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Abstract

Constructing appropriate representations of
molecules lies at the core of numerous tasks such
as material science, chemistry and drug designs.
Recent researches abstract molecules as attributed
graphs and employ graph neural networks (GNN)
for molecular representation learning, which have
made remarkable achievements in molecular graph
modeling. Albeit powerful, current models either
are based on local aggregation operations and thus
miss higher-order graph properties or focus on
only node information without fully using the edge
information. For this sake, we propose a Commu-
nicative Message Passing Transformer (CoMPT)
neural network to improve the molecular graph
representation by reinforcing message interactions
between nodes and edges based on the Transformer
architecture. Unlike the previous transformer-style
GNNs that treat molecules as fully connected
graphs, we introduce a message diffusion mecha-
nism to leverage the graph connectivity inductive
bias and reduce the message enrichment explosion.
Extensive experiments demonstrated that the
proposed model obtained superior performances
(around 4% on average) against state-of-the-art
baselines on seven chemical property datasets
(graph-level tasks) and two chemical shift datasets
(node-level tasks). Further visualization studies
also indicated a better representation capacity
achieved by our model.

1 Introduction
Accurate characterization of molecular properties remains
largely an open challenge, and its solution may unlock a
widespread use of deep learning in the drug discovery indus-
try [Wu et al., 2018]. Traditionally, this has involved trans-
lating a molecule m to a dense feature vector with a repre-
sentation function, h = g(m), and then applying a variety of
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‡https://github.com/jcchan23/CoMPT

techniques to predict the targeted property based on the rep-
resentation by y = f(h).

Early predictive modeling methods such as quantitative
structure-property relationships (QSPR) have been performed
based on fixed representations such as expert-crafted physico-
chemical descriptors and molecular fingerprints [Rogers and
Hahn, 2010]. However, descriptor-based methods presume
that all target property-related information is covered by the
chosen descriptor set, limiting the capability for a model to
make problem-specific decisions.

More naturally, a molecular structure can be abstracted as
a topological graph with attributed nodes and edges, where
node features correspond to atom properties like atomic iden-
tity and degree, edge features correspond to bond properties,
like bond type and aromaticity. In this sense, graph repre-
sentation models, especially Graph Neural Networks (GNN),
can be intuitively introduced to learn the representations of
molecules. Generally, the procedure of GNN framework
can be summarized in three main steps: (1) Initialization
step, where nodes are initialized with their initial attributes or
structural features; (2) Message Passing step, where the fea-
tures at each node are transmitted from its neighbors across
the molecular graph into a message vector; (3) Read-out
step, where the node messages are aggregated or pooled into
a fixed-length feature vector. Under the above framework,
many GNN architectures have been proposed for effective
graph representation learning, that achieve promising results
in many property prediction tasks [Duvenaud et al., 2015;
Yang et al., 2019; Song et al., 2020].

Despite the fruitful progress, several issues still impede
the performance of the current GNN in the molecular graph.
First, common graph convolutional operations aggregate only
local information and suffer from the suspended animation
problem when stacking excessive GNN layers [Zhang and
Meng, 2019], so these models are naturally difficult to learn
long-range dependencies and the global chemical environ-
ment of each atom. Second, main-stream GNN and its vari-
ants mainly focus on obtaining effective nodes embedding
but weaken the information carried by edges that is also im-
portant for informative graph representations [Shang et al.,
2018]. Meanwhile, the node representations obtained by such
deep models tend to be over-smoothed and hard to distinguish
[Li et al., 2018]. Such issues greatly hinder the applications
of GNNs for molecular representation learning tasks.
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To address the above problems, many efforts have been
made from different directions. On the one hand, with
the emerging of Transformer [Vaswani et al., 2017] in se-
quence modeling, several Transformer-style GNNs [Chen et
al., 2019; Maziarka et al., 2020] have been introduced to
learn the long-range dependencies in graph-structured data.
These methods can be viewed as a variant of the Graph At-
tention Network (GAT) [Veličković et al., 2017] on a fully
connected graph constructed by all atoms, which ignore the
graph connectivity inductive bias. As a result, they perform
poorly in the tasks where graph topology plays an important
rule. On the other hand, the directed message passing neu-
ral network [Yang et al., 2019] and its variants [Song et al.,
2020] have been proposed to transmit messages through di-
rected edges rather than vertices. Such methods make use of
the edge information explicitly and avoid unnecessary loops
in the message passing trajectory, but they still cannot deal
with the long-range dependencies.

