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Lasting effects of early exposure to
temperature on the gonadal transcriptome
at the time of sex differentiation in the
European sea bass, a fish with mixed genetic
and environmental sex determination
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Abstract

Background: Sex in fish is plastic and in several species can be influenced by environmental factors. In sensitive

species, elevated temperatures have a masculinizing effect. Previous studies on the effects of temperature on gene

expression have been restricted to a few cognate genes, mostly related to testis or ovarian development, and analyzed

in gonads once they had completed the process of sex differentiation. However, studies on the effect of temperature

at the whole gonadal transcriptomic level are scarce in fish and, in addition, temperature effects at the time of sex

differentiation at the transcriptomic level are also unknown. Here, we used the European sea bass, a gonochoristic

teleost with a polygenic sex determination system influenced by temperature, and exposed larvae to elevated

temperature during the period of early gonad formation. Transcriptomic analysis of the gonads was carried out about

three months after the end of temperature exposure, shortly after the beginning of the process of sex differentiation.

Results: Elevated temperature doubled the number of males with respect to untreated controls. Transcriptomic

analysis of early differentiating female gonads showed how heat caused: 1) an up-regulation of genes related to

cholesterol transport (star), the stress response (nr3c1) and testis differentiation (amh, dmrt, etc.), 2) a decrease in the

expression of genes related to ovarian differentiation such as cyp19a1a, and 3) an increase in the expression of several

genes related to epigenetic regulatory mechanisms (hdac11, dicer1, ehmt2, jarid2a, pcgf2, suz12, mettl22).

Conclusions: Taken together, the results of this study contribute to the understanding of how the early environment

sets permanent changes that result in long-lasting consequences, in this case in the sexual phenotype. Results also

show the usefulness of comparing the effects of heat on the behavior of cognate genes related to sex differentiation

as well as that of genes involved in establishing and maintaining cell identity through epigenetic mechanisms.
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Background
Identifying environmental cues and their perception

and transduction mechanisms is a central focus of re-

search in developmental biology within an ecological

context [1]. Changes in environmental variables can

have profound influences on differentiation, growth and

reproduction in many organisms [2]. Temperature is

the main abiotic factor that affects many biological

functions at different levels of organization by changing

the rates of chemical reactions and physiological pro-

cesses, or by changing the three-dimensional shapes of

biomolecules [3, 4].

Fish exhibit enormous diversity in their morphology, in

habitat occupancy, and in their biology [5]. This diversity

is also remarkable as regards to their reproductive strat-

egies including sex determination and differentiation [6],
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two processes that contribute to the establishment of

the sex ratio, a crucial parameter for population viabil-

ity and for the continuation of all species with sexual

reproduction. The sex ratio can be affected by environ-

mental factors, mainly by temperature [7]. Among ver-

tebrates with genetic sex determination (GSD) master

sex determining genes are not conserved and eight

genes with such a function have been identified so far:

Sry in mammals, DMRT-1 in birds, DM-W in Xenopus

laevis, and dmy, amhr2, amhy, sdy and gsdf in fish [8, 9].

On the other hand, genes involved in the sex differenti-

ation process (SD; [10, 11]) are fairly conserved in structure

and dimorphic expression from fish to mammals [12].

Genes involved in testis differentiation include dmrt1,

dax1, sox9, arb, amh, cyp11b [13–17], sox9a2, tbx1a and

tbx1b [18]; whereas genes involved in ovarian differenti-

ation include cyp19a1a, foxl2, er, fst [19–21, 17], hsd3b

and star [18]. However, the order of expression and in-

teractions among these genes may change between

groups [22] or depending on environmental conditions

[23]. In any case, estrogens are essential for proper ovar-

ian differentiation in all non-mammalian vertebrates

[24]. Thus, cyp19a1a, the gene that codes for aromatase,

the enzyme that catalyzes the irreversible conversion of

androgens into estrogens, is a major player in vertebrate

SD and crucial for the establishment of the sex ratio.

Aromatase gene expression is susceptible to environ-

mental temperature influences. Therefore, and regardless

of the sex ratio response pattern to temperature [25, 26],

in reptiles and fish, the two types of vertebrates with

temperature-dependent sex determination (TSD), the ef-

fects of environmental temperature on sex ratios are me-

diated by changes in cyp19a1a expression. In all fish

species analyzed so far [26] more males are produced

with increasing temperatures and cyp19a1a is always

inhibited at male-producing temperatures and stimu-

lated at female-producing temperatures [27], In general,

elevated temperatures increase the expression of male-

related genes such as amh, dmrt1 or arb after the SD

period, while decreasing the expression of female-related

genes in addition to cyp19a1a, such as esr1, esr2, erb1,

fshr or foxl2 (see Additional file 1: Table S1 for a sum-

mary on general thermal effects on gene expression).

Effects of temperature on fish sex ratios are more pro-

nounced if animals are exposed to elevated temperatures

during early development. However, the number of

genes known to be affected is limited and the metabolic

and signaling pathways affected are essentially unknown.

In this regard, several studies have explored the effects

of cold and cold acclimation [2, 28] but focusing on

tissues other than the gonads, such as liver, skeletal

white muscle and gills [29–39]; brain [32, 39, 40] or heart

[29, 32, 41]. Unfortunately, comparative transcriptomic

studies on the effect of heat on the gonads are essentially

limited to just one study with the pejerrey, Odontesthes

bonariensis, a fish with TSD (Additional file 1: Table S1),

and carried out on juvenile or adult mature gonads, not

with differentiating gonads. Thus, it is difficult to ascer-

tain whether observed altered patterns of gene expres-

sion are the cause or the consequence of a given

gonadal phenotype resulting from exposure to elevated

temperature.

