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Abstract

Background: Resident macrophages (Kupffer cells, KCs) in the liver can undergo both pro- or anti-inflammatory

activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in

the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role

of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF) diet rich in monounsaturated

fatty acids.

Methods: Male Wistar rats were fed either standard (SD) or high-fat (HF) diet for 4 weeks. Half of the animals were

subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the

reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on

the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3.

Results: We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program

in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of

alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the

increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked

exacerbation of HF diet-induced hepatic insulin resistance.

Conclusions: We propose that in the presence of a high MUFA content the population of alternatively activated

resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic

disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an

alternative state might be a useful strategy for treating type 2 diabetes.

Obesity and type 2 diabetes have reached epidemic pro-

portions in most of the Western world. Both conditions

are strongly associated with non-alcoholic fatty liver dis-

ease (NAFLD) [1]. Obesity was first recognized as a

chronic low-grade inflammatory condition of adipose

tissue more than a decade ago [2]. Both liver and adi-

pose tissue possess a specific macrophage subpopulation

-"resident macrophages"- that undergo local activation

in response to various stimuli and express distinct pat-

terns of surface markers, chemokines and cytokines [3].

Depending on the triggering stimuli and genetic back-

ground, macrophages can undergo either a “classical”

(Th1 dependent; M1) or “alternative” (Th2 dependent;

M2) activation pathway. M1 response is an essential

part of innate immunity and this pro-inflammatory pro-

gram serves to protect the host against invading patho-

gens. However, if excessive, the inflammatory response

becomes detrimental [4]. Many studies have supported

the idea that inflammatory cytokine signaling directly

promotes insulin resistance [5]. An “alternative” (M2)
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activation pathway results in a protective phenotype - it

promotes maturation of alternatively activated macro-

phages to counteract excessive inflammation, enhance

tissue repair and may have a beneficial role in regulating

nutrient homeostasis [6].

Dietary fat intake has been long proposed as a causa-

tive factor for the development of metabolic syndrome.

In this regard, not only the quantity, but mainly the

quality of dietary fat consumed strongly predicts the

prevalence of insulin resistance, type 2 diabetes and

atherosclerosis [7,8]. Recent research suggests that most

of the pro-inflammatory response of the innate immune

system to invading pathogens can be traced to the

unique family of membrane receptors known as TLRs

[5]. Of great importance is the finding that TLRs (espe-

cially TLR2 and TLR4) recognize and are activated by

the saturated fatty acyl moieties of bacterial lipopolysac-

charide (LPS) while after substitution of saturated acyl

moiety with unsaturated fatty acid the activity of LPS is

lost [9,10]. The long experience, that diets enriched in

SFA have been associated with increased risk for insulin

resistance and type 2 diabetes [11] while dietary MUFA

are protective against metabolic syndrome and cardio-

vascular disease risk factors [12,13] is perfectly in line

with this finding.

An inflammatory response in the presence of obesity

appears to be triggered by, and to reside predominantly

in, adipose tissue [14]. In contrast to the adipose tissue,

the accumulation of triacylglycerol droplets within hepa-

tocytes (hepatic steatosis) is not generally associated

with inflammation [15]. KCs, the resident liver macro-

phages, are the largest macrophage population in the

body [16] and, in addition to fulfilling a variety of other

immunologic functions [17,18], are the primary innate

immune defense against exposure of foreign antigens

from the diet and intestinal tract [18,19]. KCs are

chronically exposed to higher concentrations of endo-

toxin than circulating peripheral blood monocytes.

Therefore, it seems plausible that protective mechanisms

have evolved to avoid the inadvertent activation of KCs

while maintaining scavenger function [20]. In this con-

nection, it is important to stress that resident hepatic

macrophages display tremendous plasticity in their acti-

vation programs, ranging from the pro-inflammatory

classical state to the anti-inflammatory alternative state

[21,22]. While the rapid onset of inflammation in adi-

pose tissue due to the HF diet feeding in adipose tissue

is well established, there are only a few studies addres-

sing the role of hepatic resident macrophages in the

inflammatory and metabolically dysfunctional obese

state and these studies have brought contradictory

results. Some authors provide evidence that KCs may, at

least partially, protect hepatocytes from the inflamma-

tory milieu and the insulin resistance associated with a

high-fat diet-induced obesity [6,23,24]. In contrast, other

reports showed that hepatic macrophage response parti-

cipates in the onset of high-fat diet-induced hepatic

insulin resistance [25,26].

The aim of our study was to characterize the role of

KCs in relation to the onset of hepatic insulin resistance

induced by a HF diet rich in MUFA. In order to address

this issue, we determined the effect of HF diet on the

activation status of liver macrophages and the changes

in hepatic insulin sensitivity and hepatic TAG metabo-

lism imposed by acute KCs depletion by GdCl3, a speci-

fic KCs inhibitor, in standard and HF diet administered

Wistar rats.

Materials and methods
Animals and experimental protocol

Male rats were kept in a temperature-controlled room at

a 12:12-h light-dark cycle. Animals had free access to

drinking water and diet if not stated otherwise. All

experiments were performed in agreement with the Ani-

mal Protection Law of the Czech Republic 311/1997

which is in compliance with Principles of Laboratory

Animal Care [27] (NIH Guide to the Care and Use of

Laboratory Animals, 8th edition, 2011) and were

approved by the ethical committee of the Institute for

Clinical and Experimental Medicine. Starting at age 3

months (b.wt. 300 20 g), animals were fed either HF

diet (60 cal% as fat, 20 cal% as protein, 10 cal% as car-

bohydrate) or standard laboratory chow diet (SD) for 4

weeks. The FFA composition of the diet is given in

Additional file 1. The groups designated as SD-starved

or HF-starved were deprived of food for the last 24

hours, the groups labeled SD-fed or HF-fed had free

access to the diet until decapitation (10 - 11 a.m.).

