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Abstract

Real-time rendering of triangulated surfaces has attracted
growing interest in the last few years. However, interactive visu-
alization of very large scale grid digital elevation models is still
a hard problem. The graphics load must be controlled by an
adaptive surface triangulation and by taking advantage of dif-
ferent levels of detail. Furthermore, the management of the visi-
ble scene requires efficient access to the terrain database. We
describe a all-in-one visualization system which integrates
adaptive triangulation, dynamic scene management and spatial
data handling. The triangulation model is based on the
restricted quadtree triangulation. Furthermore, we present new
algorithms of the restricted quadtree triangulation. These
include among others exact error approximation, progressive
meshing, performance enhancements and spatial access.

Keywords algorithms, computer graphics, virtual reality, trian-
gulated surfaces, terrain visualization, terascale visualization

1. Introduction

Interactive visualization of very large scale terrain data brings up
a wealth of problems. The main problem in real-time graphics is
rendering efficiency. To best exploit the rendering performance,
the scene complexity must be reduced as much as possible with-
out leading to an inferior visual representation. Therefore, the
geometry simplification must be controlled by an approximation
error threshold. Another way to increase efficiency is the use of
different levels of detail (LODs) for different areas of the visible
scene. Objects are displayed in lower resolutions – with higher
approximation errors – the farther away they are from the view
focus.

Large-scale terrains are usually too large to be displayed as
a whole, even when using multiple LODs. For instance, the grid
digital elevation model of Switzerland at 25 meter grid-resolu-
tion consists of more than 120 million triangles. Therefore, only
a fraction of such an extensive model can be rendered at an inter-
active frame-rate. This partial scene, however, must be updated
dynamically according to changes of the view parameters.
Therefore, the data structure holding the terrain data must sup-
port spatial access. Additionally, an approximation error param-
eter is specified to indicate the correct LOD. Furthermore,
incremental refinement must be supported. Efficient storage and
compact topology is required to realize a small database and
allow fast transmission.

The triangulation model is the core structure for every ter-
rain surface visualization system. To achieve low complexity
without negative impact on accuracy, the triangulation must be
adaptive to the terrain surface characteristics. Furthermore, the
triangulation model must provide means to extract surface repre-
sentations at variable precisions so that multiple LODs can be
supported. The following list briefly recalls the requirements for
the visualization system, and in particular for the triangulation
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model. The list is not sorted by any priority, it is rather sorted by
related topics.

1. fast access to large scene database

2. effective database storage management

3. variable resolution database access

4. terse topology representation

5. quick adaptive triangulation

6. dynamic visible scene management

7. multiresolution visualization

8. high-performance geometry rendering

9. continuous level of detail rendering

In Section 2 we briefly discuss similar terrain visualization
approaches. Section 3 introduces the restricted quadtree triangu-
lation. Two new construction algorithms are presented in
Section 4, and exact error approximation is explained in
Section 5. Performance issues are discussed in Section 7, and
support of progressive meshing is described in Section 6. Sec-
tions 8, 9 and 10 discuss dynamic data handling, continuous
LOD rendering, and storage. Experiments are presented in
Section 11, and Section 12 concludes the paper with a compari-
son to other multiresolution triangulation models. More detailed
information on all sections can also be found in [11,10].

2. Related work

In [8,9] the restricted quadtree triangulation (RQT) was first
applied to terrain visualization. Their contribution was an effi-
cient screen-space error metric calculation, and efficient scene
culling and vertex selection according to this error metric. Fur-
thermore, they presented a cumbersome triangle strip construc-
tion algorithm. A second application of the RQT to terrain
visualization is described in [5]. They introduce a different nota-
tion for the same class of restricted quadtree meshes. The main
contribution was a priority-queue driven mesh refinement and a
combination of object- and screen-space error metric.

In contrast to [8,9] we provide two alternative vertex selec-
tion algorithms, and provide a more intuitive triangle strip con-
struction method. Furthermore, we explain exact error
approximation based on the RQT. Contrarily to [5] we present
an error calculation that can also handle non-monotonic error
metrics which is essential to extract exact approximations
according to the L∞-norm for a broader class of error metrics.
Moreover, in extension to the previous applications, we combine
the RQT with dynamic scene management, spatial access and
progressive meshing in an integrated large scale terrain visual-
ization system.