The European sea bass is a eurythermal marine teleost

able to live between 8 and 27 °C and a gonochoristic

species with a polygenic system of sex determination

[42], where genetics and temperature contribute essen-

tially equally to sex ratios [43]. Recent studies in the sea

bass have shown that cyp19a1a and cyp11b are good

markers of female and male sex differentiation, respect-

ively [17]. In all fish species studied so far, high tempera-

tures cause masculinization. This is also the case of the

European sea bass, where elevated temperatures during

the thermosensitive period (TSP), which is located 0–60

dph, result in masculinization of about 50 % of the fish

that otherwise, under more natural temperatures, would

have developed into females, as assessed by sex ratio

analysis [44–48]. Recently, we discovered that the effects

of early temperature include hypermethylation of the

cyp19a1a promoter in one-year-old juvenile females,

with concomitant suppression of cyp19a1a expression

and resulting in male instead of female development, the

first evidence of an epigenetic link between environmen-

tal temperature and sex ratios in vertebrates [49].

We were interested in understanding the underlying

mechanisms responsible for this masculinization at the

time when the differentiating gonad is being affected.

Therefore, instead of sampling one-year-old juveniles, as

done before by us and others, in which gonads have

already completed the process of sex differentiation, and

where it is difficult to ascertain whether observed tran-

scriptomic profiles and epigenetic changes are the cause

or the consequence of that process, we sampled fish at

170 dph, i.e., 110 days after the end of temperature treat-

ment but shortly after the start of sex differentiation (150

dph). Thus, the objective was to gain a better understand-

ing of the genes and the pathways involved in sex differen-

tiation that are directly affected by temperature at the

time of sex differentiation.

Results
Growth, body indices and sex ratios

Because of the differences in rearing temperature be-

tween 20 and 60 dph, fish from the HT group were sig-

nificantly (P < 0.05) larger than those of the LT group at

170 dph in both SL and BW (Table 1). Growth differ-

ences between groups had disappeared by 332 dph. Sex-

ual growth dimorphism, in favor of females (P < 0.01),

was present only in the LT group (Table 2). As observed
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in our previous studies survival was unrelated to

temperature treatment (the difference between low and

high temperature was only of 4 °C and both tempera-

tures were within the range of natural temperature expe-

rienced by the European sea bass in the wild). Survival

was ~60 % to the end of the larval stage and ~90 %

thereafter.

At 170 dph, from each temperature group we ran-

domly sampled 20 fish (total 40 fish). However, since,

as stated above, elevated temperature results in

masculinization of some females, within the randomly

selected fish we choose for microarray analysis, in each

group, 5 fish with high cyp19a1a levels, which are typ-

ically associated with female development, and for this

we used a previously validated clustering method based

on cyp19a1a qRT-PCR expression levels (Fig. 1a). One-

way ANOVA showed statistical differences due to the

expression levels, temperature treatment and their

interaction (P < 0.001). Thus, in the LT or control

group, fish with high cyp19a1a levels undoubtedly rep-

resented developing females, whereas in the HT group

fish with high cyp19a1a levels (but lower than the ones

in the control group) also represented females that had

been subjected to elevated temperature. It is important

to state that despite overall differences in the sampled

fish (Table 1) there were no differences in SL or BW

between the 5 fish selected from the two groups for

microarray analysis. Thus, the observed transcriptomic

differences between HT and LT fish (see below) were

due to temperature and not to size-related differences

in gonadal development.

Visual assessment of the sex ratio of 332 dph juve-

niles combined with histological verification showed

that the LT group had 40.0 % males while the HT group

had 77.8 % males (P < 0.001) (Fig. 1b), showing a mas-

culinizing effect of the elevated temperature. However,

within each sex no differences were observed in the

presence and in the abundance of the different cellular

types between the two temperature groups. Females

had immature ovaries containing oocytes at the cortical

alveolar (CA) stage while males had testis containing all

germ cell types, including spermatozoa (Additional file

2: Figure S1).

The GSI percent values at 332 dph for LT males and

females were 0.095 ± 0.0004 and 0.111 ± 0.0002, respect-

ively, and for HT males and females were 0.090 ± 0.0002

and 0.161 ± 0.0003, respectively. A two-way ANOVA

analysis showed statistical differences due to sex (P =

0.032) but no effect due to the thermal treatment or to

the interaction between sex and temperature.

Microarray analysis

Microarray analysis of sexually differentiating gonads at

170 dph obtained from fish with a high cyp19a1a ex-

pression, i.e., putative females, revealed the presence of

27 significantly and differentially expressed (DE) genes

when comparing the HT vs. the LT group (Additional

file 1: Table S2), of which 18 genes were upregulated

(18/1360 non repeated probes) and 9 were downregu-

lated (9/4789 non repeated probes). A heatmap repre-

sentation of the DE genes grouped fish according to

their thermal history, with the exception of one LT fish,

which had an intermediate position, and one HT fish,

which was classified as an outlier by a Principal Compo-

nent Analysis and was not further considered in the ana-

lysis (Fig. 2). Some of the upregulated genes were related

to reproduction, i.e., cryptochrome DASH (cry-dash)

and troponin I (tnnI), or to epigenetic gene expression

Table 1 Growth of European sea bass juveniles at 170 days post hatch, classified according to treatment and cyp19a1a expression

levels, as shown in Fig. 1a

Low cyp19a1a expressors High cyp19a1a expressors

Treatment N Length (cm) Weight (g) N Length (cm) Weight (g)

LT 10 9.25 ± 0.196a 13.16 ± 0.967a 6 9.33 ± 0.061a 13.53 ± 0.581a

HT 9 9.86 ± 0.109b 17.41 ± 0.877b 7 10.28 ± 0.495b 19.35 ± 2.955b

Data as mean ± SEM

LT low temperature, HT high temperature, N sample size

Different letters indicate significant (P < 0.05) differences between treatments

Table 2 Growth of European sea bass juveniles at 332 days post hatch, classified according to treatment and sex

Females Males

Treatment N Length (cm) Weight (g) N Length (cm) Weight (g)

LT 40 12.45 ± 0.180a** 33.16 ± 1.560a** 26 11.66 ± 0.223a 27.22 ± 1.867a

HT 16 12.22 ± 0.171a 33.38 ± 3.044a 60 12.36 ± 0.171a 33.79 ± 1.544a

Data as mean ± SEM

LT low temperature, HT high temperature, N sample size

The same superscript a indicates lack of significant (P > 0.05) differences between treatments. Asterisks indicate statistical differences (P < 0.01) between females

and males within the same treatment group, i.e., sexual growth dimorphism
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regulation, i.e., histone deacetylase 11 (hdac11). Some of

the downregulated genes also showed reproduction-

related functions such as cdc42 effector protein 3

(cdc42ep3), insulin-like growth factor (igf1) or smoothelin

(smtn1) (see Additional file 1: Table S3 for a complete list

of DE genes and their functions).