When indicated, fed animals were administered insulin

30 min prior to decapitation (6 U/kg i.p.). Gadolinium

chloride was administered in two doses 72 and 24 hrs

prior to decapitation (10 mg/kg = 0.04 mM/kg i.p.).

Oral glucose tolerance test

An oral glucose tolerance test (OGTT) was performed

on a separate group of animals (n = 4). The rats were

starved overnight and then given a single dose of glu-

cose (3 g/kg b.wt.) per os dissolved in sterile saline.

Blood was taken from the tail vein at 15, 30, 60, 120

and 180 min intervals and glucose was measured by

Accu-check GO glucometer (Roche Diagnostics, Man-

nheim, Germany). Results were expressed as area under

the curve (AUC).

Real-time RT-PCR

The samples of liver tissue were dissected immediately

after decapitation and frozen in liquid nitrogen. Total-

RNA was extracted from tissue samples using Trizol
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reagent (Invitrogen) according to standard protocol [28].

A DNAase step was included to avoid possible DNA

contamination. A standard amount of total RNA (1600

ng) was used to synthesize first-strand cDNA (High

Capacity RNA-to-cDNA kit, Applied Biosystems, Foster

City, CA). RT-PCR amplification mixtures (25 μl) con-

tained 1 μl template cDNA, SYBER Green master mix

buffer (Quanti-Tect, Qiagen, Hilden, Germany) and 400

nM (10 pmol/reaction) sense and antisense primer.

Reactions were run on an Applera 7300 Real-Time PCR

detector (Applied Biosystems). The results were analysed

by SDS software version 2.3 (Applied Biosystems). The

expression of genes of interest was normalised to the

housekeeper gene (Ubc) and calculated using ∆∆Ct

method.

Primer design

The primer sets were based upon known rat sequences

available from the Rat Genome database http://www.rgd.

mcw.edu. Primer design was performed with Primer3

software http://www.frodo.wi.mit.edu. Primer character-

istics are listed in Additional file 2.

Preparation of “light” and “dense” lysosomal fractions

The lysosomes and phagolysosomes represent a hetero-

geneous population of organelles. 20% (wt/vol) homoge-

nate was prepared by homogenization of liver tissue in

0.25 M sucrose; 0.001 M EDTA pH = 7.4; heparin 7 IU/

m, 1 mM PMSF, leupeptin 10 μg/ml, aprotinin 10 μg/ml

by Teflon pestle homogenizer. The crude impurities

were removed by brief centrifugation at 850 g. The fat

cake was removed carefully in order to prevent contami-

nation of liquid fraction. The homogenate was centri-

fuged for 10 000 g 20 min 4°C and the resulting pellet

and supernatant were separated. The supernatant con-

tains preferentially the less dense lysosomes with a

higher TAG content ("light lysosomes”), the pellet is

formed by more dense particles ("dense lysosomes”).

Assay of triacylglycerol lipase activity on exogenous

substrate

The optimal conditions for the lipase assay (substrate

concentration, reaction temperature and linear range of

the assay) were determined as described previously [29].

Lysosomal subfractions prepared from the fresh tissue

under iso-osmotic conditions were used for the assay.

The reaction medium (92.5 kBq 3H triolein, 100 μM

triolein, 110 μM lecithin, 0.15 M NaCl, 0.1 M acetate

buffer pH = 4.5) was emulsified by sonication (Hielsler

sonicator UP200S Teltow, Germany). The assay itself

was performed under hypoosmotic conditions (50 mM

sucrose) in order to ensure the release of the enzyme

sequestered within the lysosomes. The liver homogenate

or isolated fractions were incubated for 60 min at 30°C.

The released fatty acids were extracted according to [30]

and counted for radioactivity.

Electrophoretic separation and immunodetection

Liver samples (200 mg) were harvested in situ and

stored in liquid nitrogen until further utilization. The

homogenate was prepared by Ultra-Turax homogenizer

(IKA Worke, Staufen, Germany) in a homogenization

buffer (150 mM NaCl, 2 mM EDTA, 50 mM TRIS, 20

mM glycerolphosphate, 1 mM Na3VO4, 2 mM sodium

pyrophosphate, 1 mM PMSF, leupeptin 10 μg/ml, apro-

tinin 10 μg/ml). The proteins were separated by electro-

phoretic separation under denaturating conditions and

electroblotted to PVDF membranes. The level of phos-

phorylation of PKB kinase and insulin receptor (IR) was

assessed by immunodetection using specific antibodies.

The total expression of PKB and IR protein was deter-

mined on the same membrane after striping and reblot-

ting using specific antibodies. LC3-II content was

determined in the 20% liver homogenate lysed by 2%

SDS at 100°C. The loading control was performed using

rabbit polyclonal antibody to beta actin. The list of anti-

bodies employed in this study is given in Additional file

3. The bands were visualized using ECL and quantified

using FUJI LAS-3000 imager (FUJI FILM, Tokyo, Japan)

and Quantity One software (Biorad, Hercules, CA).