Other multiresolution triangulation models which can han-
dle different classes of meshes are considered in the conclusion
as well.

3. Restricted quadtree triangulation

The RQT is an adaptive, hierarchical triangulation model. In
[17] the restricted quadtree was used to triangulate a parametric
surface. However, no algorithm was provided to efficiently build
the restricted one from a plain quadtree. In addition to the algo-
rithms in [14], we will provide two slightly different construc-
tion methods, one theoretically optimal in the sense of [13] and
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an implementation-efficient one. Furthermore, we present a new
triangle strip construction, progressive meshing and spatial
access, all based on the restricted quadtree. Because of space
limitations only preliminary details are presented in this intro-
duction.

The assignment of grid points to levels in the quadtree
hierarchy is shown in Figure 1, with the root being level 0.
Given the grid size dimension  and points

, the points on lower levels  are given
by

. Note that the resolution  is level dependent.
The center-vertices  denote points of Ll which are
located in the center of a quadtree block on level l-1 (white
points in Figure 1). Let  be all points down
to level l, and  be the vertices on level l of an unbal-
anced restricted quadtree Q.

FIGURE 1. Hierarchy levels

An example of the recursive triangulation of a plain
quadtree is shown in Figure 2. However, cracks can occur in the
corresponding three-dimensional surface as shown on the right.
To guarantee a matching triangulation, cracks have to be
avoided. In [17] this was granted by the restriction that adjacent
quadtree blocks differ by at most one level in the quadtree hier-
archy, and that every quadtree block is triangulated by eight tri-
angles, or two triangles per boundary edge, unless the edge
borders a larger block. However, this method may produce extra
triangles, and provides no deterministic algorithm to convert a
plain quadtree into a restricted.

FIGURE 2. Nonrestricted quadtree triangulation

Another way is to represent the restriction of the RQT as a
dependency graph on the grid, see also [9]. Every vertex
depends on two other vertices of the same or the next higher
level in the quadtree hierarchy. This means that if the vertex is
selected for triangulation then the related must be selected too.
The dependency graph for levels 1 and 2 is depicted in Figure 3.
We use the notation  to refer to the com-
plete dependency graph, and includes all vertices

. The dependency relation is denoted by
the directed edges set

.

FIGURE 3. Dependency graph

The dependency graph Gdep prevents cracks by consis-
tently restricting the selection of points such that a matching tri-
angulation results. Figure 4 shows the restricted version of the
quadtree triangulation from Figure 2, with the dependency graph
shown on the right. Using Gdep, any given set of points on the
grid can now decisively be turned into a restricted quadtree by
resolving the dependency rules. Note that the triangulation can
efficiently be constructed because it is given implicitly, no geo-
metric computations such as in-circle tests need to be pre-
formed.

FIGURE 4. Restricted quadtree triangulation

4. Restricted quadtree construction

For the construction, we assume that the decision of selecting a
point due to its approximation error can be determined by a
threshold. The calculation of a suitable approximation error is
described in Section 5. By collecting all vertices following the
dependency graph the selection is completed to a restricted
quadtree. Note that a quadtree data structure on a (2k+1) ×
(2k+1) grid can be implemented using index operations and
recursion instead of using pointers and nodes. We call this an
implicit quadtree defined on a grid.

In our first top-down algorithm we assume that the eleva-
tion points are kept in a region quadtree, and that an approxima-
tion error is associated to every point. Additionally, each node
knows the maximal error of its own triangulation with respect to
all points stored in that subtree. SelectVertices() selects all points
of the current node satisfying the approximation threshold, and
recursively traverses the given quadtree. For every selected ver-
tex v, ResolveDependencies() adds the related points

 to the current selection, and follows the
dependency graph.

