had a switch 
in int XI ' it would have a clockwise switch, contradicting the fact that E is a 
face of c5or. Thus XI is a source comer for r. Since e c Go' XI becomes a 
source comer for c5or. This contradicts the fact that E corresponds to a source 
of (c5or) * . Therefore ind e = -1 . 

(b) Let Xo be a source comer of E with respect to r. Let e be the edge of 
8E immediately clockwise from Xo around 8E. Suppose inde = 0 (Figure 
30). Then e c Go. 

Thus as in (a) for XI' Xo would become a source corner for c5or. Thus 
inde = -I . 

So the edge immediately clockwise from a source corner has index -I and 
the edge immediately anticlockwise from a sink corner has index -1. This 
gives a function {sink/source corners} 1-+ {index -1 edges}, and this function is 
I-I (e.g., Figure 31). Thus indr DE ~ O. 

If E corresponds to a sink of (c5or)* the argument is similar. 0 (Claim 2) 
Claims 1 and 2 along with Lemma 2.3.3 now prove Lemma 2.4.1. 0 
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FIGURE 30 

FIGURE 31 

this cannot 
be a sink 
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Corollary 2.4.2. Let r be an L-type and T a star with [T] = r. If G(C(T)) 
represents [dT] , then G(L) represents r. 
Proof. This follows by applying Lemma 2.4.1 with r = r(T) , and Go = 0. 0 

2.5. x-cycle existence. Recall that Gp and GQ are the graphs of intersection 
of planar surfaces P and Q in X. Let L be a set of labels with ILl ~ 2 and 
r an L-type (nontrivial). Let T be a star with L(T) = Land [T] = r. Set 
G=Gp . 

Lemma 2.5.1. Suppose that 
(i) all elements of C(T) have the same parity; 

(ii) all elements of A(T) have the same parity; and 
(iii) G(L) does not represent r. 
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Then there exists an x-cycle 1: in GQ such that the set of vertices of 1: is a 
subset of either C(T) or A(T). 

Proof. Let i = IS(T)I/2 - I; s = number of switch-edges of r(T). Then by 
(iii) and Lemma 2.3.2, s ~ ip + 2 (p = I{vertices ofG}I). Hence there are 
greater than ip/2 edges of G(L) all of whose endpoints are in (say) C(T). 
Since I C( T) I = i + I , there exists a vertex x of G such that every label c E 
C( T) at x is the endpoint of a switch-edge e( c) whose other endpoint is a( c) E 
C(T), where a is some function C(T) --+ C(T). Let co' a(coL ... ,am-I(co), 
m ~ I, be an orbit of a (thus am(co) = co' a i (co) #- co' 0 < i < m). Recall 
that all the elements of C(T) have the same parity. Then the edges e(co) , 
e(a(co)) ' ... ,e(am- I (co)) in G correspond to edges in GQ which form an 
x-cycle with vertices co' a(coL ... ,am-I (co), 0 

2.6. Good corners. Recall the abstract definition of corner in §2.3. 
We partition the set of all corners C into three mutually disjoint subsets: 

C = G u B u U , the good, bad, and ugly, as follows. 
First, a corner X is ugly if and only if it fails to satisfy the condition 

all elements of A(X) have the same parity. 

Note that X satisfies (*) if and only if -X satisfies (*). 

If X is not ugly we will write char A(X) for char(a, V(X)) for any a E 
A(X) . 

We define good and bad relative to the following choices. We choose a clock-
wise character",c (= ±) , and an anticlockwise character"'a (= ±) . 

The graph G = G p is the graph of P n Q in P where P and Q are two-
sided surfaces. In particular, a small neighborhood of Q is divided into, say, 
black and white sides. Thus each edge e of G divides a small neighborhood of 
e in S2 into black and white sides. In particular, each pair (I, v) at vertex v 
locally separates white and black regions at v : as we go from left to right along 
v at (I, v) we either go from black to white or from white to black according 
to char(l, v). We choose the B/W shading of the sides so that a pair (I, v) 
of character "'c is WB (going from left to right, see Figure 32) and will refer to 
pairs (I, v) as BW or WB. 

We will call a corner, X, BW if the leftmost label of X (E D/(X)) is WB 
(i.e., has character "'c) and the rightmost label is WB (e.g. Figure 33(c), (d)). 
Similarly, we define WB, BB, and WW corners (Figure 33(a) is BB, (b) is WW). 

An atom is a corner with no switches. First we define good and bad for 
atoms. 
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( Q ,v) 

FIGURE 32 

char (Q,v) = 11 c 
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~~~~ 
(a) (b) (c) (d) 

FIGURE 33 

g g b b 

FIGURE 34 

(a) The atoms of Figure 33 are good. The others are bad. Note that an atom 
X is good if and only if - X is bad. 