Determination of autophagy intensity

The most frequently used autophagy marker is the

quantification of microtubule-associated protein 1 light

chain 3 (LC3). LC3 is initially synthesized in an unpro-

cessed form, proLC3, which is converted into proteolyti-

cally processed form lacking amino acids from the C-

terminus, LC3-I, and is finally modified into a phospha-

tidylethanolamine-conjugated form, LC3-II. LC3-II is

the only protein marker that is reliably associated with

phagophores, sealed autophagosomes and mature autop-

hagosomes/autolysosomes [31]. The LC3-I and LC3-II

content was determined as described above and the

autophagy intensity was estimated as the LC3-II:LC3-I

ratio.

Determination of DAG content

This method is based on the phosphorylation of DAG in

the sample to DAG-3-phosphate using g35-ATP followed

by quantification of radioactivity in a chlorophorm

extract. Lipids from liver tissue or incubation mixture

were extracted in chloroform/methanol and an aliquot

of chlorophorm phase was evaporated under a stream of

nitrogen. The sample was then solubilised by sonication

in detergent buffer (7.5% n-octyl-b-D-glucopyranoside, 5

mM cardiolipin,1 mM DETAPAC). Reaction buffer (50

mM imidazol/HCl, pH = 6.6, 50 mM NaCl, 12.5 mM

MgCl2, 1 mM EGTA), diacylglycerol kinase and g35-
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ATP were added and incubated 30 min in 25°C. Lipids

were extracted into chloroform/methanol, phases were

separated with 1% HClO4 and the exact volume of

lower chlorophorm phase was determined. An aliquot

was evaporated, resolved in 5% chloroform/methanol

and separated by TLC. Individual populations of lipids

were visualised by iodine vapours, the bands corre-

sponding to DAG were scraped off and the radioactivity

was determined by scintillation counting.

Biochemical analyses

TAG content in liver homogenate was determined after

the extraction according to Folch [32]. The glycogen con-

tent was determined in homogenate after hydrolysis in

30% KOH and expressed as a glucose equivalent (μmoles

per g wet weight). Protein concentration, FFA, - hydroxy-

butyrare, insulin and TAG serum content were deter-

mined using commercially available kits (protein

concentration: QuantiPro BCA Assay kit, Sigma-Aldrich,

St. Louis, MO; FFA: FFA half micro test, Roche Diagnos-

tics, Mannheim Germany; triglycerides: Pliva-Lachema,

Brno Czech Republic; insulin: Mercodia, Uppsala Swe-

den; hydroxybutyrate: RanBut, RANDOX, Crumlin, UK).

Statistical analysis

Data are presented as mean SEM. Statistical analysis was

performed using Kruskal-Wallis test with multiple com-

parisons (n = 5 -7). Differences were considered statisti-

cally significant at the level of p < 0.05.

Results
Effect of Kupffer cells reduction on lipid and glucose

metabolism

At the end of the experiment, we found no difference in

body weight between experimental groups (table 1). As

expected, the adiposity (expressed as the percent of epi-

didymal fat pad weight of the total body weight) was

higher in HF diet administered group but it was not

affected by the gadolinium treatment. HF diet adminis-

tration significantly affected FFA metabolism and abol-

ished the prandial dependent variation in serum FFA

concentrations. Acute gadolinium treatment (two doses

24 and 72 hrs prior the experiment) had no effect on

weight gain and adiposity (Additional file 4: Table S1).

This resulted in a significant elevation of fed FFA serum

levels in both SD and HF groups. Concentration of

ketone bodies in serum may serve as an indicator of

FFA metabolism in the liver. The fasting concentration

of ketone bodies in serum was similar in all groups.

Both HF diet administration and gadolinium treatment

independently led to the increased ketogenesis in fed

state and their effect was additive. HF diet administered

animals exhibited higher triglyceridemia when compared

to their SD fed littermates. GdCl3 treatment led to a

substantial decrease of plasma TAG in HF group while

having no effect in SD group. Fasting serum glucose was

comparable in all groups. Fasting insulinemia was mod-

erately elevated due to the HF diet feeding and GdCl3
administration significantly exacerbated this trend. As

expected, whole body glucose tolerance determined as

area under the curve (AUC) during the oral glucose tol-

erance test was worsened in HF group compared with

SD fed animals. In the GdCl3 treated HF group, we

observed a trend to the worsening of glucose tolerance

but it did not reached statistical significance (p = 0.063).

Nevertheless, a significant difference was found in the

course of OGTT curve, the glucose concentration in 60

min being significantly higher in HF + GdCl3 when

compared with HF diet-only fed animals. No effects

were observed in SD group. In conclusion, KCs reduc-

tion influenced selected parameters of lipid and glucose

metabolism but only in HF group.

Kupffer cells reduction increases lysosomal degradation

of TAG

As it has been recently shown in hepatocytes, a significant

portion of TAG is degraded in lysosomes in the liver and

the autophagy pathway has been proposed as one of the

mechanisms ensuring the TAG degradation in hepatocytes

[33]. According to this hypothesis, the lipid droplets are

engulfed by autophagolysosomal membrane and trans-

ported via autophagy mechanisms into the lysosomes for

degradation. As it was previously demonstrated [29], these

activated lysosomes are less dense ("light”) and could be

separated from the inactive lysosomal pool ("dense”) by

differential centrifugation [34]. Lysosomal lipase (LAL) is

the only lysosomal lipase and this enzyme is active solely

within the lysosomes. It seems that the critical point in

determining its physiological activity is the transportation

of the substrate (lipid droplets) to the site of degradation

(lysosomes). Based on these assumptions, we tested the

effect of KCs reduction on lysosomal TAG degradation

according to three parameters: 1. the distribution of LAL

activity among the light and dense lysosomes; 2. the distri-

bution of LAL protein among the light and dense lyso-

somes and 3. the autophagy intensity determined as LC3-

II/LC3-I ratio.