The selection result QSet can be a new quadtree, or
abstract in the sense that it is not another data structure but a
selection of vertices in the original quadtree structure. Moreover,
this restricted quadtree selection can even just be implicitly
defined on the height field grid. For that, the procedures
set.insert() and set.contains() can be implemented by setting and
testing a flag for every point. The complexity of Algorithm 1 and
the respective triangulation is linear in the size of the extracted
restricted quadtree. Moreover, the complexity is theoretically
optimal in the sense of [13] as the RQT is a multi-triangulation.
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Theorem 4.1 The number of calls to set.contains() and

set.insert() of Algorithm 1 is linear in the size of the resulting

restricted quadtree Q.

Proof A node of the input quadtree is required if the subtree of
that node contains a point that does not satisfy the approxima-
tion tolerance. All required nodes are visited once by SelectVer-
tices(). The resulting restricted quadtree Q consists at least of all
required nodes of the input quadtree. Thus we have O(|Q|) calls
to set.insert() and set.contains() by SelectVertices().

For every selected point in SelectVertices(), ResolveDepen-
dencies() is called once. The recursion in ResolveDependen-
cies() visits all vertices of Q at most four times as no more than
four arcs of the dependency graph end in one vertex, see also
Figure 3. Hence also here we have O(|Q|) calls to set.insert() and
set.contains() by ResolveDependencies().

Contrarily to the top-down method in [14] we do not pre-
dict and interpolate next-level vertices to guide recursive tree
traversal, instead we use the exact approximation errors of
Section 5. Also the restriction of the quadtree is handled differ-
ently, using the dependency relation Edep.

Our second algorithm operates iteratively bottom-up. Start-
ing at the lowest level with the highest resolution, the algorithm
iterates over all levels examining the particular points on each.
But for the organization of the points in a matrix, the same pre-
sumptions hold as for Algorithm 1. During the inspection within
a level a vertex is selected if its error exceeds the tolerance
threshold, or if the point is marked from a dependency relation.
Additionally, the two related vertices are marked accordingly.

In contrast to Algorithm 1, this bottom-up approach visits
vertices only once. However, the marking mechanism has to be
studied carefully such that no dependencies might be left out in
any case. Consequently, no recursive resolution of the depen-
dency graph must be performed, as well as no set-inclusion tests
are needed to stop recursion. As in Algorithm 1, the selected
vertices are stored in a query answer data structure, or form an
implicit quadtree. The efficiency of Algorithm 2 results overall
from a low number of simple operations computed per vertex.

Theorem 4.2 Algorithm 2 runs in time linear of the input data

size, and no dependency relation of Gdep is omitted.

Proof The while loop in Algorithm 2 iterates over all levels, and
for each level the inner foreach loop must only visit points on
that level. For a level l and the corresponding grid resolution dl
only the points on that level given by

 are
visited. Hence every vertex is visited exactly once which sums
up to O(n) for n input points.

To further guarantee consideration of all relevant depen-
dencies of Gdep, the non center-vertices  have to be
examined first within a level. This is sufficient because the
dependencies of  point to , and  point
to vertices on level , see also Figure 3. For the inner foreach
loop this can be achieved by first visiting the points

 and afterwards
. (In this context,  abbreviates

 in this context)

In comparison to the algorithms in [14], we do not have to
deal with insertion or merging of nodes, or examine neighboring
nodes if we use an implicit quadtree.

5. Exact error approximation

We present an error metric in the object space to exactly control
the approximation accuracy. Our error  for a Point P and a
triangulation T is the point’s euclidean distance  to the
triangle  with .  is the triangle domain
in the x,y-projection IR2. If  then .
Therefore, the error of T is the maximal error of all points not in
T, given by . We combine the
simplification idea of [4] with the partial order of Gdep to calcu-
late .