We pause to make the following observation. 

Atoms on either side of a clockwise switch (l. v) are either both 
( ** ) good or both bad (Figure 34). In particular. both sides are good 

if and only if char(l . v) = ~c· 
Now the general definition. 
(b) If char A(X) = ~a ' then X is good if and only if all maximal atoms in 

X are good. 
(c) If char A(X) = -~a' then X is good if and only if some maximal atom 

in X is good. 
Finally, we say that X is bad if it is neither good nor ugly. 
Note that (by (**)) if a corner X has A(X) = 0 then all maximal atoms 

in X are good if and only if some maximal atom in X is good, so (b) and (c) 
are consistent. Also, since char A( -X) = - char A(X), we clearly have that X 
is good if and only if - X is bad. 
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x 

X 

FIGURE 35 

x E SeX) 

A clockwise (anticlockwise) switch is double-sided if it has character"c ("a) 
and single-sided if it has character -"c (-"a)' Splitting comers at switches 
satisfies the following. 

Lemma 2.6.1. Let x E S(X) , and X, XI' and X2 be as in Figure 35. Assume 
X is not ugly. 

(i) If x is double-sided then X is good if and only if XI and X2 are good. 
(ii) If x is single-sided then X is good if and only if XI or X2 is good. 

Proof. (i) There are two cases. 
(a) char A(X) = rta' Then X is good if and only if all maximal atoms in X 

are good if and only if XI and X2 are good. 
(b) char A(X) = -rta. Then x E C(X). Hence the atoms on both sides of 

x are good (by (**». Thus X, XI' and X2 are all good. 
(ii) This follows by applying (i) to -X. 0 

The following simple observation will be useful later. 

Lemma 2.6.2. If char A(X) = -rta and there exists c E C(X) with charc = "c 
then X is good. 
Proof. This is just case (i)(b) above. 0 

2.7. Good cycles. Let G be as always and r a g.d.o. (G(r) a subgraph of 
G). 

Lemma 2.7.1. Let F be a diskface of a subgraph of r such that each corner of 
F with respect to r is good. Then indr of :::; O. 
Remark. Since the index is unchanged under reflection and reversal of the dual 
orientations, clearly the conclusion of the lemma also holds if each comer of 
the face is bad. 

Proof. of gives rise to a sequence of comers XI ' ... ,Xk (k?: 1) such that 
char(right endpoint of Xi) = - char(left endpoint of Xi+ l ) (i mod k). We can 
therefore consider such an abstract cycle of corners), (we formally insert edges 
ei between Xi and Xi+1 ). We then define 

k k 

ind), = LindXi + Lindei 
i=1 i=1 

as before. We now state the lemma in this more abstract setting (which will 
allow us a proof by induction). 

Claim 2.7.1. A cycle of good corners has index :::; 0 . 
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FIGURE 36 FIGURE 37 FIGURE 38 

Proal 01 Claim. We prove the claim by induction on the number of good comers. 
Let 0 be a cycle of good comers. If the length of 0 is 1, and the single comer 
is a sink or source, then the edge of 0 must have index -1 . That is, ind 0 :::; 0 . 

Assume length 0 is 2 (see Figure 36). 
If indo> 0 then indo = 2 (it is always even). Thus indX1 = indX2 = 1, 

and inde1 = inde2 = o. Thus 0 must be as in Figure 37. But then the comers 
cannot be good (Figure 38). 

So we assume length 0 ~ 3 . 
(1) We shall construct a subcycle P of 0 such that 
(a) no BB comer is adjacent to a source comer; no WW comer is adjacent 

to a sink comer. 
(b) indo:::; ind p . 
(2) We shall show any p satisfying (a) above has indp :::; o. 

(1) We repeatedly perform the move described in Figure 39 to reduce the 
number of BB comers that are adjacent to source comers. Then ind X + ind e 1 + 
inde2 -+inde,where (indX+inde1 +inde2):::; 1 and inde~-1 and indo, 
ind p are even. Thus ind p can be < ind 0 only if ind X + ind e 1 + ind e2 = 1 

> 
x 

FIGURE 39 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



404 C. MeA. GORDON AND J. LUECKE 

and inde = -1. But indX = 1 means that X is a source (since X is good). 
Then, if either Xl or X 2 is a source, inde l or inde2 = -1. 

A similar move reduces the number of WW comers adjacent to sink comers. 

(2) Let X be a source comer of p. So X is either BB or BW. By (a), the 
comer Y to the left of X is WB (Figure 40). 