As shown on Figure 1A, fasting LAL activity asso-

ciated with light lysosomal fraction (i.e. physiologically

active enzyme) was not influenced by diet. In fed ani-

mals, LAL activity in HF group was elevated by approx.

50% compared to their littermates administered SD.

KCs reduction had a significant stimulatory effect on

LAL activity associated with light lysosomal fraction in

both dietary groups and both in fed and starved animals.

Nevertheless, while in SD-starved, SD-fed and HF

-starved groups this elevation remained in the range of

approx 50%, while this elevation in HF -fed group
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reached more than 200%. In contrast to light lysosomal

fraction, the LAL activity determined in dense lysosomes

was comparable in all groups with the exception of the

GdCl3-treated HF -fed animals where we had observed

an approximate 45% decrease of the enzyme activity

(Figure 1B). As shown in Figure 2, GdCl3 in lower doses

(< 1 mM) had no direct effect on LAL activity in vitro

and in higher doses it even inhibited it. This finding

indicates that the observed effect should be ascribed to

the KCs reduction and not to the artificial stimulation

of the enzyme.

The abundance of LAL protein in the light lysosomal

fraction followed the same trend as the distribution of

LAL activity. As shown on Figure 3, HF diet itself

resulted in the increased LAL protein content in light

lysosomes of the fed animals. The effect of HF diet was

markedly exacerbated by GdCl3 treatment. Similar

results were obtained when we determined the autop-

hagy intensity as the LC3-II/LC3-I ratio in the liver

homogenate (Figure 4). As expected, we observed a sig-

nificant decrease of autophagy intensity in SD-fed com-

pared with the SD-starved animals. HF diet abolished

this regulation by increasing the autophagy intensity

especially in the fed state and this effect was signifi-

cantly accentuated in fed animals of HF + GdCl3 group.

This data shows that the reduction of KCs population is

Table 1 Effect of HF diet and Kupffer cells reduction on lipid and glucose metabolism parameters in serum

SD SD + GdCl3 P HF HF + GdCl3 P

body weight (g) 359 ± 3.4 369 ± 11.2 N.S. 365 ± 6.2 372 ± 8.5 N.S.

adiposity (%) 1.2 ± 0.03 1.4 ± 0.07 N.S. 1.6 ± 0.18x 1.8 ± 0.06 N.S.

s-FFA
(mmol/l)

starved 0.8 ± 0.1 0.81 ± 0.04 N.S. 0.54 ± 0.04x 0.46 ± 0.01y N.S.

fed 0.27 ± 0.02 0.43 ± 0.02 0.01 0.5 ± 0.03x 0.67 ± 0.02y 0.01

s-ketone bodies
(mmol/l)

straved 3.1 ± 0.1 3.2 ± 0.1 N.S. 3.1 ± 0.2 2.8 ± 0.4 N.S.

fed 0.16 ± 0.02 0.34 ± 0.01 0.01 0.5 ± 0.05x 1.2 ± 0.2y 0.001

s-TAG (mmol/l) fed 1.1 ± 0.1 1.0 ± 0.1 N.S. 2.0 ± 0.3x 0.8 ± 0.1 0.001

s-glucose (mmol/l) starved 4.3 ± 0.2 4.7 ± 0.3 N.S. 4.6 ± 0.3 4.6 ± 0.2 N.S.

s-insulin
(ng/l)

starved 112 ± 6 125 ± 8 N.S. 126 ± 10x 161 ± 8y 0.05

fed 544 ± 29 474 ± 37 N.S. 472 ± 18 467 ± 12 N.S.

OGTT AUC180 min 1168 ± 27 1094 ± 41 N.S. 1305 ± 29x 1370 ± 15y 0.063

OGTT glucose 60 min, mM 6.5 ± 0.2 6.4 ± 0.24 N.S. 8.7 ± 0.3x 9.5 ± 0.21y 0.05

Fasted animals were deprived of food for 24 hours, fed animals had free access to food. Adiposity was expressed as the ratio of epididymal fat pad weight to the

total body weight [(EWAT/b.wt.)*100]. OGTT = oral glucose tolerance test; AUC = cumulative area under the curve for blood glucose over 180 min. P value

indicates the significance of GdCl3 treatment within each group; x p < 0.05 HF vs SD; y p < 0.05 HF + GdCl3 vs SD + GdCl3. Data are given as mean ± S.E.M., n =

6; OGTT n = 4.

Figure 1 Effect of HFdiet and Kupffer cells reduction on lysosomal lipase activity measured as FFA release from artificial substrate

(3H-triolein). A: light lysosomes; B: dense lysosomes. The lipase activity was measured as the release of fatty acids at pH = 4.5 from3H triolein.