The best triangulation not including  is
, and without , it is

. The covering of P are
all triangles affected by the selection of P:

. Given the
inverse dependency relation , the tran-
sitive closure of P is defined as the set of vertices:

Thus the approximation error of  is the maximum
error with respect to Cov(P) of all points in :

. (EQ 1)

Figure 5 illustrates a two-dimensional analog where the
levels and the dependency graph are:
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ALGORITHM 1. Recursive restricted quadtree construction

PROCEDURE SelectVertices(node: QTree; errmax: INT;
VAR set: QSet);
VAR v: Vertex; son: POINTER TO QTree;
BEGIN

FOREACH v IN node.vertices() DO
IF v.error >= errmax AND NOT set.contains(v) THEN

set.insert(v);
ResolveDependencies(v, set)

ENDIF
END;
FOREACH son IN node.descendents() DO

IF son.maxerror() >= errmax THEN
SelectVertices(son, errmax, set)

ENDIF
END

END SelectVertices;

PROCEDURE ResolveDependencies(v: Vertex; VAR set:
QSet);
VAR dep: Vertex;
BEGIN

dep := v.left();
IF NOT set.contains(dep) THEN

set.insert(dep);
ResolveDependencies(dep, set)

ENDIF;
dep := v.right();
IF NOT set.contains(dep) THEN

set.insert(dep);
ResolveDependencies(dep, set)

ENDIF
END ResolveDependencies;

ALGORITHM 2. Iterative restricted quadtree construction

PROCEDURE CollectVertices(field: Matrix; n, errmax: INT;
VAR set: QTree);
VAR l: INT; v: Vertex;
BEGIN

l := log2(n-1);
WHILE l >= 0 DO

FOREACH v IN field.verticesOfLevel(l)
IF v.error >= errmax OR v.marked THEN

set.insert(v);
v.left().marked := TRUE;
v.right().marked := TRUE

ENDIF;
v.marked := FALSE

END;
DEC(l)

END
END CollectVertices;
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For example, P5 is assigned the error d‘8 because this is the
maximum error of all vertices in

 to the line-approxima-
tion , especially . On the next level however, the
error of P3 is exactly d3, because no other vertices in

 have a bigger distance to .

FIGURE 5. Error calculation, 2D analog to restricted
quadtree

A triangulation which satisfies the error tolerance ε every-
where on the input data is called an ε-approximation. Using
eT(P) of Equation 1 we can construct an ε-approximation even
for other non-monotonic error metrics in contrast to [5], and
solve the exact approximation problem of restricted quadtrees
mentioned in [2]. The algorithms presented in [14] cannot pro-
vide an exact ε-approximation either for non-monotonic error
metrics because they do not take into account errors of lower
level vertices in .

6. Progressive meshing

Progressive meshing denotes the construction and transmission
of a triangulation such that an intermediate triangulation can be
updated easily given only a few new elements such as points,
edges or triangles, see also [7]. Preferably, an update affects the
topology only nearby the new elements and can be computed in
constant time. Most hierarchical triangulations [2,3] support
progressive meshing.

A breadth-first traversal of the restricted quadtree Q builds
up the progressive mesh sequence of vertices. However, on level
l the vertices  must be transmitted first to guarantee a
RQT. Using ≤ as the ordering relation the progressive mesh
sequence is:

. (EQ 2)

Each update (vertex insert) splits exactly two triangles up
into four, and can be computed in constant time. A vertex loca-
tion operation is needed to select the right insertion point using

 time in a quadtree.

Lemma 6.1 For a given restricted quadtree Q, the vertex order-

ing of Equation 2 provides a progressive, matching triangula-

tion.

Proof This ordering takes into account all dependency relations
of Q. No vertex is used before its related vertices are. Therefore,
any sub-quadtree  is a restricted
quadtree.

A restricted quadtree ε-approximation Qε can also incre-
mentally be updated to a smaller approximation error δ by add-
ing an error-range quadtree  ( ). For
we select vertices according to an error-range instead of compar-
ing to a threshold. Qε equals to , with . A
progressive mesh sequence is then:

.

Transmitting each quadtree’s vertices ordered as in Equa-
tion 2 results in a smooth progressive meshing. To improve effi-
ciency,  can be inserted as a whole. Traversing

 and depth-first gives a linear
time update complexity .

7. Fast triangulation

To enhance performance of the RQT, we introduce a triangle
strip construction that is more intuitive than the one presented in
[9], and that operates recursively on the quadtree data structure.
Figure 6 shows the idea of a triangle strip for a RQT. We recur-
sively circle counter-clock wise around the quadtree block cen-
ters and output every triangle once with alternating orientation.
A triangle strip can also be regarded as a space filling curve vis-
iting all triangles, or as a Hamiltonian path in the dual graph of
the triangulation, see Figure 6 on the right.