Sublemma. Any good WE corner contains a clockwise switch. 
Proof. By inspection of those WB comers containing 0 switches or 1 anti clock-
wise and no clockwise switches. 0 

Thus either ind e = -1 , where e is the edge between X and Y, or ind Y ~ 
-1 . Thus anticlockwise from a source we have an object of index ~ -1 . 

Similarly, clockwise from a sink we have an object of index ~ -1 . 
Can these objects coincide? If so, they cannot be the edges. Therefore, we 

are as in Figure 41. 
But Y contains a clockwise switch by the sublemma. Thus ind Y ~ -2. 

That is, if the objects associated to a sink and source coincide, they coincide in 
a comer of index ~ -2. Thus the + contribution to ind P from sink, source 
comers is cancelled by negative index contributions. Hence ind P ~ 0 . 0 

2.8. Main argument. In this subsection we prove the following proposition, 
in which G denotes G p' Proposition 2.0.1 is precisely the first case of this 
proposition (recall that a Scharlemann cycle in G represents all {I, ... ,q}-
types). 

Proposition 2.8.1. Let D be a disk in S2 that is either the complement of a 
small open disk disjoint from GQ , or a disk bounded by an x-cycle in GQ . Let 

y 

" 
sink 

FIGURE 40 FIGURE 41 
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L be the set of vertices of GQ in intD and suppose ILl 2: 2. Suppose also that 
GQ contains no Scharlemann cycle. Then either G(L) represents all L-types or 
G contains a Scharlemann cycle. 

Given an L-type r, we show that either G(L) represents r or there exists 
an xo-cycle in int D. The following lemma takes care of the special case when 
this xo-cycle has fewer than two vertices in its interior. 

Lemma 2.8.2. Suppose that the hypotheses of Proposition 2.8.1 hold, and that 
GQ contains an xo-cycle in intD bounding a disk Do in intD. Let Lo be the 
set of vertices of GQ in intDo. If ILol :::; 1 then (ILol = 1 and) G contains a 
Scharlemann cycle. 
Proof of Lemma 2.8.2. Let the xo-cycle be 1:0 . If 1:0 is a great xo-cycle then 
GQ contains a Scharlemann cycle (Lemma 2.0.2), contrary to hypothesis. Hence 
we may suppose that Lo = {Yo}' where Yo has opposite sign to the vertices 
of 1:0 . Therefore, for every vertex x of G, the edge of G with label Yo at x 
joins x to a vertex of the same sign (there are no trivial loops in GQ ). Hence 
G contains a great Yo-cycle, and thus a Scharlemann cycle. 0 

Proof of Proposition 2.8.1. We proceed by induction on the number of x-cycles 
in int D. We thus need to establish 

(A) the case where there are no x-cycles in int D , 
(B) the inductive step. 

Let r be an L-type. We shall show that G(L) represents r. We distinguish 
two cases. 

(1) r trivial, 
(2) r nontrivial. 

Let 1: be the x-cycle in the hypothesis of the proposition, or, in the first case 
of the hypothesis, let 1: = 0 . 

(1) r trivial. Let J c L be the set of vertices of opposite sign to those in 1: 
(or if 1: = 0, let J be the set of (say) + vertices of GQ ). 

Since 1: cannot be a great x-cycle of GQ by Lemma 2.0.2, J i- 0. 
(a) Suppose that for all vertices x of G, there is a y(x) E J such that the 

edge of G with label y(x) at x joins x to a parallel vertex of G. Note that 
the label at the other end of this edge i- J , by the parity rule. The subgraph 
of G consisting of the vertices of G along with these edges will contain a cycle 
(J all of whose vertices are parallel, that bounds a disk E where all the vertices 
in the interior of E are parallel to the vertices of (J. Then E contains a disk 
face of G(L) with all vertices parallel, showing that G(L) represents r. 

(b) If the supposition in (a) fails, then there exists a vertex Xo of G such 
that for all y E J , the edge of G with label y at Xo joins Xo to an anti parallel 
vertex. The corresponding edge of GQ therefore joins J' to a parallel vertex, 
i.e., to a vertex E J . These edges give us an xo-cycle 1:0 in GQ with vertices 
E J . Thus 1:0 c int D. This immediately gives (A). 
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To prove (B), let Lo be the set of vertices in the interior of the disk in D 
bounded by ~o. 

If ILol ~ I then we are done by Lemma 2.8.2. If ILol ~ 2, then by the 
inductive hypothesis G(Lo) represents all Lo-types, in particular, the trivial 
Lo-type. Let Eo be a disk face of G(Lo) representing this type. Then any 
sub-G(L)-face E of Eo represents r. 