All data are presented together with median. Open symbols = starved animals (S); closed symbols = fed animals (F). ○ ● SD; □ ■ SD + GdCl3; ♦

◊ HF; ▲ ∆ HF + GdCl3.
# p < 0.05 SD + GdCl3vs SD; *p < 0.05, *** p < 0.001 HF + GdCl3 vs HF;

xp < 0.05 HF vs SD.
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associated with the increased lysosomal lipolysis of liver

TAG and suggests the possibility that an increased

autophagy may underlay the observed pro-lypolitic

effect.

Kupffer cells reduction increases the formation of TAG

metabolism intermediates in the liver

KCs reduction was associated with lower TAG content in

the liver of the HF group (table 2) and with increased

ketogenesis (table 1) which provides further indirect evi-

dence supporting the stimulatory effect of GdCl3 treat-

ment on TAG liver degradation. The increased TAG

breakdown may be associated with the increased forma-

tion of TAG degradation products. As shown in table 2,

GdCl3 treatment significantly elevated DAG content in HF

group exacerbating the effect imposed by HF diet itself.

No changes in liver TAG and DAG content due to the

GdCl3 administration were observed in the SD group.

Taken together, our data suggest that in steatotic liver

KCs reduction leads to the increased production of poten-

tially hazardous lipid metabolism intermediates like DAG.

Kupffer cells reduction exacerbates the manifestation of

HF diet induced hepatic insulin resistance

HF diet administration is associated with rapid onset of

hepatic insulin resistance [35]. In our experiments, four

weeks of HF diet administration resulted in attenuation

of insulin-stimulated PKB and insulin receptor phos-

phorylation (Figure 5) and in the significant diminution

of insulin-stimulated liver glycogenesis (table 3). Abla-

tion of KCs had no effect on hepatic insulin sensitivity

in the SD group but it severely exacerbated insulin resis-

tance in the liver in HF diet administered animals. We

detected virtually no effect of insulin on PKB phosphor-

ylation and only very mild insulin-stimulated phosphor-

ylation of insulin receptor on tyrosine. The insulin-

stimulated glycogenesis was decreased compared with

the untreated HF group. These results indicate that KCs

depletion is associated with the further deterioration of

hepatic insulin sensitivity already provoked by HF diet.

Kupffer cells reduction combination with HF diet is

associated with the increase in PKCε activity

PKCε has been implicated as a key player in the onset of

HF diet-induced hepatic insulin resistance. PKCε activa-

tion is reflected by its translocation from cytosol to the

plasma membrane and we used the ratio of relative

abundance of PKCε in the membrane and cytosol frac-

tions as the parameter indicating PKCε activity. As

shown in Figure 6, in animals fed SD PKCε total mem-

brane/cytosol ratio is not influenced by GdCl3 adminis-

tration. HF diet itself led to the increased translocation

Figure 2 Effect of GdCl3 on lysosomal lipase activity in vitro. The GdCl3 was added to the sample 15 min prior the start of the assay; the

lipase activity was measured as the release of fatty acids at pH = 4.5 from 3H triolein. Data represent an average from three independent

experiments.
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of PKCε to the total membrane fraction. Reduction of

KCs population was associated with a marked increase

of PKCε abundance in total membranes at the expense

of its content in the cytosol.

HF diet does not lead to the expansion of hepatic Kupffer

cell population but increases the expression of alternative

activation pathway markers

The levels of two macrophage markers, CD68 and Emr-

1 (F4/80), were used to assess the size of the resident

macrophage population in the liver. The expression of

either of these two markers remained unaltered due to

the HF diet feeding compared with SD group. The

expression of TNFa, classical (pro-inflammatory) activa-

tion pathway marker, was not affected in the HF group.

In contrast to this, the alternative pathway was signifi-

cantly activated in the liver of animals fed HF diet as

demonstrated by the increase of the expression of Arg-

1, Mrc-1 and IL-10 (Figure 7A). Gadolinium administra-

tion led to the approx 60% and 70% reduction of CD 68

and Emr-1 expression, resp., and this reduction was not

dependent on the diet (Figure 7B and 7C). In the SD

group, the expression of classical pro-inflammatory acti-

vation markers was decreased while the alternative acti-

vation was not significantly influenced by this treatment.

In contrast, in the HF group, GdCl3 treatment resulted

in a significant increase of the expression of IL-1b and

TNFa and to a significant decrease of the expression of

Arg-1, Mrc-1 and IL-10 mRNA. Taken together, our

data reveals that administration of HF diet rich in

Figure 3 Effect of HF diet and Kupffer cells reduction on lysosomal lipase protein abundance in light lysosomal fraction. Lysosomal

lipase can degrade intracellular TAG only when lipid droplets and LAL co-localize in autophagolysosomes. Autophagolysosomes “light”

lysosomes) are less dense than inactive lysosomes due to their content of less denselipid droplets and could be separated by differential

centrifugation. The light lysosomal fraction was prepared as described in Material and Methods. All data are presented together with median.

Open symbols = starved animals (S); closed symbols = fed animals (F). ○ ● SD; □ ■ SD + GdCl3; ♦ ◊ HF;▲ ∆ HF + GdCl3.
†p < 0.05,† †p < 0.01,† †

†p < 0.001 fed vs starved; ** p < 0.01, *** p < 0.001 HF + GdCl3 vs HF.
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MUFA itself results in alternative activation of liver

macrophages. Furthermore, the reduction of the KCs

population by gadolinium treatment resulted in a drastic

reduction of alternatively activated population of liver

macrophages and to a significant up-regulation of the

expression of classical, i.e. pro-inflammatory markers in

steatotic liver. No such effect was observed in the SD

group.