FIGURE 6. RQT triangle strip

For each quadtree block, we can specify the corner-vertex
where the triangle strip path enters to the right (inlet) and leaves
the block on the left (outlet). Therewith, all blocks can be char-
acterized by two rotation invariant path types shown in Figure 7,
together with the hierarchical decomposition. To join the trian-
gle strips of two quadtree blocks, the first and last edge of a path
must be on the block border. Some triangulation rules for differ-
ent block types are depicted in Figure 7 as well. With this trian-
gulation scheme it is possible to create a triangle mesh in linear
time.

FIGURE 7. Triangle strip decomposition
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Theorem 7.1 A triangle strip for the restricted quadtree Q can

be constructed in time linear in the size of Q.

Proof The quadtree traversal is limited by the one- and two-pass
recursion schemes. Only the two-pass nodes are visited exactly
twice, once for each inlet-outlet path. Therefore, the number of
nodes processed is at most twice the number of nodes in the
quadtree. Thus we visit O(|Q|) nodes.

Now, for each inlet-outlet path we have to show that the
corresponding sequence of vertices can be created in constant
time. Note that a quadtree block with only two triangles is trian-
gulated in its ancestor block, see also Figures 2 and 7. Therefore,
every visited block has a center-vertex called c. The other verti-
ces are numbered counter-clock wise from the inlet = 0 to the
outlet = k. Each triangle strip sequence of vertices for an inlet-
outlet path consists of:

The size of such a sequence is limited by15 if all vertices
are needed for triangulation. Therefore, each inlet-outlet triangle
strip sequence can be generated in constant time.

Besides the triangulation, also the construction of the
restricted quadtree can be optimized. After calculating the
approximation errors as described in Section 5, we maximize it
on behalf of all vertices in the transitive closure:

. (EQ 3)

Consequently, dependencies are already encoded in the
error values, and  has not to be resolved because
R is automatically selected if P is, since  from
Equation 3. Therefore, the construction of a restricted quadtree
is simplified to the selection of all vertices satisfying the
requested error threshold ε.

Theorem 7.2 The set  is a restricted

quadtree, given the error  is calculated as in Equation 1

and maximized according to Equation 3.

Proof Assume that Q is not a restricted quadtree, then
 and .

However, because of  and Equation 3 we have
. Because of  we conclude that

 in contradiction to the assumption.

8. Dynamic scene management

We use a windowing concept as shown in Figure 8 to visualize
very large terrain databases, because we do not assume that the
whole terrain database is in main memory. Furthermore, we do
not restrict access to a per file basis as in [6,15,16]. Our visible
scene always represents a window onto the world. A partition of
the visible scene into rectangular patches as shown in Figure 8,
efficiently supports scene updates. Furthermore, the database
reloads can be composed from fixed sized range-queries.

FIGURE 8. Dynamic scene update

Besides supporting culling of invisible patches (Figure 16),
this scene map can also be used to assign different levels of
detail (LODs) to different patches (Figure 17). Refer to

Section 9 for details on LOD handling. The scene map is not
updated for every small variation of view position, view frustum
coordinates or LOD distribution. However, an update occurs
only when the variation exceeds a specific threshold. This
approach of deferred cumulative updates helps to reduce the
data management costs significantly without severe loss of dis-
play quality. Additionally, it provides further means to tailor the
visualization system to available resources.

The dynamic scene manager maintains each terrain patch
in a quadtree data structure. Whenever an update is scheduled, a
RQT reflecting the new situation is extracted and provided for
rendering the patch at the requested LOD. The restricted
quadtree is also the basic transfer and query unit used for reload-
ing or updating a patch from the terrain database.

9. Continuous LOD rendering

Continuous LOD stands for three different aspects of multireso-
lution visualization:

1. representation of a scene in an (almost) unlimited num-
ber of different LODs,

2. display different parts of a scene at different resolutions
without discontinuities in between,

3. smooth changes between different LODs of the same
scene.