Based on these observations, we propose a Communica-
tive Message Passing Transformer (CoMPT) neural network
for molecular representation learning. In contrast to the previ-
ous Transformer-style GNNs that emphasize the node infor-
mation, CoMPT invokes a communicative message-passing
paradigm by strengthening the message interactions between
edges and nodes. In our framework, both the edge and node
embeddings are updated during the training process. Besides,
we refine the message passing process by using the topolog-
ical connection matrix with a diffusion mechanism to reduce
the message enrichment explosion. By selectively propagat-
ing information within a molecular graph, CoMPT is able to
extract more expressive representation for down-stream tasks.
The main contributions of this work include:

• We propose a novel communicative message passing
transformer, namely CoMPT, that explicitly captures the
atom and bond information of molecular graphes and in-
corporates both local and global structural information.

• Our model includes an elegant way to fuse topology
connection matrix using the message diffusion mech-
anism inspired by the thermal diffusion phenomenon,
which was further demonstrated to alleviate the over-
smoothing problem.

• Numerical experiments are conducted on both graph-
level and node-level public datasets to demonstrate the
effectiveness of our method. CoMPT surpasses the state-
of-the art models on all nine tasks by up-to 4% improve-
ment in the average performance.

2 Related Work
Molecular representation learning. One of the most pop-
ular representations of molecules is the fixed representations
through chemical fingerprints, such as Extended Connectiv-
ity Fingerprints (ECFP) [Rogers and Hahn, 2010] and chemi-
cal descriptors. The heuristics integrated in descriptor gener-
ation algorithms typically embed high-level chemistry prin-
ciples, attempting to maximize the information content of
the resulting feature vectors. While these methods can be
clearly successful, they always feature a trade-off by em-

phasizing certain molecular features, while neglecting oth-
ers. The selections of features are hard-coded in the algo-
rithm and not amenable to problem-specific tuning. Recent
works started to explore the molecular graph representation.
Early studies learned to only encode the node features [Du-
venaud et al., 2015] without considering bond information.
To gain supplementary information from edges, [Kearnes et
al., 2016] proposed to utilize attributes of both atoms and
bonds, and [Gilmer et al., 2017] summarized it into a MPNN
framework. Though a few more studies used the informa-
tion of the edges through network modules such as the edge
memory module [Withnall et al., 2020], these models were
mainly built upon the node-based MPNN and thus still suf-
fered from the information redundancy during message ag-
gregations. DMPNN [Yang et al., 2019] was introduced as
an alternative as it abstracted the molecular graph as an edge-
oriented directed graph, avoiding the unnecessary loops in
message passing procedure. CMPNN [Song et al., 2020] fur-
ther extend this work by strengthening the message interac-
tions between nodes and edges through a communicative ker-
nel. Our work is closely related to CMPNN, while our model
built on Transformer is more elegant to capture long-range
dependencies and structural variety.

Transformer-style graph neural network. Several at-
tempts have been made to integrate transformer and graph
neural network. [Chen et al., 2019] introduced the Path-
Augmented Graph Transformer Networks to explicitly take
account for longer-range dependencies in molecular graph.
One closely related work is [Maziarka et al., 2020], which
proposed a Molecule Attention Transformer by augmenting
the attention mechanism in Transformer using inter-atomic
distances and the molecular graph structure. Another work
worth to note is GROVER [Rong et al., 2020], which pro-
vided a self-supervised pre-trained transformer-style message
passing neural network for molecular representation learn-
ing. While our model also builds on Transformer [Vaswani
et al., 2017] to encode graphs, we contribute new techniques
to leverage the graph connectivity inductive bias.

3 Methods
In this section, we first briefly review basic concepts of the
Transformer model [Vaswani et al., 2017]. Then, we focus
on our contributions, describing our alternative in the Trans-
former encoder framework that uses node-edge message in-
teraction module instead of the self-attention mechanism to
pass the message and learn expressive representations for at-
tributed molecular graphs. Finally, we introduce a message
diffusion mechanism for leveraging the graph connectivity in-
ductive bias and reducing the message enrichment explosion.