Figure 4 Effect of HF diet and Kupffer cells reduction on autophagy intensity determined as LC3-II expression in the liver. During the

autophagosome formation, cytosolic LC3-I protein is lipidated to form LC3-II. LC3-II is incorporated into autophagosome membrane and remains

there during the whole autophagy process until the stage of late lysosome. The formation of LC3-II is thus considered to be an indicator of

autophagy intensity. The quantification of LC3-I and LC3-II in liver homogenate was performed by immunodetection. Data are expressed as LC3-

II/LC3-I ratio. All data are presented together with median. Open symbols = starved animals (S); closed symbols = fed animals (F). ○ ● SD; □ ■

SD + GdCl3; ♦ ◊ HF;▲ ∆ HF + GdCl3.
† †p < 0.01, † † †p < 0.001 fed vs starved;#p < 0.5 SD + GdCl3 vs SD; *** p < 0.001 HF + GdCl3 vs HF;

xxxp <

0.001 HF vs SD.

Table 2 Effect of HF diet and Kupffer cells reduction on triacylglycerol content in the liver

SD SD + GdCl3 P HF HF + GdCl3 P

TAG (μmol/g) fasted 7.1 ± 0.2 8.1 ± 0.4 N.S. 21.4 ± 1.4x 14.1 ± 1.7y 0.05

fed 4.4 ± 0.4 5.3 ± 0.4 N.S. 25.2 ± 0.7x 16.4 ± 0.3y 0.01

DAG (nmol/g) fasted 10.8 ± 0.3 12.4 ± 0.6 N.S. 31.2 ± 1.1x 54.6 ± 2.5y 0.01

fed 7.3 ± 0.2 6.8 ± 0.2 N.S. 36.7 ± 1.8x 69.3 ± 2.1y 0.001

P value indicates the significance of GdCl3 treatment within each group; x p < 0.05 HF vs SD; y p < 0.05 HF + GdCl3 vs SD + GdCl3. Data are given as mean ± S.E.

M., n = 6.
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Discussion
In the present study, we provide evidence that KCs

under certain circumstances play a protective role in the

development of steatosis-induced insulin resistance. Our

conclusion is based on several findings. A HF diet rich

in MUFA is associated with a shift towards alternative

rather than classical activation pathway of macrophages.

In the steatotic liver, the reduction of KCs population

by GdCl3 negatively affected alternatively activated

macrophages and enhanced the expression of pro-

inflammatory markers TNFa and IL-1b It was further

associated with a significant increase of autophagy, lyso-

somal lipolysis, increased production of potentially

hazardous TAG metabolism intermediates (DAG) and

PKCε activation in the liver. Finally, the KCs reduction

resulted in a significant exacerbation of HF diet-induced

hepatic insulin resistance.

It has been recognized that KCs fulfill a dual role -

they may function either as mediator of damage or as a

protector during processes of regeneration and repair

[36]. Strategies employing depletion or modulation of

KCs, such as application of gadolinium chloride or lipo-

some-encapsulated dichloromethylene bisphosphonate

(Cl2-MBP) were effective to protect against liver injury

induced by thioacetamide [37], carbon tetrachloride

[38], alcohol [39] and ischemia/reperfusion [40]. On the

other hand, there are clear indications that KCs can

mediate protection and that their depletion increases

liver injury after hepatectomy [41] or after total hepatic

ischemia/reperfusion injury with bowel congestion [42].

Nevertheless, the role of KCs in the modification of

metabolic fitness of the liver remains enigmatic. Several

recent studies explored the role of KCs in relation to

hepatic steatosis and insulin resistance which reported

Figure 5 Effect of HF diet and Kupffer cells reduction on insulin signalling. A: PKB (Ser473) phosphorylation, B: insulin receptor (phospho

Y1158) phosphorylation. The results are expressed as fold increase in the insulin-stimulated state relative to the basal state. Representative

Western blot is shown above each graph. The basal level of PKB-and IR-phosphorylation was determined in the homogenate prepared from the

liver of 24 hours starved animals. The effect of insulin was determined in identically processed samples from animals which had free access to

food and 30 min prior to decapitation were administered insulin 6 U/kg. The total PKB and IR expression was determined after striping the

membranes and re-blotting with anti-PKB and anti-IR antibodies, resp. All data are presented together with median. gray ○ SD; gray □ SD +

GdCl3; gray ◊ HF; gray ∆ HF + GdCl3. *** p < 0.001 HF + GdCl3 vs HF;
x p < 0.05, xx p < 0.01 HF vs SD.

Table 3 Effect of HF diet and Kupffer cells reduction on glycogen content in the liver

SD SD + GdCl3 P HF HF + GdCl3 P

glycogen (μmol/g) starved 12 ± 2.6 65 ± 8.5 0.01 17 ± 1.6 49 ± 8 0.05

fed + ins 226 ± 13 196 ± 13 N.S. 198 ± 19 110 ± 18 0.01

Animals in “fed + ins” group were provided food ad libitum and 30 min prior decapitation were administered insulin (6 U/kg b.wt.) i.p. The glycogen is expressed

in glucose equivalents (μmoles per g wet weight) P value indicates the significance of GdCl3 treatment within each group; y p < 0.05 HF + GdCl3 vs SD + GdCl3.