The first aspect is handled by the restricted quadtree trian-
gulation described in Section 3. Very important is that the differ-
ent LODs do not have to be precomputed in advance and stored
redundantly along with the original full-resolution model as it is
the case in [15,16].

For the second aspect, an independent LOD is assigned to
each terrain patch, using the object-space error metric of
Section 5 that defines the approximation accuracy. The LOD is
assigned based on relative distance to viewpoint and view direc-
tion, as shown in Figure 9, and demonstrated in a graphical
example in Figure 15. After a terrain patch is loaded for the first
time, LOD updates are performed incrementally. Note that
unused vertices are never deleted until the complete patch is
thrown out of the scene map.

FIGURE 9. LOD distribution

Avoiding discontinuity, between regions of different ter-
rain complexity, is another requirement of aspect two of continu-
ous LOD rendering. This is a hard problem for multiresolution
triangulations [1,3], however, efficiently solved for grid-based
inputs by the RQT. Nevertheless, neatly stitching together inde-
pendent terrain patches of different resolutions is another prob-
lem. In [8] discontinuities were allowed between quadtree
blocks, whereas [15,16] solved the problem by consistently tri-
angulating the borders of all patches at the same resolution for
all LODs. A matching triangulation between two patches can be
achieved by mutually exchanging the missing border vertices,
which can be quite expensive for sophisticated triangulations
such as [3].

Also using the RQT, modification of the triangulation is
not avoidable to match adjacent, triangulated regions but it is
simple and efficient. The RQT T of a patch can be modified by
insertion of the missing border vertices Vb. The new set of verti-
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ces is then , consisting of the old vertices
VT, the missing border vertices Vb and the related vertices

.
Note that the vertices  can be interpolated without affect-
ing the approximation precision of T, and Vb can only improve
the accuracy. The related vertices  can be constructed or
selected while traversing the quadtree Q for the insertion of Vb.
Vb and  which guarantee a matching triangulation between
two patches are marked to be included in the triangulation. Oth-
erwise, they could be left out in the construction of the modified
triangulation.

Aspect number three of continuous LOD rendering calls
for smooth changes between LOD updates within the visible
scene. In [7] the term geomorph was coined to denote morphing
between different LODs of the same terrain segment. The RQT
is well adapted to morphing. A new vertex v always lies in the
middle of an edge between two vertices v1 and v2 further up in
the dependency graph. Therefore, the interpolation can be calcu-
lated as . The linear blending function is

, with , and it is
dependent from the distance to the observer. Morphing can be
applied directly to the geometries used for rendering without
retriangulation of the quadtree itself.

10. Storage and retrieval

The scene management of Section 8 requires that the terrain
database supports rectangular range queries with LOD restric-
tions, and returns a restricted quadtree of elevation points.
Therefore, the database must conform to the same assignment of
points to levels Ll, dependency graph Gdep, and relation of points
to quadtree nodes. This is defined by the dependency direction
for the top-level vertex in  of the root quadtree region.

Among all possible data structures for maintaining a grid
digital elevation model we describe one here that fits best with
Algorithm 2 of Section 4, and that provides fast access to the
elevation data. The input data space is partitioned into blocks of
(2k+1) × (2k+1) grid points. This partitioning provides efficient
spatial selectivity and supports physical clustering on external
storage. An implicit restricted quadtree is superimposed on
every block as shown in Figure 10. Note that vertices inside of a
block have dependencies within the same block, whereas depen-
dencies of border vertices also symmetrically point to the adja-
cent block (overlapping dependencies). Finally, the corner-
vertices’ dependencies point to other corner-vertices of blocks as
depicted in Figure 10.

Spatial access is performed by the following steps for a
query with region R, error tolerance ε, and using the index struc-
ture S:

1. find all blocks b in S intersecting R using the spatial

index:

2. apply bottom-up restricted quadtree construction algo-

rithm to ,

check each point against error threshold ε and intersec-
tion with R,
keep track of overlapping dependencies as well

3. apply bottom-up or top-down restricted quadtree con-
struction to the remaining corner-vertices

FIGURE 10. Height field partitioning

Special attention has to be paid to the border ∂R of the
query region R. The border ∂R constrains the selection to include
all vertices needed to map ∂R on edges of maximal length which
conform to the RQT, see Figure 11. Note that an incremental
query does not have to deal with the border problem because ∂R
was already consistently triangulated by the first query of R.