3.1 Preliminary
Notation and problem definition. A molecular structure
can be considered as an attributed graph G = (V , E), where
|V| = n denotes a set of n atoms (nodes) and |E| = m de-
notes a set of m bonds (edges). Nv is utilized to denote the
set of node v’s neighbors. For each node and edge, we use
fnode and fedge represents the feature dimensions, respec-
tively. Following [Yang et al., 2019] that passing message
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Figure 1: Comparing message passing procedure among MPNN
(left), Transformer (middle) and CoMPT (right).

with directed edges, we treat molecular structures as directed
graphs to avoid messages being passed along any unneces-
sary loops in the aggregation procedure. As such, we use
xv ∈ Rfnode to represent the initial features of node v, and
euv ∈ Rfedge are the initial features of the edge (u, v) with
direction u → v. X ∈ Rn×fnode and E ∈ Rn×n×fedge are
the matrices form for all nodes and edges. Besides, there are
generally two categories of supervised tasks in the molecular
graph learning problems: i) Graph classification/regression,
where a set of molecular graphs {G1, . . . , GN} and their la-
bels/targets {y1, . . . , yN} are given, and the task is to pre-
dict the label/target of a new graph. ii) Node classifica-
tion/regression, where each node v in multiple graphs has a
label/target yv , and the task is to predict the labels/targets of
nodes in the unseen graphs.
Attention mechanism. Our CoMPT model are built on the
transformer encoder framework, in which the attention mod-
ule is the main building block. The usual implementation of
the attention module is the dot product self-attention, which
takes inputs with a set of queries, keys, and values (q, k, v)
that are projected from hidden node features h(X). Then
it computes the dot product of the query with all keys and
applies a softmax function to obtain weights on the values.
By stacking the set of (q, k, v) s into matrices (Q,K, V ),
it allows highly optimized matrix multiplication operations.
Specifically, the outputs can be formulated as:{

[Q,K, V ] = h(X)[WQ,WK ,WV ]

Attention(Q,K, V ) = softmax(QKT /
√
d)V

(1)

where d is the dimension of q and k. Furthermore, we fo-
cus on the multi-head attention, where l attention layers are
stacked together. The output matrix can be extended as,{

Multihead(Q,K, V ) = Cat(head1, . . . , headl)W
O

headi = Attention(h(X)WQ
i , h(X)WK

i , h(X)WV
i )

(2)

where WQ
i ,W

K
i ,W

V
i are the projection matrices of head i.

3.2 The Framework of CoMPT
Encoding for node position and edge direction. Com-
pared to the Transformer encoder that only takes node at-
tributes, our CoMPT takes three inputs: node features X ,
edge features E, and the topology connection matrix A ∈

Rn×n that is computed by using the length of the shortest
path between any two nodes. Since the initial node and edge
features (more details are listed in the Appendix) do not in-
volve information related to the node position and the edge
direction, we need to add annotations explicitly with these
features before being fed into the CoMPT model. Specifi-
cally, for any node vi(i = 1, 2, . . . , n) and its correspond-
ing initial feature xi, we train a learnable position embedding
vector posi according to the atomic index of the node, and
then add the initial features to get the hidden features, which
can be formulated as:

h(xi) = node_embedding(xi) + posi (3)

where node_embedding() projects the initial feature to the
corresponding dimension. For any directed edge euv , we fol-
lowed the previous method in [Song et al., 2020] by adding
the source node feature to the initial feature. It could be for-
mulated as:

h(euv) = edge_embedding(euv) + h(xu) (4)

where edge_embedding() also projects the initial feature to
the corresponding dimension. For convenience, we set the
same dimension f for all hidden features.
Node-Edge message interaction module. The key idea be-
hind CoMPT is that we use hidden node features h(X) and
hidden edge features h(E) to compute a message interaction
scoresM , which replaces the self-attention scores in the orig-
inal encoder layer. Specifically, three matrices Q,K, V are
firstly calculated by the formula:{

[Q,V ] = h(X)[WQ,WV ]
K = h(E)WK (5)

where WQ,WK ,WV are the projection matrices. The mes-
sage interaction matrix T is generated by the inner product:

T = matmul(Q,K.tranpose(−2,−1)) (6)
or equivalently in each position

T [i, u, v] = matmul(qi, kuv) (7)

where qi and kuv denote the hidden vector of node i and di-
rected edge (u, v), respectively. The intuition behind this ten-
sor product is straight-forward: we compute the scalar prod-
uct between each node and edge in order to generate the struc-
tural message related to the molecule for the final prediction.
Subsequently, a selection step is applied to the message inter-
action matrix T to preserve the molecular graph connectiv-
ity. Here, we select three types of matrices according to the
node’s neighbors: the node interacts with its outgoing edges
(Mo), incoming edges (Mi) and the self-loop edge (Md).
For convenience, the generation and the selection step could
be merged by einsum operation with the formula below:{