Data are given as mean ± S.E.M., n = 6.
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conflicting results since KCs depletion has been asso-

ciated both with improvement [23] or worsening [43] of

hepatic insulin resistance. Unfortunately, the described

experiments vary greatly in experimental design which

may profoundly influence the conclusions drawn from

these studies. We can identify several “areas of disagree-

ment” in this field.

In contrast to adipose tissue, the literature is not uni-

form about the effect of HF diet on the macrophage

infiltration into liver. Some studies [25,44,45] report a

slight increase in liver macrophages but most of the

authors found no macrophage infiltration in response to

HF diet [23,46-48]. In our study, we found no changes

either in CD68 or Emr1 expression in HF diet adminis-

tered animals compared with the SD group. Similarly,

quite opposite results were reported when the activation

status of liver macrophages was concerned. Classical (i.e.

proinflammatory) activation was reported after 2 weeks

of HF diet based on milk fat [43] containing approx.

70% of SFA and 1-5% of trans FA, or after 3 days of HF

diet containing lard [25]. The later data are derived

from a 3-day diet administration which indicates the

existence of early inflammatory phase that occurs during

the first days of HF diet administration and may contri-

bute to the rapid onset of hepatic insulin resistance.

Nevertheless, with the increasing duration (15 wks) of

feeding HF diet containing MUFA (lard), the alternative

activation of KCs prevails and imposes the immune-tol-

erant, anti-inflammatory state of the liver [16]. This

could be considered as an adaptive mechanism counter-

acting the negative influence of a HF diet. Recent evi-

dence shows that an important factor driving the switch

between pro- and anti-inflammatory programs of resi-

dent macrophages may be the composition of dietary fat

and, depending on the fatty acid composition, the effect

may be highly variable; the pro-inflammatory potential

Figure 6 The effect of HF diet and Kupffer cells reduction on PKCε activation in the liver. Representative Western blot is shown in the

upper part of the figure. The PKCε activation was assessed according to its translocation from cytosolic to membrane fraction and expressed as

the ratio of relative densities of the bands in the membrane fraction and the corresponding ones in cytosolic fraction. All data are presented

together with median. gray ○ SD; gray □ SD + GdCl3; gray ◊ HF; gray ∆ HF + GdCl3.
xxp < 0.01 SD vs HF; *** p < 0.001 HF + GdCl3 vs HF.
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Figure 7 Effect of HF diet and Kupffer cells reduction on macrophage classical and alternative activation markers. A: HF vs SD group; B:

SD + GdCl3 vs SD group; C: HF + GdCl3 vs SD group. GdCl3 was administered in two doses 72 and 24 hrs prior the experiment (10 mg/kg, i.p.).

The expression of individual macrophage markers mRNA was determined by RT-PCR. Data are expressed as fold change related to untreated SD

group with expression in standard diet (SD) arbitrary set at 1 (dotted line). gray ○ SD; gray □ SD + GdCl3; gray ◊ HF; gray ∆ HF + GdCl3.
xxp <

0.01 SD vs HF; #p < 0.05, ### p < 0.001 SD + GdCl3 vs SD; *p < 0.05, **p < 0.01, ***p < 0.001 HF + GdCl3 vs HF.
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is attributed to SFA while MUFA and PUFA exhibit an

inhibitory effect on Toll like receptors-dependent

inflammatory pathway and rather stimulate alternative

activation. Shi et al. [47] demonstrated that SFA (parti-

cularly C14:0, C16:0 and C18:0) stimulated TNFa and

IL-6 production from RAW246.7 macrophage cell line

while no stimulation was observed after treatment with

MUFA or PUFA fatty acids. Pretreatment of RAW 264.7

macrophages with palmitate resulted in their pro-

inflammatory activation and the conditioned palmitate-

free medium from these macrophages which was cap-

able of inducing insulin resistance in myoblasts [49,50].

Wen et al. [51] reported that saturated fatty acid (palmi-

tate) but not unsaturated fatty acid (oleate) induced

NLRP3-ASP inflammasome activation in hematopoietic

cells. In contrast, PUFA (especially EPA and DHA)

treatment ameliorated LPS-induced pro-inflammatory

signaling in macrophages and enhanced the insulin sen-

sitivity of 3T3L1 adipocytes in co-culture experiments

[52,53]. We have previously shown that 4 wks adminis-

tration of the diet rich in trans FA (60 cal% fat; 50% of

fat in the form of trans MUFA) resulted in a highly sig-

nificant elevation of TNFa and IL-1b expression in the

liver [54].

In our experiments, quantitative RT-PCR revealed that

4 weeks of administration of the HF diet rich in MUFA

led to the increased expression of arginase-1, manose

receptor and IL-10 which indicates the alternative acti-

vation of liver macrophages. In contrast to this, we did

not find any sign of the increased pro-inflammatory sig-

naling. Interestingly, in HF group, the reduction of KCs

population by GdCl3 significantly down-regulated the

expression of alternative macrophage markers (Arg1,

Mrc1) and KCs derived protective cytokine (IL-10)

while increasing the expression of pro-inflammatory

TNFa and IL-6. We hypothesize that the observed

increase in these markers in the liver may reflect the

infiltration of macrophages from circulation which have

already been pro-inflammatory activated, i.e. in adipose

tissue. Much less of an effect was observed in SD admi-

nistered animals.