The AMIGO web-based tool was used to recover the

sequence of these DE genes and those sequences were

then uploaded to Blast2GO in order to enrich results

with GO terms and extract more information about

these DE genes. A Fisher’s exact test with multiple

testing corrections for False Discovery Rate (FDR)

showed that five GO term categories were overrepre-

sented when compared to a reference test containing

all the annotated sequences from our custom-made

array (Additional file 1: Table S4).

Further analysis of the GO terms provided their distri-

bution among the three main categories: biological

process, molecular function and cell component for the

up- and downregulated genes separately (Additional file

2: Figures S2 and S3, respectively). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) database

provided more information on the pathways containing

these DE genes (Additional file 1: Table S5). Several

pathways involved in protein synthesis as well as in im-

munological processes were found.

Microarray validation

Out of the 27 DE genes, we selected eight (4 up- and 4

downregulated genes), i.e., about one third of the DE

genes, for validation by qRT-PCR. These genes were se-

lected because they are known to be involved in

reproduction in other species or because they are in-

volved in epigenetic regulatory mechanisms. In addition,

together they exhibited a wide dynamic range of

changes. qRT-PCR analysis showed significant differ-

ences (P < 0.05) for cg10623 and hdac11 among the up-

regulated genes and for the cdc42ep3 and smtn1 among

the downregulated ones (Fig. 3). Importantly, all but one

(ecm1) of these selected genes had the same direction of

change (up- or downregulation) when analyzed by qRT-

PCR as compared to microarray results. We consider

this sufficient for the validation of the microarray.

Enrichment analysis

A GO enrichment analysis of the DE genes showed up-

and downregulation of the same BP categories, albeit

containing different DE genes (Fig. 4a and 4b). These al-

tered categories contained more GO terms that were up-

regulated and mainly related to metabolic and cellular

processes (14.43 % and 17.53 %, respectively), while

other processes such as reproduction (1.41 %), growth

(7.04 %), immune processes (4.23 %) or signaling

(9.86 %) were downregulated at elevated temperatures.

Regarding MF GO categories (Additional file 2: Figure

S2A and S3A), the catalytic and binding activities were

the most represented subcategories for both up- and

downregulated GO terms. Analysis of the CC categories

showed that upregulated processes were taking place

mainly in the organelle (14/57 GOs), macromolecular

complex (9/57 GOs), membrane-enclosed lumen (8/57

GOs) or membrane (7/57 GOs) (Additional file 2: Figure

S2B), while the downregulated processes were taking

place in the membrane, organelle, macromolecular com-

plex (6/36 GOs) or extracellular region (5/36 GOs)

Fig. 1 a Individual gonadal aromatase (cyp19a1a) expression levels

(2DCt) as assessed by qRT-PCR in the low (LT; N = 16) and high (HT;

N = 16) temperature groups at 170 dph. Blue squares and red circles

correspond to individual fish with low (putative future males) and high

(putative future females) cyp19a1a levels, respectively. The horizontal

line marks mean expression for each experimental group. The

cyp19a1a expression of one of the putative females in the LT group

(red circles) was much higher than the rest and it has been deliberately

omitted from the graph for clarity purposes. Different letters indicate

significant (ANOVA; P < 0.001) differences between the four groups, i.e.,

high and low cyp19a1a expressors of the LT and HT treatments. b Sex

ratios of juvenile European sea bass sampled at 332 days post hatch.

Stacked bars showing male (blue) and female (red) percent in the low

(LT) and high (HT) temperature groups. Statistical differences (P < 0.001)

between groups are marked with three asterisks. Sample size: LT, 66

fish; HT, 85 fish
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(Additional file 2: Figure S3B). Further analysis of the

GO enriched terms of the DE genes in comparison to

the microarray reference set (Additional file 1: Table S4),

showed that terms related to the negative regulation of

the nerve impulse and synaptic transmission were over-

represented, as well as the adenylate cyclase inhibiting

G-protein coupled receptor signaling pathway (implying

a decrease in cAMP concentration).

Blast2GO analysis of the DE genes showed that eleven

of the 13 differentially regulated pathways (Additional

file 1: Table S5) had higher expression in HT fish than in

LT fish and that these pathways were related to catabol-

ism (amino acid metabolism), biosynthesis (tropane, pi-

peridine and pyridine alkaloid) or signal transduction

(phosphatidylinositol signaling system). However, the

downregulated pathways were related, in agreement with

the results of the GO term analysis, to immunology (T-

cell receptor signaling pathway) and Nitrogen metabol-

ism. DAVID analysis of the DE genes showed that there

were 23 upregulated categories, of which four were

highly significant: 1) progesterone-mediated oocyte mat-

uration (gnai1, adcy7 and igf1), 2) tight junction (gnai1,

cldn3 and yes1), 3) chemokine signaling (gnai1, adcy7

and gng13), and 4) hormone-mediated signaling (adcy7

and gng13) pathways. In all of them, adcy7 is involved as

a signaling initiation factor. After running an annotation

clustering with DAVID, seven clusters were downregu-

lated and related to cell component, DNA binding, tran-

scription and signaling processes.

Reproduction and stress-related genes

Fifteen known reproduction-related genes were ana-

lyzed by qRT-PCR (Additional file 1: Table S6). Results

showed that genes involved in testicular differentiation,

such as doublesex-mab-3-related transcription factor 1

(dmrt1), were significantly (P < 0.05) upregulated in HT

fish, as also was the steroidogenic acute regulatory pro-

tein (star). In contrast, some genes involved in ovarian

differentiation, such as aromatase (cyp19a1a), were sig-

nificantly (P < 0.05) downregulated in HT fish, as also

was aquaporin 1 (aq1). The expression of eight of these

genes is shown in Fig. 5. Since activation of the stress

response has been associated with temperature effects

on sex ratios in fish [50–53], we tested the effects of

Fig. 2 Heatmap of the microarray expression data for the 18 up- and 9 downregulated genes, where each row represents a gene and each

column represents an individual fish (LT = 5 individuals and HT = 4 individuals). Key color representing the level of expression (green: high

expression and red: low expression). The dendograms provide information of the similarity between genes and between the different samples.