FIGURE 11. Range query constraints

Furthermore, the transfer from the terrain database to the
visualization is very efficient. The triangulation topology and the
dependency graph are given implicitly by the restricted
quadtree. Moreover, not even the spatial location must be trans-
mitted because it is given by the point’s position in the quadtree.
The transmission is reduced to a traversal of the restricted
quadtree where for every point only its height and error values
are sent. Furthermore, dependencies can be resolved in the
errors as shown in Equation 3, simplifying the triangulation for
the visualization.

11. Experiments

This experimental section is not intended as a comparative study
of available mesh compression methods, however, these experi-
ments are meant to demonstrate the excellent compression
potential of the restricted quadtree triangulation. Note that for
this experimentation we used an object space error metric where
the approximation error of a point on level Ll is defined as its
vertical distance to the triangulation of its quadtree block on
level Ll-1.

Table 1 shows the compression results of different error
tolerance thresholds (0, 1, 2, 5 and 10 meters) for two topologi-
cally very different terrain samples. Albis represents a rather
smooth hilly region and Matterhorn a very mountainous area.
Both samples have an original grid resolution of 25 meters and
an altitude accuracy of one meter. As can be seen from Table 1,
already a very small error tolerance of one or two meters results

V V T V b V bdep
+ +=

V bdep
P R V b∈∃ : R P,( ) Edep∈ P V T P V b∉∧∉∧{ }=

V bdep

V bdep

V bdep

v' 0.5 v1 v2+( )=
f v' v t, ,( ) 1.0 t–( )v' tv+= t 0.0..1.0=

L1
center

B b S∈ b R∩ ∅≠{ }=

b∀ B∈

dependency for

top-level mid-point

inside block

dependencies on

corner-vertex

block borders

identical points
in different blocks

dependencies

dependencies

triangulation for
error tolerance ε

points and triangles
inside query region R

constrained triangulation
for query region R

query region R
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in a drastic reduction of the number of points used to approxi-
mate (triangulate) the surface.

The visual fidelity of different error thresholds and com-
pression ratios is depicted in Figure 12. Although the mesh com-
plexity itself is reduced drastically, as seen in Figures 12-a, 12-b,
12-c and 12-d, the visual fidelity of a moderate error tolerance of
5 meters, see Figures 12-e and 12-f, is still extremely good. Even
at a 10 meter error threshold with high compression ratios, sig-
nificant visual details are retained, see Figures 12-g and 12-h.
Furthermore, Gouraud shading and texturing improve the visual
impression of the terrain, see also Figure 14, and allow the use
of high error tolerances.

We also performed some rendering and scene update tests
that are reported in Tables 2 and 3. The frame rates were mea-
sured using the SGI Performer Toolkit  statistics, and our test
scene was a hilly terrain, 52km × 52km large. The results were
obtained on an SGI Inigo2 High Impact10000. From Table 2 it
can be seen that scene culling according to the view-frustum
(60° viewing angle) does not influence the rendering perfor-
mance a lot because the non-visible triangles are already effi-
ciently culled by the underlying graphics system. However, the
incremental dynamic scene update benefits a lot from culling on
the scene management level. Furthermore, rendering perfor-
mance almost doubles when using different LODs because the
adaptive RQT lowers the triangle count significantly, see Table
2. Figure 13 shows the test scene in full resolution and adap-
tively triangulated. Note that despite the massive reduction of
the triangle count no significant loss of detail is observable.