(2) r nontrivial. We construct a sequence of stars Tl ' ... , Tn' n ~ 1 (with 
sign V(~) = + ) such that 

(i) [Td = r, [Ti ] is nontrivial, i = 1 , ... ,n; 
(ii) Ti = diTi_ 1 ' where di = d±, 2 ~ i ~ n; 

(iii) all elements of C(Tn) have the same parity; 
(iv) all elements of A(Tn) have the same parity. 
To do this, first let Tl be anyone of the two stars with sign V (T1) = + and 

[Td = r. 
If all elements of C(T1) have the same parity and all elements of A(T1) 

have the same parity, take n = 1 . 
If not, then by replacing, if necessary, Tl by T I we may assume that not all 

elements of A(T1) have the same parity. Let m be the least integer ~ 1 such 
that all elements of A((d+)mT1) have the same parity. 

If all elements of C((d+)mT1) also have the same parity, take n = m + 1 
and let ~ = d+ Ti_ 1 ' 2 ~ i ~ n. If not, take n = m + 2 , with 

Ti = d+ Ti_ 1 ' 2 ~ i ~ m , 

Tm+l = d-Tm (= (d+)mTl) ' 

Trn+2 = d+Tm+1 • 

Since C(Tm+2) , A(Tm+2) c C(Tm+1) = A((d+)mT1) , Tm+2 satisfies (iii) and 
(iv). Let Li = L(~). Thus Ll = L, and Li = C(Ti_ 1), 2 ~ i ~ n. By 
construction ILil ~ 2, 1 ~ i ~ n. 

If G(Ln) represents [Tn]' then by Corollary 2.4.2 G(L) represents [Td = r, 
as desired. 

So assume that G(Ln) does not represent [Tn]. Then by Lemma 2.5.1, 
GQ contains an xo-cycle ~o whose vertices are contained in either C(Tn) or 
A(Tn)' This immediately proves the proposition in case (A). For (B), proceed 
as follows. We may assume that the vertices of ~o are contained in C(Tn) by 
replacing (if necessary) Tn by Tn. If n> 1, this can be achieved by replacing 
dn (= d+) by d- . Thus, in addition to (i)-(iv), we may assume 

(v) the vertices of ~o are contained in C(Tn)' 

Let Lo be the set of vertices of GQ in the interior of the disk in D bounded 
by ~o' 

If ILol ~ 1 then we are done by Lemma 2.8.2. So assume ILol ~ 2. By the 
inductive hypothesis G(Lo) represents all Lo-types. We shall define a certain 
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Lo-type TO and use the fact that G(Lo) represents TO to eventually conclude 
that G(L) represents T. 

First, let R I • ... • R n be the sequence of stars corresponding to T1 • ••• • Tn 
obtained by taking derivatives relative to Lo' That is, we define Rl = T1 , 

Ri = di Ri_1 ' according as di = d±, 2 ~ i ~ n (and where, as usual, do = 

dLo )' By Proposition 2.1.2, C(Tn) c C(Rn) , and A(Tn) :J A(Rn)' Let I be 
an Lo-interval (at V+). 

Claim 1. The comer RnlI is not ugly. 

ProoJ oJ Claim 1. A(Rn) c A(Tn) C A(Tn)' Hence by (iv) above all anticlock-
wise switches of Rn in the interior of I have the same parity. 0 

Hence the set of comers {Rn II: I an Lo-interval at V+} can be partitioned 
into good and bad, once we choose characters fie and fla . We do this by setting 

(If A(Rn) = 0, fla can be chosen arbitrarily.) Recall that V(Tn) = VeRn) = 
V+ . 

Now for each Lo-interval I, define e(1) = ± by the requirement that 
e(I)(Rnll) be good. Finally, define the Lo-type TO by TO = (e(l): I an Lo-
interval). By our inductive hypothesis, there exists a disk face E of G(Lo) 
representing To' This means there exists fI = ± such that if a comer of E at 
a vertex v is contained in the Lo-interval I then sign v = fle(l). Let J be 
the subinterval of I corresponding to the comer. 

Claim 2. fI(sign v)RnlJ is good. 

ProoJ oj Claim 2. Note that fI(sign v) = e(l). If J is a full Lo-interval, the 
claim follows from the definition of TO' If not, J is a subinterval of an L-
interval I with at least one endpoint of J in the set of exceptional labels of 
G(Lo). Since this set is contained in C(Tn) by (v) above, e(I) = + by Lemma 
2.6.2. Now RnlJ is good by Lemma 2.6.1(i). 0 

Let r i = r(Ri ) , I ~ i ~ n, and let c50 = c5C(Lo)' Since {exceptional labels 
oj G(Lo)} c {vertices oj l:o} c C(Tn) c C(Ti) c C(Ri) , I ~ i ~ n, Lemma 
2.2.2 implies that r i = c50r i _ 1 ' 2 ~ i ~ n. 