Notice that all HT samples and all but one LT samples cluster together. LT, low temperature group; HT, high temperature group. See Additional

file 1: Table S2 for a complete list of gene names and abbreviations
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HT in our model in two stress response-related genes;

the 11ß-hydroxysteroid dehydrogenase (hsd11b) and

the glucocorticoid receptor (nr3c1), involved in cortisol

synthesis and response. While nr3c1 was significantly

(P < 0.05) upregulated in HT fish, hsd11b was not sig-

nificantly different (Fig. 6).

Epigenetic mechanisms-related genes

According to a growing body of evidence, several genes

involved in epigenetic regulatory mechanisms have been

implicated in sex determination/differentiation ([54], for

a review). Based on this, we analyzed the genes related

to epigenetic mechanisms and implicated in sex

determination/differentiation [54] that were present in

our microarray (Additional file 1: Table S7) even if they

were found to be not DE. Seven genes, representative of

different categories of epigenetic regulatory mechanisms,

including dicer 1, a helicase needed to produce an active

small RNA component that represses gene expression;

ehmt2, a histone methyltransferase; jarid2a, a DNA-

binding protein that acts as a transcriptional repressor;

pcgf2, which contains a RING finger motif and forms

protein-protein interactions to maintain transcriptional

repression; hdac11, a histone deacetylase; mettl22, a

methyltransferase-like protein; and suz12, a suppressor

of trithorax zeste 12 homolog gene, were selected and

Fig. 3 Validation of microarray results by analyzing ten fish by qRT-PCR according to treatment (LT, low temperature group; HT, high temperature

group). a-d Four upregulated genes in the HT vs. the LT group comparison: DmeI_CG10623 (cg10623); histone deacetylase 11 (hdac11); cryptochrome

DASH (cry-dash) and troponin I (tnnI). e-h Four downregulated genes for the same comparison: cell division cycle 42 effector protein 3 (cdc42ep3);

extracellular matrix protein 1 (ecm1); carbonic anhydrase 1 (ca1) and smoothelin (smtn1). Data as mean ± SEM. Letters mark statistical significance

(P < 0.05) between groups. Ten fish (5 fish per group) were analyzed by a qRT-PCR
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analyzed by qRT-PCR. Four of these genes were upregu-

lated (P <0.05) in the HT group: dicer1, jarid2a, pcgf2

and hdac11) (Fig. 7).

Discussion
To the best of our knowledge, this is the first study on

the analysis of the gonadal transcriptome at the time of

sex differentiation, using a species-specific microarray,

of fish previously exposed to elevated temperature dur-

ing the thermosensitive period. Since we took care that

the 5 fish selected from each group for microarray ana-

lysis at 170 dph (high cyp19a1a expressors) had the

same size, it is safe to assume that differences in gene

expression observed are solely due to temperature, not

to differences in growth.

Consistent with previous studies [46, 49], temperature

induced a male-biased sex ratio (~80 % males). The

higher GSI values for HT-treated females observed at

one year of age may be due to a persistent effect on

gonadal growth relative to somatic growth with no obvi-

ous effect at the histological level.

The number of DE genes was low as could be antici-

pated because in the HT vs. LT comparison we actually

compared fish of the same age, at a similar developmen-

tal stage and similar size, as just stated above, and most

likely of the same sex, females, as assessed by high

cyp19a1a expression levels, a good marker of phenotypic

sex. This is actually what we intended since females, not

males, are the ones mainly affected by temperature.

Moreover, at 170 dph gonads were cleanly isolated and

there was no contamination of the surrounding tissues.

What we could gain by looking at earlier age, e.g., at the

end of the TSP at about 60 dph, we would lose by having

to include non-gonadal tissues (since it is impossible to

dissect the gonads apart at earlier ages).

Among the genes analyzed by qRT-PCR, there were

three patterns of response to heat (Figs. 3, 5, 6, and

Additional file 1: Table S6). Many genes had increased

Fig. 4 Biological process-related GO terms for the HT versus LT group comparison. a Biological process GO terms for the upregulated genes, and

(b) for the downregulated genes
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Fig. 5 Quantitative RT-PCR results for eight known sex differentiation-related genes per temperature treatment groups. a-d Male pathway: anti-

Müllerian hormone (amh), doublesex- and mab-3-related transcription factor 1 (dmrt1); female pathway: cytochrome P450, family19, subfamily A,

polypeptide 1a (cyp19a1a) and SRY-related HMG-box transcription factor SOX17 (sox17), respectively. e steroidogenic acute regulatory protein

(star), (f) vasa protein (vasa), (g) insulin-like growth factor 1 (igf1) and (h) cytochrome P450, family19, subfamily A, polypeptide 1b (cyp19a1b). Data

as mean ± SEM. Asterisk marks statistical differences between groups (P < 0.05). Ten fish (5 fish per group) were analyzed by a qRT-PCR

Fig. 6 Quantitative RT-PCR results for (a) 11β-hydroxysteroid dehydrogenase (hsd11b1) and (b) glucocorticoid receptor (nr3c1). Data as mean ±

SEM. Asterisk marks statistical differences between groups (P < 0.05). Ten fish (5 fish per group) were analyzed by a qRT-PCR
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levels of expression in the HT group. Among them,

there were genes upregulated during normal testis dif-

ferentiation such as dmrt1, in accordance with the mas-

culinizing effect of elevated temperatures [46, 49].. The

vasa helicase is a germ cell marker known to be more

expressed in ovaries than in testis and previously found

to be upregulated by elevated temperatures [55]. In our

study the difference in vasa expression levels did not

reach statistical significance. Cholesterol is important

in maintaining membrane integrity and sterol synthesis

and its levels have previously been found also to be in-

creased by temperature [2]. However, genes ultimately

related to steroid hormone production were not

significantly affected in the present study, including the

gene encoding gonadotropin-releasing hormone (gnrh)

[56, 57], and star, which is involved in cholesterol im-

port [58]. In our study, genes such as wisp1, known to

be involved in cellular growth, were downregulated by

heat, whereas genes such as nr3c1, related to immune

system regulation responses, were upregulated, suggest-

ing growth and immunological stress response adjust-

ments in the gonads.