It has been demonstrated that KCs depletion either

ameliorates [23] or aggravates [25,43] hepatic insulin

resistance. The above mentioned observation (the

change of the relative abundance of the anti- and pro-

inflammatory activated macrophages) may provide the

explanation for the different results obtained after acute

and chronic GdCl3 activation. The acute KCs reduction

has different effects on hepatic insulin resistance

induced by HF diets with different fat composition. HF

diet rich in trans FA with high inflammation-stimulating

potential evoked severe hepatic insulin resistance and

the short-term KCs reduction failed to induce any

changes in it, either positive or negative [54]. We

explain this by the persisting TNFa expression in the

liver as we were not able to completely eliminate classi-

cally activated macrophages (TNFa liver expression: pre

GdCl3 31.3 fold over SD; post GdCl3 10 fold over SD).

In contrast, HF diet rich in MUFA with low inflamma-

tory potential elicited less pronounced hepatic IR but

the IR symptoms which were exacerbated by short-term

GdCl3 application. Neyrinck [26] using a similar diet (60

cal% as fat, lard) showed that 4 weeks of chronic GdCl3
administration resulted in the enhanced whole-body and

hepatic insulin sensitivity. Nevertheless, chronically

administered GdCl3 mice exhibited markedly reduced

weight gain on the high fat diet. Improved insulin sensi-

tivity and glucose tolerance in gadolinium treated mice

could be due to the decreased weight gain independent

of KCs function.

A highly controversial issue is the effect of KCs on

hepatic steatosis. KCs have been shown to promote stea-

tosis [43], to reduce steatosis [23] or to have no effect

on it [55]. Interestingly, in our experiments, KCs deple-

tion led to a concomitant reduction of liver TAG con-

tent. This finding is rather surprising as it has been

repeatedly confirmed that ectopic TAG accumulation in

the liver is associated with the development of insulin

resistance. Nevertheless, studies carried out on a mice

model of liver diacylglycerol acyltransferaze-2 overex-

pression exhibiting severe steatosis but normal hepatic

insulin sensitivity [56] showed that steatosis per se could

be dissociated from the onset if hepatic insulin resis-

tance. According to the currently accepted hypothesis,

inert TAG molecule itself probably does not interfere

with insulin signaling but the negative effects of steatosis

are mediated rather by bioactive intermediates of lipid

metabolism like DAG or Lc-AcCoA [57]. This hypoth-

esis is in line with our observation that KCs depletion is

associated not only with hepatic insulin resistance but

also with significantly accentuated lipolysis and an

increased DAG content.

The exact mechanism of the beneficial effect of alter-

natively activated macrophages on the metabolism of

fatty hepatocytes is still a matter of debate. It has been

proposed that alternatively activated macrophages may

attenuate tissue inflammation by paracrine action which

leads to the improved insulin signaling [6,58]. Another

hypothesis proposes that alternatively activated macro-

phages may secrete trophic factors that act in a para-

crine or endocrine manner to enhance oxidative

metabolism in peripheral tissues [6]. Our data indicates

the existence of another mechanism of KCs influence

on hepatocytes. In our study, we saw that the reduction

of KCs population by GdCl3 resulted in a shift towards

pro-inflammatory activation with a concomitant

decrease of alternative activation. As has been recently

shown, pro-inflammatory cytokines, in particular TNF-
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a, IL-1, IL-2 and IL-6, stimulate autophagy while cyto-

kines produced by alternatively activated KCs, Il-4, IL-

10 and IL-13, are inhibitory [59]. We suggest that the

reduction of alternatively activated, IL-10 producing

macrophages results in the enhancement of autophagy

and consequent stimulation of lysosomal lipolysis. This

effect could be further potentiated by the increased pro-

duction of pro-autophagic cytokines like TNFa. In our

experiments we observed that the reduction of KCs

population resulted in highly significant increase of lyso-

somal TAG degradation in the steatotic, but not in the

normal, liver. The main products of lysosomal lipase

action on the TAG molecule are 1,2-sn-DAG and one

molecule of fatty acid while the degradation to monoa-

cylglycerol or glycerol and FFA is negligible [60]. 1,2-sn-

DAG is an important intracellular signaling molecule

and it is the known activator of PKCε [61]. Recently, it

has been shown that fat-induced hepatic insulin resis-

tance may result from activation of PKCε and its down-

stream targets [35,62]. Nevertheless, the source of DAG

remained unidentified. The increased DAG content due

to the increased flux through TAG synthetic pathway

and the following PKCε activation was described in HF

diet-fed animals [63]. However, DAG is also an interme-

diator in the TAG degradation pathway that is accentu-

ated after GdCl3 treatment. Our findings suggest that

DAG originating from the increased lipolysis could act

as a PKCε activator and contributes to the worsening of

hepatic insulin sensitivity after KCs reduction.

Conclusions
We found that a HF diet rich in MUFA triggers the

alternative activation program in KCs. In the steatotic

liver, a reduction of the KCs population was associated

with a decrease of alternative activation and with a shift

towards the expression of pro-inflammatory activation

markers, with the increased autophagy, elevated lysoso-

mal lipolysis, increased formation of DAG, PKCε activa-

tion and marked exacerbation of HF diet-induced

hepatic insulin resistance. We propose that in the pre-

sence of high MUFA content, the population of alterna-

tively activated resident liver macrophages may mediate

the beneficial effects on liver insulin sensitivity and alle-

viate the metabolic disturbances imposed by a HF diet

feeding and steatosis.
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