By Claim 2, if X is a comer of E with respect to r n , then fiX is good. 
Now consider r~ n E. A face of r~ n E of positive index corresponds to a 

switch-edge e of rn n E. Since the endpoints of e have opposite characters, 
one endpoint of e will be a double-sided switch, the other single-sided. Let 
E = El U(. E2. By Lemma 2.6.1, at least one of E(, E2 has the property that 
for all its comers X with respect to r n , fiX is good. Continuing in this way, 
we eventually get a disk FeE, bounded by edges of rn ' such that 

(a) for each rn-comer X of F, fiX is good~ 
(b) r~ has no faces of positive index in F. 
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By Lemma 2.7.1 and the remark following it, (a) implies that indrn 8F ::; O. 
Lemma 2.3.3 and (b) now implies that r: has a sink or source in F . Since r i = 
60r i_ l , 2::; i ::; n, Lemma 2.4.1 shows that r; = r(TI )* has a sink or source 
at a dual vertex in F. Thus G(L) represents [Td =, as desired. 0 (2.8.1) 

3. TOPOLOGICAL CONSEQUENCES OF THE COMBINA TORICS 

In this section we examine the topological implications of the combina-
torial Proposition 2.0.1 and show that it leads to a proof of Proposition 2 
of the Introduction. 

Let , be an n-type. We say that a = (ai' ... ,an) E Zn represents, if 

(i) E7=1 lail ~ 2, and 
(ii) if, = (e l ' ••• ,en)' then there exists 17 = ± such that signai = 17ei for 

all i such that a i f. O. 
A subset A of Zn represents all n-types if for every n-type , there exists 

a E A such that a represents,. 
We conjecture that if A represents all n-types, then it contains a subset Ao 

such that the abelian group on n generators presented by the matrix whose 
rows are the elements of Ao has nontrivial torsion. This conjecture along with 
Proposition 2.0.1 easily proves Proposition 2 (without the assumption that Q 
comes from a level sphere in a thin presentation of K). In the absence of a 
proof of the conjecture I , we are lead to the argument of the present section. 

The following observation will be useful in the sequel. Suppose {I , ... ,n} = 
No U NI U N2 ' and let '0 be some fixed INol-type. Let A be a subset of Zn . 
For j= 1,2,let Aj={aEA:ai=O for i ¢. Nj }. Now suppose A has the 
property that if a E A represents any n-type , such that 'INo = (, restricted 
to the coordinates corresponding to No) = '0' then a E Al or A2 • 

Lemma 3.1. Given the above data, suppose in addition that A represents all n-
types. Then there exists j E {I , 2} such that Nj f. 0 and {a I Nj : a E A j} 
represents all INjl-types. 
Proof. Suppose for a contradiction that for j = 1 ,2 we either have Nj f. 0 
and an IN)-type 'j such that {alNj : a E A j } does not represent 'j' or 
N j = 0 (in which case we let 'j be the empty type). Now let, be the n-type 
such that 'INj = 'j for j = 0, 1, and 2. By hypothesis, there exists n: E A 
such that a represents,. Since 'INo = '0' a E Al or A2 , say Al . But this 
implies that NI f. 0 and alNI represents 'I ' a contradiction. 0 

Let B be a 3-ball in S3, and write B' = S3 - B. Let H be a disjoint 
union of n ~ 1 I-handles HI' ... ,Hn in B', attached to B, such that H 
is standard, i.e., there is an ambient isotopy of S3 taking (B, H) to the pair 
illustrated in Figure 42. Let Ci be the boundary of a cocore of Hi' 1 ::; i ::; n, 
with some orientation. 

I Added in proof. This conjecture has now been proved by Walter Parry (private communication). 
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FIGURE 42 

C n 

409 

By an H-type we mean an n-type (e, ' ... ,en) where ei is formally associ-
ated with Hi' 1 ~ i ~ n. Let C be a simple closed curve in a(B U H), and 
let T be an H-type. Then we say that C represents T if for some (and hence 
any) orientation of C we have 

(i) for each i, 1 ~ i ~ n, C n Hi consists of lail arcs transverse to Ci , 
where a i is the algebraic intersection number of C with Ci ; and 

(ii) (a" ... ,an) represents T. 

A disjoint union C of simple closed curves in a(B u H) represents all H-
types if for every H-type T there exists C E C such that C represents T. 

(Here, and in similar contexts, we abuse notation and write C E C to mean 
that C is a component of the disjoint union C.) We shall always assume, 
without loss of generality, that every C E C satisfies condition (i) immediately 
above and the condition that I C n HI ~ 2 . 

Let E be a disjoint union of (embedded) disks in S3 such that 
(i) aEca(BuH); 

(ii) a collar of aE is contained in B' - H and is transverse to a(B U H); 
(iii) (intE)nH=0. 