There were other downregulated genes. Among these

there was cyp19a1a, confirming results of an independ-

ent experiment aimed to find molecular signatures of

male and female differentiation [17]. Aquaporin 1

(aqp1), a water channel protein which plays a major role

in oocyte hydration in fish [59], was also downregulated

by heat. The steroidogenic enzyme 11ß-hydroxysteroid-

dehydrogenase 1 (hsd11b), which converts the stress

hormone cortisol into the inactive metabolite cortisone,

and also converts 11ß-hydroxy androgens such as 11ß-

hydroxyadrostenedione into 11-ketotestosterone, a po-

tent piscine androgen [60], was not significantly affected

by heat. In contrast, the glucocorticoid receptor (nr3c1)

was upregulated in the HT group with significant differ-

ences with respect to the LT group. These results are

interesting because in the pejerrey (Odontesthes bonaer-

iensis), a fish with TSD, Fernandino et al. [53] observed

upregulation of both hsd11 and nr3c1 in masculinized

gonads by HT and attributed this to the fact that HT

elicits both masculinizing and stress responses. In our

study, nr3c1 was upregulated 110 days after the end of

the temperature treatment, suggesting a persistent stress

response probably maintained by an epigenetic regula-

tory mechanism. In fact, studies in rodents have shown

that nr3c1 is able to exhibit sustained expression, even a

long time after the stimulus ended, through changes in

methylation of its regulatory region [61, 62]. The differ-

ences between our results and those of Fernandino et al.

[53] with the pejerrey suggests that gender or develop-

mental stage may be important in explaining these dif-

ferences, since while Fernandino et al. [53] sampled

juvenile, sexually differentiated males, in our case we se-

lected not only sexually differentiating fish but also those

ones that exhibited cyp9a1a expression levels at 170 dph

compatible with ovarian differentiation. Furthermore,

when comparing our results with those obtained with

microarray analysis of dimorphic gene expression in a

turtle with TSD [63], genes that are normally highly

expressed in the testis such as dmrt1 were also upregu-

lated in our study while genes such as cyp19a1a were

Fig. 7 Quantitative RT-PCR results for the epigenetic regulatory mechanisms-related genes. (a-d) endoribonuclease Dicer (dicer1), euchromatic

histone-lysine N-methyltransferase 2 (ehmt2), protein Jumonji (jarid2a) and polycomb group ring finger 2 (pcgf2). Data as mean ± SEM. Asterisks

mark statistical differences between groups (P < 0.05). Ten fish (5 fish per group) were analyzed by a qRT-PCR
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downregulated due to temperature, highlighting the con-

served masculinizing effect of heat across different verte-

brate groups.

The third pattern of response was represented by

genes whose expression was not affected by heat, includ-

ing sox17, a gene that has been related with ovarian de-

velopment in the European sea bass and other fish [64].

The brain aromatase gene (cyp19a1b) belonged to this

group, thus corroborating earlier observations of our

group [49], and opposite to the increase observed in til-

apia when applying HT during early development [65].

Other genes also in this group were tesc, important dur-

ing male gonadal development, and col18a1, implicated

in organ morphogenesis.

Since the hypermethylation of the cyp19a1a promoter

in both females and masculinized females at one year of

age was not so evident at 170 dph [49], it may be that

other epigenetic regulatory mechanisms are responsible

for the “memory” of early HT exposure. To gain further

evidence, we examined the expression of seven epigen-

etic regulatory mechanisms-related genes that have been

directly or indirectly connected with sex determination

and gonadogenesis [54] and were present in our micro-

array (Additional file 1: Table S7). The selected genes for

qRT-PCR analysis were hdac11, jarid2a, ehmt2, dicer1,

suz12, pcgf2 and mettl22 to have representatives of dif-

ferent epigenetic mechanisms. Interestingly, four of

them were upregulated in the HT group, displaying sig-

nificant differences (P < 0.05): hdac11, jarid2a, dicer1

and pcgf2. Although further studies are clearly needed, it

is interesting to note that, although in different ways,

these genes are involved in transcriptional repression

functions, which here may be connected with the long-

lasting effects of early heat exposure.

Whole gonad transcriptomic analysis showed 27 DE

genes (18 up- and 9 downregulated; Fig. 2 and Additional

file 1: Table S3). Some of these DE genes were related to

metabolic processes, and some to epigenetic regulatory

mechanism including cg10623 (methyltransferase),

hdac11 (histone deacetylase) or tep1 (related to DNA

methylation increase). Other genes are involved in re-

productive processes in other species such as cdc42ep3,

where the mRNA interacts with the human fertility

protein PUMILIO2 in the testis [66]. cry-dash, has an

ancestral circadian role in light perception and related

to massive spawning in corals during full moon [67]

while smtn1 is a regulator of the progesterone receptor

during mice pregnancy [68] and tnn1 controls ovula-

tory contraction of non-striated actomyosin networks

in Caenorhabditis elegans [69].

Enrichment analysis showed an upregulation of the

overall catalytic activity, a process known to be af-

fected by heat since elevated temperature produces

changes in chemical reaction rates and increases

protein denaturalization [3]. This corresponded to an

overrepresentation of the catalytic pathways and of the

signal transduction due to heat. The observation that

most of the altered pathways were related to catabol-

ism and signal reception-transmission corroborates the

idea that the effects of heat were still persistent

110 days after the thermal treatment had finished.