Mo = einsumnf,nmf→nm(Q,K)
Mi = einsumnf,mnf→nm(Q,K)
Md = diag(Mo) = diag(Mi)

(8)

After computing three matrices, we normalize them to sum up
to 1.0 in each row with the softmax function σ, and compute
the final message by:

M = σ(Mo) + σ(Mi)− σ(Md) (9)
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This operation eliminates the double-counted self-loop mes-
sage and avoids the information explosion. This final mes-
sage is further utilized to update the node hidden features
h(X) and edge hidden features h(E) in each encoder layer.
Furthermore, in the situation of multi-head attention, similar
to the original transformer framework, we also stack all l at-
tention blocks at the end of each layer.
Residual message update module. In the original trans-
former encoder framework, the self-attention scores are uti-
lized to compute the weighted sum of vectors for each node,
which could be regarded as an updated operation that is ap-
plied to all nodes. In contrast, we utilize the message inter-
action scores M to update the node hidden features h(X).
Besides, inspired by [Song et al., 2020], the edge hidden fea-
tures are also updated according to the rich information that
comes from M . The update operation is concluded as:{

h(X) = matmul(M,V )
h(E) =M �K (10)

where � denotes the element-wise operation. Besides,
CoMPT model has multiple stacked layers, where each en-
coder layer consists of a multi-head message interaction mod-
ule, message update module and a position-wise forward
module. To make the training step more stable, we adopt
the post layer norm module [Xiong et al., 2020] before get-
ting into each module. Furthermore, residual connections be-
tween any two encoder layers are added for reducing the van-
ishing of the gradient, which can be formulated as:{

hk+1(X) = hk(X) + Encoder(hk(X), hk(E))
hk+1(E) = hk(E) + Encoder(hk(X), hk(E))

(11)

where k represents the index of the encoder layer,
Encoder(·) denotes the whole encoder layer with the vari-
ous modules mentioned above.

3.3 Message Diffusion and Global Pooling
The key to accurately predict the properties on the graph-
level/node-level tasks is how to keep the message inter-
acting correctly. Previous studies have shown that deep
message aggregation of GNN will lead to an over-smooth
phenomenon[Li et al., 2018], where the features of nodes
within the graph will converge to the same values.

To alleviate this issue, we design a simple attenuation
mechanism for message passing during iteration to delay the
process of aggregating redundant information to nodes. In
particular, each hidden vector in message interaction scores
M could be regarded as the prepared message sent from the
row index of the node to the column index of the node, and the
topology connection matrix A shows the distance of shortest
path between two nodes. We add the attenuation coefficient
by using the Gaussian kernel function with the formula:

M(u, v) =M(u, v)e−αA(u,v) (12)

where M(u, v) denotes the message sending from u to v,
A(u, v) means the shortest path between u and v, α ∈ [0, 1] is
a trainable coefficient to control the attenuation level. It is ob-
vious that with the increase of distance, the message will de-
cay rapidly in the beginning, and then turn smooth for a long

distance. After applying this mechanism, we can defer the
over-smoothness of the aggregating process to a certain de-
gree. The ablation study in the section 4.3 also shows that the
attenuation mechanism improves the prediction performance.

Finally, for the graph-level tasks, a readout opera-
tor/generation layer is added to obtain a fixed feature vec-
tor for the molecule. Here, we adopt a Gated Recurrent
Unit (GRU) for global pooing following [Gilmer et al., 2017;
Song et al., 2020] as:

z =
∑
x∈V

GRU(h(x)) (13)

where h(x) is the set of atom representations in the molec-
ular graph, and GRU is the Gated Recurrent Unit. Finally,
we perform downstream property prediction ŷ = f(h) where
f(·) is a fully connected layer.

4 Experiments
In this section, we evaluate the proposed model CoMPT on
three kinds of tasks. We aim to answer the following research
questions:

• RQ1: How does CoMPT model perform compared with
state-of-the-art molecular property prediction methods?

• RQ2: How do different components (i.e, node position,
edge direction, and message diffusion mechanism) af-
fect CoMPT?

• RQ3: Can CoMPT model provide better representations
for the attributed molecular graphs?