Proposition 3.2. For no collection of disks E as above does aE represent all 
H-types. 
Proof. We may assume that intE intersects aB transversely. 

We assume for a contradiction that there exists (B ,H, E) as above such that 
aE does represent all H-types. We first show that if l(intE) n aBI > 0 then 
there exists another such triple, (B ,H,E), with l(intEnaBI < l(intE) naBI. 
This reduces us to the case (intE) naB = 0 where we proceed by induction on 
n=IHI· 
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(A) l(intE) nDBI > O. Let D be a disk C E that is innermost with respect 
to the disjoint simple closed curves (intE) n DB . There are two subcases. 

(a) DeB. D separates B into 3-balls B, and B2 , say. Then H = 
Ho u H, U H2 , where for j = 1 or 2, H j consists of those HE H with both 
feet in DBj' and Ho consists of those HE H with one foot in each of DB, 
and DB2 . We have a corresponding partition {1 •...• n} = No U N, U N2 ' where 
Hi E H j if and only if i E Nj (1 ~ i ~ n, 0 ~ j ~ 2). 

For every i E No, let rti = ± be defined by the condition that a transverse 
arc on Hi intersecting Ci with sign rti is directed from the foot of Hi in DB, 
to the foot in DB2 • Let 10 be the Ho-type (rti: i E No). Let 1 be any H-
type such that 11Ho = 10. Then any disk E E E such that DE represents 1 
must satisfy E n H = E n H j' j = 1 or 2. Hence by Lemma 3.1 there exists 
j E {1 .2} such that Hj :f. 0, and Ej c E such that DEj meets only handles 
in Hj and represents all Hj-types. Finally, if E j contains the component of 
E containing D, we move this component slightly off D away from Bj • Now 
(Bj • Hj . E) is a triple of the desired form with l(intE)nDBjl < l(intE)nDBI. 

(b) DeB'. D separates B' into 3-balls B~ and B;, say. Let Hj = HnB;, 
j = 1.2. No disk E E E can meet both H, and H2 . Therefore, by Lemma 
3.1 (with No = 0) there exists j E {1 .2} such that Hj :f. 0, and E j c E 
such that DEj meets only handles in Hj and represents all Hj-types. Let 
Bj = B U B;_j' and (if necessary) move Ej slightly off D away from B;. 
Then as in subcase (a) above l(intE) n DB) I < l(intE) n DBI. 

(B) l(intE) n DBI = O. Note that in this case E c B' - H. If n = 1, then 
for any E E E we have that N(B U HuE) is a punctured lens space, since 
IDE n HI ~ 2. Since N(B U HuE) is embedded in S3, this is absurd. So we 
assume that n > 1 and show that there exists another triple (B. H . E) of the 
stated type with IHI < n. We say that E E E is a bigon if IDE n HI = 2. Again 
we consider two subcases. 

(a) E contains a bigon. Let E E E be a bigon. 

If DE meets only one HE H, then N(B U HuE) is a punctured Rp3 in 
S3 , which is absurd. 

So suppose that DE meets distinct handles H, and H2 E H. We may 
assume without loss of generality that the orientations of the cocore boundaries 
C, and C2 are chosen so that the intersections of DE with C, and C2 both 
have the same sign. Then DE represents any H-type of the form ± (++* ... *) . 
Any other H-type is of the form ±( - + * ... *); let FeE be such that DF 
represents all H-types of this form. Orient each F E F so that if (ti(F) is 
the algebraic intersection number of UF with Ci , then we have (t, (F) ~ 0, 
(t2(F) ~ O. Now successively attach parallel copies of E to F along the arcs 
F n H, ' and move the resulting disks slightly off H, . This produces for each 
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F E F an oriented disk F' such that 

8F' nHI = 0; 
18F' n H21 = a2(F') = a2(F):"- al(F) = 18F n HII + 18F n H21; 

8F' n Hi = 8F n Hi' i f:. 1 , 2 . 
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Therefore, if we let F' be the union of the disks F' and H' = H - HI ' then 
8F' represents all H'-types. Then (B, H' ,F') has IH'I = n - 1 . 

(b) E contains no bigon. Let D' c B' - H be a disk that separates B' 
into B~ and B; such that HI c B~ and H - HI C B;. Since B' - H is a 
handlebody, an isotopy of (say) E, keeping 8E fixed, will ensure that EnD' 
contains no simple closed curves. There are now two possibilities. 

(i) EnD' f:. 0. Let a be an arc of EnD' that is outermost on D' , i.e., 
there exists a disk Do cD' such that DonE = 8DonE = a and 8Do-a c 8D'. 
Let E be the component of E containing a. Then surgering E along Do gives 
two new disks E' and E" such that 

18E' n HI + 18E" n HI = 18E n HI ~ 3. 