In order to further understand the biological meaning

of the set of DE genes, DAVID clustering analysis

showed that DNA binding and transcription were

enriched, suggesting that despite protein and amino acid

catabolism, protein synthesis and replacement was also

occurring in HT gonads, most likely to compensate for

the destabilizing temperature effects on protein struc-

ture. Likewise, downregulation of the immunology-

related pathway may be because our samples were ob-

tained from differentiating females (progesterone-medi-

ated oocyte maturation is affected, as also is the

hormone-mediated signaling).

Cossins et al. [32] investigated the transcriptomal re-

sponse of seven carp tissues to cold. From that study, we

selected the 15 genes that showed the greatest increase in

expression in response to cold: 92 kDa type IV collagenase

precursor (gelatinase), ADP/ATP translocase 1, ATP-

binding cassette, subfamily F member 2, apolipoproteins,

RNA-binding protein, NADP-dependent malic enzyme,

mitochondrial uncoupling protein 3, calmodulin, cofilin,

granulin alpha, tubulins alpha, beta and gamma chains

and high mobility group 1. All are involved in a variety of

functions including protein turnover, unsaturated fatty

acid synthesis, homeostasis or stress protein production.

Most of these 15 genes were present in our microarray

and, interestingly, when we examined their behavior, we

found that, in general, expression levels tended to be

lower in our HT group, although without significant dif-

ferences (Additional file 1: Table S8). Thus, many of the

genes that Cossins et al. [32] found upregulated by cold in

the carp intestine with transport and regulatory functions

(see Additional file 1: Table S8) had, when present, a

downward tendency in the HT gonads. We realize that

this may be an anecdotal coincidence, but the observation

that the above-mentioned genes seem to behave depend-

ing on whether fish are exposed to heat or cold and re-

gardless of tissue or species, warrants their further study

in other species exposed to temperature changes. It could

be possible that these genes could serve as markers of pre-

vious thermal history.

In contrast to what has been observed in killifish livers

[30], heat shock proteins were downregulated in our

study, suggesting that the short heat exposure took place

enough time ago to allow the return to their normal ex-

pression levels and become downregulated. In addition,

cholesterol and genes involved in the lipid metabolism

were affected by heat. Thus, for example, cholesterol
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synthase and HMG-CoA reductase were downregulated

as a result of chronic temperature elevation, as previ-

ously reported by Podrabsky and Somero [30]. The pres-

ence of translation elongation factors or proteasomes

with a high level of expression due to heat is also in

agreement with previous studies in other tissues [29, 30].

Apart from common transcriptional responses to heat,

each tissue seems to have different strategies to cope

with temperature changes: brain modulates glycolytic ac-

tivity, liver turns on lipid metabolism and muscle re-

models its contractile apparatus [29]. From the present

study, we can add that gonads increase catabolism and

signal transduction, but reproductive and immune re-

lated functions decrease. This is in agreement with the

documented deleterious effects of high temperature on

gonadal function [70].

Conclusion

This paper provides information on the effect of

temperature at the whole gonadal transcriptomic level

and at the time of sex differentiation in a fish with mixed

genetic and environmental sex determination. At about

3–4 months after the end of exposure, downregulation of

the expression of female-related genes such as cyp19a1a

and an increase in male-related ones such as dmrt1 was

readily observed. Furthermore, some signaling, catabolic,

biosynthetic, growth and reproduction pathways were still

affected. Our study shows that the response to a change in

the early environment, in this case of temperature, is evi-

dent months after the environmental perturbation has fin-

ished. These transcriptomic changes determine the course

of sex differentiation and ultimately alter the population

sex ratio. Furthermore, this study, in addition to reporting

changes in the expression of cognate genes and signaling

pathways related to vertebrate sex differentiation, identi-

fies genes previously not implicated in thermal-induced

gonadal development, which seem conserved across spe-

cies, as well as genes related to epigenetic regulatory

mechanisms responsible for acquiring and maintaining

cell identity, of which some were upregulated by high tem-

peratures. This data provide an advance to our under-

standing of the underlying mechanisms responsible for

the environmentally driven transcriptomic changes, lead-

ing, in turn, to changes in an important phenotype such

as the sexual phenotype.

Methods

Animals and rearing conditions

One-day-post hatch (dph) European sea bass larvae were

obtained from a commercial hatchery and were trans-

ported to our facilities in PVC transport bags filled with

oxygen and seawater. Rearing conditions and handling

methods were as previously described [71], except for

the temperature treatment (see below).

Fish were treated in agreement with the European

Convention for the Protection of Animals used for Ex-

perimental and Scientific Purposes (ETS Nu 123, 01/01/

91). Our facilities are approved for animal experimenta-

tion by the Ministry of Agriculture and Fisheries (certifi-

cate number 08039-46-A) in accordance with Spanish

law (Real Decreto 223 of March 1988) and the experi-

mental protocol was approved by the Spanish National

Research Council (CSIC) Ethics Committee within pro-

ject AGL2010-15939). Animals were sacrificed by an

overdose of 2-phenoxyethanol followed by severing of

the spinal cord.

Experimental design

Larvae were divided in two 650-l tanks and maintained

at 17 °C, a temperature known to avoid temperature ef-

fects on sex ratio [46], for the first 20 dph. Then, in one

tank the temperature was increased to 21 °C (high

temperature, HT group), while in the other it was de-

creased to 15 °C (low temperature, LT group). In both

cases, temperature was modified at a ratio of 0.5 °C/day.

At 60 dph, temperature in the LT group was stepwise in-

creased in order to match the temperature of the HT

group. Then, at ~220 dph, temperature of both groups

was left to follow the natural fluctuations. Thus, the only

difference between the LT and the HT groups in terms

of rearing conditions was in the temperature experi-

enced during the 20–60 dph period (Additional file 2:

Figure S4).