Our visible scene consisted of 13 × 13 patches, each 4km ×
4km large and adaptively triangulated using the RQT, see also
Figure 13 on the right. The dynamic scene update performance
was tested with a velocity of 1000 meters per second, which is
triple super-sonic and much faster than needed by any aircraft
simulation. Our dynamic scene management updated 65 patches
in 10 seconds in real-time. Of the 10 seconds only 1570 milli-
seconds1 were used for all dynamic scene updates together. Note
that this update includes loading 9922 vertices from the terrain
database server over the network, constructing 65 restricted
quadtrees, resolving map inconsistencies and generating a trian-
gle strip for every updated patch. The average update time for

1. real-world time

one patch was only 24 ms and had to process 152 vertices for
loading, quadtree construction, and triangle strip generation.

12. Conclusion

The RQT has several advantages over other triangulations. Reg-
ular grid triangulations are not adaptive to the terrain structure.
Maintaining a triangulation for every LOD does not support con-
tinuous LOD rendering and the storage costs are very high.
More sophisticated multiresolution triangulation models [2]
replace a number of triangles by more and smaller triangles to
refine the approximation, see also [1,13]. However, extraction
and incremental refinement of a triangulation are rather complex
for on-demand requirements. Furthermore, the topology repre-
sentation is very complicated compared to the RQT. The same
arguments hold for hierarchical triangulation models as
described in [3]. Furthermore, no graphics optimizations are
known. Therefore, from the requirements introduced in
Section 1 number 4, 5 and 8 are not met. Moreover, the triangu-
lation topology and hierarchy is complicated, and uses much
more space than the restricted quadtree. Spatial access is not as
efficient as well because topology and vertices have to be
extracted from the database. Hence also the demands 1 and 2
cannot be fulfilled effectively.

The visualization systems in [8,9] do not consider the
problem of very large scale terrains. Therefore, the problems 3,
6 and 9 of dynamic scene management and the database aspects
1 and 2 are ignored. The proposal of [15] does not focus on the
dynamic scene and database aspects too. Furthermore, it is lack-
ing effective solutions to the triangulation requirements 4, 5 and
8. In [6] no multiresolution approach is followed at all. In con-
trast to other triangulation and visualization models our
approach fully satisfies al requirements listed in Section 1. In
particular it supports many exceptional features in one multires-
olution triangulation model that were also suggested in other
publications:

• progressive transmission [7]
• smooth, continuous LOD transitions [9]
• fast access and manipulation of triangulation [2,3]
• real-time triangulation [9,13]
• LOD constrained, spatial access [13]
• efficient storage costs, mesh compression [2, 7]

Most of the presented concepts and solutions are incorpo-
rated into the newest version of the ViRGIS2 project [12].
ViRGIS mainly consists of a prototypical client-server system
which allows interactive, three-dimensional visualization and
exploration of large scale terrains, including texturing, see also
Figure 14.

2. ViRGIS - Virtual Reality and Geoinformation Systems

http://www.inf.ethz.ch/personal/pajarola/virgis.html

TABLE 1. Compression results

0 meter 1 meter 2 meter 5 meter 10 meter

points % points % points % points % points %

Albis 25921 100 19773 76 11636 45 4664 18 1789 7

Matterhorn 25921 100 22492 87 17156 66 10492 40 6367 25

TABLE 2. Frame rates

number of triangles frames per second

full resolution 86000 20

culled scene 20000 21

adaptive triangulation 8000 38

TABLE 3. Scene updates

65 patches in 10 seconds CPU time number of vertices

average 24 ms 153

total 1570 ms 9922



8

FIGURE 12. Triangulated surfaces [DHM©]

Copyrights

[DHM©] Digital elevation model DHM25/RIMINI © 1996 Swiss Fed-

eral Office of Topography, reproduction authorization 3.6.1998.

[PK©] Cartographic raster images PK25/PK100 © 1996 Swiss Federal

Office of Topography, reproduction authorization 3.6.1998.

[SAT©] Satellite images © 1994/1995 ESA/EURIMAGE, reproduction

authorization 27.5.1998.
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Color plates

FIGURE 13. [DHM©]

FIGURE 14. Textured terrain visualization [DHM©], [SAT©]

FIGURE 15. View-centered LOD strategy [DHM©]

FIGURE 16. Scene culling [DHM©]

FIGURE 17. Scene map [DHM©]

full resolution adaptively triangulated