Therefore 8E' (say) has 18E' n HI ~ 2 and clearly represents any H-type 
represented by 8E. So if we let E' = (E - E) U E' , then 8E' represents all 
H-types, and IE' nD'1 < IEnD'I. If E' contains a bigon, case (a) above applies. 
If not, and E' n D' f:. 0 , then we may repeat the procedure just described. It 
thus only remains to consider case (ii) below. 

(ii) EnD' = 0. If En HI f:. 0 then there exists E E E such that 
N(B U HI U E) is a punctured lens space, which, as usual, is impossible. 

If En HI = 0, let H' = H - HI' Then 8E represents all H'-types and 
(B ,H' ,E) has IH'I = n - 1. 0 

For the proof of Proposition 2 we now specialize to the case where K c S3 
is a nontrivial knot and X is its exterior. Let y be the meridian of K. 

Proposition 2. Suppose that X contains properly embedded surfaces P and Q 
satisfying conditions (i), (ii), and (iii) of Proposition 1, where Q is the inter-
section with X of a level sphere in a thin presentation of K. Then K(n) has a 
lens space as a connected summand. 

Let Gp and GQ be the labeled graphs of pnQ in P and Q. If n ~ 2 then 
it is proven in [CGLS, §§2.5 and 2.6; see Proposition 2.5.6] that either Gp or GQ 
contains a Scharlemann cycle. This implies that either K(y) or K(n) contains 
a lens space summand (see the proof of Proposition 3.2). As K(y) 2:: S3 , we 
obtain the desired conclusion. Thus we hereafter assume that n = 1 and we are 
in the context of §2. By Proposition 2.0.1, either G Q contains a Scharlemann 
cycle or G p = G represents all L-types where L = {I ..... q}. Again, in 
the first case, K(n) has a lens space summand. So suppose G represents all 
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L-types. Because Q comes from a level sphere, Q separates X into a black 
region, say above Q, and a white region, below Q. Every L-interval of G is 
then either white or black. Let B be the set of black L-intervals and W the 
set of white L-intervals. Then {L-intervals} = B u W. A B-type (W-type) is a 
IBI-type (IWI-type) where each coordinate is formally associated to a different 
black (white) L-interval. Let f be a face of G. Then either every corner of f 
is a black L-interval or every corner is a white L-interval; in the former case 
f is called a black face, in the latter f is called a white face. This dichotomy 
of faces and L-intervals into black and white allows us to conclude that in fact 
there is a collection consisting either of black faces of G representing all B-types 
or of white faces of G representing all W-types (Lemma 3.1 with No = 0). 
Without loss of generality we assume there is a collection, E, of black faces in 
G representing all B-types. 

Let a < b be adjacent critical levels of K in the thin presentation (from 
which Q comes), such that a is a relative minimum and b a relative maximum 
of K. (a, b) is called a middle interval of K. Let (ai' b l ), (a2 , b2 ), ••• , 

(ak ,bk ) be the middle intervals strictly above the level sphere Q from which 
Q comes. We will argue by induction on k, using Proposition 3.2 to obtain a 
contradiction. (In the course of the inductive argument, we allow arcs of P n Q 
to be boundary-parallel on Q.) 

Assume k = O. Let B be the 3-ball bounded by Q that is below Q (con-
taining the white region of X) and B' be the 3-ball above Q. Let H be the 
union of the 1-handles in B' that are regular neighborhoods of the arcs K n B' . 
Applying Proposition 3.2 to (B, H, E), we arrive at a contradiction. Note that 
if E E E and (ai' ... ,an) corresponds to 8E then ~~=I lail ~ 2 since there 
are no 1-sided faces in G. 

So we assume k ~ 1. Let (ai' b l ) be the first middle interval above Q. 
By [Ga, §4(A)], there is a level surface QI' coming from (ai' b l ) such that, 
after an isotopy of P that is away from Q, P n QI satisfies (i) and (ii) of 
Proposition 1 and has the property that no arc of P n QI is boundary-parallel 
on P. 

Let G be the graph defined by the arc components of P n (Q u QI) in 
P. Define the signs of the vertices, the parity of the labels, and the character 
function as usual for G . Let L be the set of labels in G corresponding to the 
components of 8Q and L I be the labels corresponding to the components of 
QI. Let L'=LUL I · Note that G=G(L). 