Samplings

Periodic samplings were carried out, where length (SL;

precision 1 mm) and body weight (BW; precision 0.01 g)

were assessed for all fish in each group by anesthetizing

them with adjusted doses of 2-phenoxyethanol (2PE;

0.2 ml · l−1). At 170 dph, coinciding with the period of

histological sex differentiation [72], and at 332 dph,

when gonadal sex is firmly established, a sample of fish

(n = 40 at 170 dph; n = 151 at 332 dph) were randomly

taken from each group and sacrificed with an overdose

of 2PE. In the European sea bass, the first differences in

cyp19a1a start to become apparent at 120 dph [17] but

histological differentiation does not start to be evident

until 150 dph. Earlier sampling could perhaps target the

early transcriptomic events associated with temperature

sex-reversal mechanisms. However, the primary goal of

this study was to target gonads during sex differentiation

in order to understand the underlying process at that

time in presumptive females of the HT group when

compared to the LT group. In addition, with younger fish

the dissected gonads can be contaminated with surround-

ing tissue. In this regard, analyzing gene expression

changes due to temperature at the end of the TSP at about

60 dph or even in fish two months older than that would
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be quite difficult because at this age European sea bass go-

nads are so small that it is almost impossible to dissect

them without taking part of the surrounding tissue, which

could alter gene expression data.

To minimize external differences not related to the

thermal treatment, the microarray comparison was done

between fish of the same age, at a similar developmental

stage (no obvious differences in size were observed) and

most likely of the same sex, females, as assessed by

cyp19a1a expression levels, a good marker of phenotypic

sex and also of temperature disruption. Thus, we com-

pared normally developing females (LT group) with fe-

males previously exposed to elevated temperature

(group HT).

At 170 dph, sexually differentiating gonads were

cleanly dissected out without any contamination of the

surrounding tissues and snap-frozen in liquid Nitrogen

for transcriptomic analysis. At 332 dph, gonads were

dissected out and weighted (precision 0.01 g) to calcu-

late the gonadosomatic index (GSI) as previously

described [46, 71]. Gonads were fixed in 4 % parafor-

maldehyde (PF) in PBS. Sex ratio of the population

was visually assessed (n = 151 fish total; HT: n = 85 and

LT: n = 66 fish) coinciding with the last sampling at

332 dph.

Twenty PF-fixed 332 dph gonads per group (10 of

each sex) were used for sex assessment and to determine

the stage of gonadal development after staining with

hematoxylin-eosin (Additional file 2: Figure S1) follow-

ing conventional histological procedures. Female and

male developmental stages were assessed according to

Brown-Peterson et al. [72]. Stages of oocyte maturation

were classified as: cortical alveolar (CA), primary growth

(PG) and primary vitellogenic stage (Vtg1). Male germ

cells in different stages of spermatogenesis were

classified as: primary spermatogonia (SpgA), primary

spermatocytes (Scp1), secondary spermatocytes (Spc2),

spermatids (Spd) and spermatozoa (Spz).

RNA extraction and cDNA synthesis

Total RNA was purified from 170 dph isolated juvenile

sexually differentiating gonads with Trizol reagent (Invi-

trogen- Live Technologies, Scotland, UK). The quality

and concentration of the RNA were assessed with a ND-

1000 spectrophotometer (NanoDrop Technologies)

based on A260 absorbance and checked on a 1 % agar-

ose/formaldehyde gel.

Two hundred nanograms of total RNA were used for

cDNA synthesis using SuperScript III Reverse Tran-

scriptase (Invitrogen, Spain) and random hexamer

primers (Invitrogen, Spain) following the manufacturer’s

instructions and were then treated with E.coli RNAse H

in order to remove complementary RNA.

Quantitative real time PCR (qRT-PCR)

Real time PCRs were performed with two purposes.

First, to select 5 fish per treatment at 170 dph for further

microarray analysis based on 2DCt cyp19a1a qRT-PCR

values after a two-step clustering analysis (see statistical

section below). At 170 dph, sex differentiation is taking

place and differences in cyp19a1a expression are evident

between presumptive future males and females starting

after 120 dph [17]. Thus, determination of cyp19a1a

levels allowed selecting fish with the highest cyp19a1a

levels by increasing the chances to concentrate our ef-

forts on the effects of temperature on presumptive fu-

ture females, which are masculinized in response to

temperature. Second, to validate microarray results (n =

5 individuals/treatment) and analyze genes that are im-

portant either for sex differentiation or related to epi-

genetic regulatory mechanisms (see Additional file 1:

Table S9 for a gene glossary). cDNA was diluted 1:10 for

the amplification of the target genes and 1:500 for the

housekeeping, reference gene r18S. Primers were de-

signed using Primer 3 Plus (http://www.bioinforma-

tics.nl/cgi-bin/primer3plus/primer3plus.cgi/) (Additional

file 1: Table S10). A melting curve analysis (95° for 15 s,

60° for 15 s and 95° for 15 s) was performed after the amp-

lification phase to analyze primer specificity (Additional

file 1: Table S10). Real-time PCR was performed on an

ABI 7900HT (Applied Biosystems) with the following pro-

gram: an initial UDG decontamination cycle at 50° for

2 min, followed by an activation step of 10 min at 95° and

then 40 cycles of 15 s denaturation at 95° and a 1 min an-

nealing/extension step at 60°. Finally, a dissociation step of

15 s at 95° followed by 15 s at 60° was added.

Ten samples per group were run in triplicate in 384-

well plates in a final volume of 10 μl per well. Each well

contained a mix of 5 μl of SYBRGreen Supermix (Applied

Biosystems), 2 μl distilled water, 2 μl primer mix (forward

and reverse primers at 10 μM concentration) and 1 μl of

cDNA. Controls lacking either cDNA or primers were in-

cluded per duplicate. Data was collected using SDS 2.3

software (Applied Biosystems) and gene expression levels

were calculated using RQ Manager 1.2 (Applied Biosys-

tems). Endogenous control gene r18S was used in all runs

to calculate intra- and inter-assay variations. Ct values

were adjusted for differences in efficiency of each primer

set when analyzing the results, and expression of target

genes was normalized to the reference gene (r18S) based

on the Schmittgen and Livak [73] method.