Denote the region of X above QI ' the region between Q and QI ' and the 
region below Q as the green, red, and white region, respectively. Thus the black 
region above Q is now divided into a green region and a red region. We can 
now write {L'- intervals} = RuGuW where R is the set of red L'-intervals, G 
the set of green L' -intervals, and W the set of white L' -intervals. As before, the 
L-intervals are divided into white and black intervals. The white L-intervals 
are exactly the white L'-intervals, and any black L-interval is a union of red 
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and green L'-intervals. A face of 6 is called red, green, or white if all comers 
of the face are red, green, or white, respectively. Every face of 6 is either red, 
green, or white. An R-type is an IRI-type where the coordinates are formally 
associated with the red L' -intervals. A red face of 6 represents an R-type in 
the same way a face of 6 represents an L' -type. Similarly define a G-type. 

Lemma 3.3. 6 represents all R-types or all G-types. 
Proof. We find a collection of disk faces E' of 6 that represents every L'-
type. Furthermore, E' will consist entirely of red and green faces. Lemma 
3.1 then implies that we can find a subcollection E consisting entirely of red 
faces and representing all R-types or entirely of green faces and representing all 
G-types. 

Let r be an L' -type. 

Claim. There is a sequence of stars XI' X2 , ... ,Xn ' such that 
(1) [Xd = r, 
(2) Xi = d1Xi_1 or d1Xi_I' 2:$ i:$ n, 
(3) L(Xn) = L. 

Proof of Claim. Let XI be a star with [XI] = r. Let m be the least integer 
~ 1 such that A((d1)mXI ) c L. Take n = m + 2 with 

d + i 
X i+1 = ( L) XI' 

Xm+1 = d1 Xm' 

Xm+2 = d;Xm+I' 0 

O:$i<m, 

Consider the B-type [Xn]IB, obtained by restricting the L-type [Xn ] to 
the set of black L-intervals. As G represents all B-types, there is a black 
face F of 6 (L) representing [Xn]IB. That is, F corresponds to a source 
or sink of (r(Xn»*' Since G has no exceptional labels, by Lemma 2.2.2 we 
have a~(r(xi_I» = r(d1Xi_l) = r(Xi ) or r(XJ. Then successively applying 
Lemma 2.4.1 (noting that the sinks and sources of r(xy are exactly the sources 
and sinks of r(xy) gives a subface FI of r(XI ) n F corresponding to a 
sink or source of r(XI )*. Since FI c F, FI will be a red or green face of 
G(r(XI» = 6 . Note that FI is not a I-sided face by the construction of Q I . 

Thus we have proven that every L' -type r is represented by a red or green 
face of 6. By Lemma 3.1, 6 represents all R-types or all G-types. 0 (3.3) 

Assume 6 represents all G-types. Q I divides X into two regions: green 
and red-white. By assumption 6 (L I ) c 6 (L') represents all G-types. But 
6(L I ) is the graph of intersection between the surfaces P and Q I on P. 
Furthermore 6 (L I) contains no I-sided faces. Since Q I has fewer middle 
slabs above it (the green region) we are done by induction. 

So we assume 6 represents all R-types and therefore have a collection E of 
disks representing all R-types. Let QI and Q be the level spheres obtained by 
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capping off the components of aQI and aQ by meridional disks in a tubular 
neighborhood of K. We will also call the region of K(y) ~ S3 between QI 
and Q the red region. Then N(K) n (red region) is a disjoint union H of 
I-handles {HI' ... ,Hn}' Fix an orientation of the cocores of these I-handles. 
For every E E E, int En H = 0 and aE c QI u aH u Q . 

Let H = Ho U HI U H2 where 

HI = {H E HI H has both/eet in QI}' 
H2 = {H E HI H has both/eet in Q}, 

Ho = {H E H I H has one foot in Q and one foot in QI}' 

Correspondingly {I, ... ,n} = No U NI U N2 where Hi E H j if and only if 
i E Nj (j = 0, 1 ,2) . 

There is an obvious 1-1 correspondence between Rand H. For each i E 
No' let ~i = ± be such that a transverse arc on Hi intersecting the cocore of Hi 
with sign ~i takes us from the foot of Hi in Q to the foot of Hi in QI • Let 
r be any R-type (8 1 ' ... ,8n ) such that 8 i = ~i when i E No' Then any disk 
E E E such that aE represents r must meet H only in HI or only in H2. 
Note that if E E E and (ai' ... ,an) corresponds to aE then E;=I lail ~ 2 
since there are no I-sided faces in d . Applying Lemma 3.1, there is a j = I , 2 
such that H j -:f:. 0 and a subset E j of E such that 

( I) for all E E E j' aE meets only the handles H j , 

(2) Ej represents all Hj-types. 
Without loss of generality assume j = 2. Let B be the ball bounded by 

Q that does not contain the red region. Setting E = E2 and H = H2 we are 
in the setting of Proposition 3.2 (the handles of H2 are standard). But this 
proposition contradicts the fact that E2 represents all H2-types. 0 
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