Microarray analysis

Microarray experiments consisted on the comparison of

5 individuals of each temperature group (LT and HT)

sampled during the process of sex differentiation at 170

dph. Before microarray hybridizations, the integrity of

the total RNA was verified in a 1 μl-sample with a
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Bioanalyzer 2100 fitted with the RNA 6000 Nano Lab-

Chip kit (Agilent, Spain) to assure consistency across

samples. Only RNA samples of 100–200 ng/μl and

RINs > 7 were used for microarray hybridizations. RNA

labelling, hybridizations, and scanning were performed

according to the manufacturer’s instructions. Briefly, total

RNA (100 ng) was amplified and Cy3-labeled with Agi-

lent’s One-Color Microarray-Based Gene Expression Ana-

lysis (Low Input Quick Amp Labelling kit), along with

Agilent’s One-Color RNA SpikeIn Kit. After labelling,

cRNA was purified with RNeasy mini spin columns (Qia-

gen), quantified with the Nanodrop ND-1000 and verified

using the Bioanalyzer 2100. Each sample (1.65 μg) was hy-

bridized to a custom-made European sea bass microarray

containing a total of 17,917 probes (Agilent ID 023790) at

65° for 17 h using Agilent’s GE Hybridization Kit. Washes

were conducted as recommended by the manufacturer

using Agilent’s Gene Expression Wash Pack with

stabilization and drying solution. Arrays were scanned

with Agilent Technologies Scanner, model G2505B. Spot

intensities and other quality control features were ex-

tracted with Agilent’s Feature Extraction software version

10.4.0.0. The complete design has been submitted to Gene

Expression Omnibus (GEO)-NCBI database (GSE52307)

as well as the platform that validates the microarray

(GPL13443).

Statistical analysis of data

Prior to statistical analysis, the normality of data was

checked with the Kolmogorov-Smirnov’s test and the ho-

moscedasticity of variance with the Levene’s test. Data of

continuous variables was log transformed when needed.

Percentage data such as GSI were arcsine transformed.

One-way analysis of variance (ANOVA) was performed to

check statistical differences between temperature treat-

ments for SL, BW and GSI data sets including cyp19a1a

expression levels when considering sex and thermal treat-

ment as separate groups (see qRT-PCR section below).

Post hoc multiple comparisons were carried out using the

Tukey’s HSD test. The Student’s t-test was used to pair-

wise compare high vs. low aromatase expressors be-

tween thermal treatments. The Chi-square test with

Yates correction was used to analyze differences in sex

ratios. Differences were accepted as significant when P

< 0.05. Unless otherwise stated, statistical analyses were

performed using IBM SPSS Statistics v19.

Quantitative RT-PCR statistical analysis was per-

formed using 2DCt from the processed data [73]. 2DCt

results were then checked for normality, homoscedastic-

ity of variance and the Student’s t- test was used to as-

sess differences between treatments.

A two-step cluster analysis using 2DCt cyp19a1a qRT-

PCR values was used to differentiate among high and

low cyp19a1a expressors in both the LT and HT groups

at 170 dph as previously described [17]. These analyses

were performed using PAST software [74].

Microarray raw data was taken from the Feature Extrac-

tion output files and was corrected for background noise

using the normexp [75] method. To assure comparability

across samples, quantile normalization [76] was used. A

probe or replicate was considered reliable if its raw fore-

ground intensity was at least two times higher than the re-

spective background intensity and if it was neither

saturated nor flagged by the Feature Extraction software.

On our custom array design, most probes (64.7 %) were

represented in two (or in some cases more) identical repli-

cates. Mean intensities of probe replicates were taken in

order to yield only one expression value per probe. A

probe was considered reliable if at least half of its repli-

cates were individually reliable, as defined above.

Differential expression analysis was carried out on all

non-control probes with an empirical Bayes approach on

linear models (limma) [77]. Results were corrected for

multiple testing according to the False Discovery Rate

(FDR) method [78]. Genes were selected as differentially

expressed if they had an adjusted p-value <0.05, an abso-

lute fold change (FC) >1.2 and were reliable, as defined

above, in all samples. All statistical analyses were per-

formed with the Bioconductor project (http://www.bio-

conductor.org/) in the R statistical environment (http://

cran.rproject.org/) [79].

For gene annotation enrichment analysis, gene names,

gene synonyms and gene functions were addressed using

mostly Genecards (http://www.genecards.org/) and Uni-

prot (http://www.uniprot.org/). The web-based tool

AMIGO (http://amigo.geneontology.org/amigo) Gene

Ontology [80] was used to retrieve the differentially

expressed (DE) gene sequences. After obtaining the se-

quences, Blast2GO software [81] was used to enrich GO

term annotation and to analyze the altered KEGG path-

ways (http://www.genome.jp/kegg/) that include those DE

genes in order to extract a broader biological meaning.

Using Blast2GO a reference set containing all the genes

from the custom-made microarray was analyzed and used

to check if the GO terms were enriched in a test group

(DE genes set) when compared to it by a Fisher’s Exact

Test with Multiple Testing Correction of FDR [59]. Also

DAVID (https://david.ncifcrf.gov/) [82, 83] was used to

further analyze and verify the pathways to which the DE

genes belong.

Availability of supporting data

The complete design can be accessible at the Gene Expres-

sion Omnibus (GEO)-NCBI database (GSE52307) as well

as the platform that validates the microarray (GPL13443);

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=gfing

ckwblqhpwh&acc=GSE52307.
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study and those reported in the literature on effects of temperature at
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Cossins et al. [32]; Vergauwen et al. [38]; Chojnowski and Braun [63]).
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Additional file 2: Figure S1. Photomicrographs of one-year-old

European sea bass gonads. (A) LT females, (B) HT females, (C) LT males

and (D) HT males. Scale bar = 50 μm. Figure S2. GO terms results and

classification in two main categories of the upregulated genes in the

HT group: A, molecular function (MF); and B, cell component (CC). Figure

S3. GO terms results and classification in two main categories of the

downregulated genes in the HT group: A, molecular function (MF); and B,

cell component (CC). Figure S4. Diagram on European sea bass sex

differentiation events, experimental design and sampling strategy. On a

calibrated age scale, the bottom panel illustrates the main events related to

gonadal sex differentiation. The middle panel depicts the low (LT) and high

(HT) temperature periods, matching the thermosensitive period (TSP). The

boxes indicate the sampling for transcriptomic analysis in relation to age

and events of sex differentiation. The top panel highlights the two main

samplings of the experiment and the type of the performed analyses.
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