4.1 Experiment Setups
Benchmark Datasets
To enable head-to-head comparisons of CoMPT to exist-
ing molecular representation methods, we evaluated our pro-
posed model on nine benchmark datasets across three kinds
of tasks from [Wu et al., 2018] and [Jonas and Kuhn, 2019],
each kind of which consists of 2 to 4 public benchmark
datasets, including BBBP, Tox21, Sider, and ClinTox for
Graph Classification tasks, ESOL, FreeSolv and Lipophilic-
ity for Graph Regression tasks, chemical shift prediction of
hydrogen and carbon for Node Regression tasks. The statis-
tics of datasets are shown in Table S1.

In the graph-level task, following the previous works, we
utilized a 5-fold cross-validation and replicate experiments
on each task five times. Note that we adopted the scaffold
split method recommended by [Yang et al., 2019] to split the
datasets into training, validation, and test, with a 0.8/0.1/0.1
ratio. Scaffold Split is a more challenging and realistic eval-
uation setting in molecular property prediction tasks by guar-
anteeing the high molecular scaffold diversity of the training,
validation, and test sets.

In the node-level task, we follow the previous study [Jonas
and Kuhn, 2019] by randomly splitting the dataset into 80%
as the training set and 20% as the test set, and then use 95%
of training data to train the model and the remaining 5% to
validate the model for early stopping. All methods report the
mean and standard deviation of corresponding metrics. To
improve model performance, we applied the grid search to
obtain the best hyper-parameters of the models.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2245



Task Graph Classification(ROC-AUC) Graph Regression(RMSE)
Dataset BBBP Tox21 Sider ClinTox ESOL FreeSolv Lipophilicity

TF_Robust 0.860 ± 0.087 0.698 ± 0.012 0.607 ± 0.033 0.765 ± 0.085 1.722 ± 0.038 4.122 ± 0.085 0.909 ± 0.060
GCN 0.877 ± 0.036 0.772 ± 0.041 0.593 ± 0.035 0.845 ± 0.051 1.068 ± 0.050 2.900 ± 0.135 0.712 ± 0.049

Weave 0.837 ± 0.065 0.741 ± 0.044 0.543 ± 0.034 0.823 ± 0.023 1.158 ± 0.055 2.398 ± 0.250 0.813 ± 0.042
SchNet 0.847 ± 0.024 0.767 ± 0.025 0.545 ± 0.038 0.717 ± 0.042 1.045 ± 0.064 3.215 ± 0.755 0.909 ± 0.098
N-Gram 0.912 ± 0.013 0.769 ± 0.027 0.632 ± 0.005 0.855 ± 0.037 1.100 ± 0.160 2.512 ± 0.190 0.876 ± 0.033

AttentiveFP 0.908 ± 0.050 0.807 ± 0.020 0.605 ± 0.060 0.933 ± 0.020 0.853 ± 0.060 2.030 ± 0.420 0.650 ± 0.030
MPNN 0.913 ± 0.041 0.808 ± 0.024 0.595 ± 0.030 0.879 ± 0.054 1.167 ± 0.430 2.185 ± 0.952 0.672 ± 0.051
MGCN 0.850 ± 0.064 0.707 ± 0.016 0.552 ± 0.018 0.634 ± 0.042 1.266 ± 0.147 3.349 ± 0.097 0.650 ± 0.030

DMPNN 0.919 ± 0.030 0.826 ± 0.023 0.632 ± 0.023 0.897 ± 0.040 0.980 ± 0.258 2.177 ± 0.914 0.653 ± 0.046
CMPNN 0.927 ± 0.017 0.806 ± 0.016 0.616 ± 0.003 0.902 ± 0.008 0.798 ± 0.112 2.007 ± 0.442 0.614 ± 0.029

Smiles Transformer 0.900 ± 0.053 0.706 ± 0.021 0.559 ± 0.017 0.905 ± 0.064 1.144 ± 0.118 2.246 ± 0.237 1.169 ± 0.031
GROVER 0.911 ± 0.008 0.803 ± 0.020 0.624 ± 0.006 0.884 ± 0.013 0.911 ± 0.116 1.987 ± 0.072 0.643 ± 0.030
CoMPT 0.938 ± 0.021 0.809 ± 0.014 0.634 ± 0.030 0.934 ± 0.019 0.774 ± 0.058 1.855 ± 0.578 0.592 ± 0.048

Table 1: Prediction results of CoMPT and baselines on seven chemical graph datasets. We used a 5-fold cross validation with scaffold split
and replicated experiments on each tasks for five times. Mean and standard deviation of AUC or RMSE values are reported.

Baselines Comparison
We comprehensively compared CoMPT against with 12 base-
line methods in the graph level task. These models were most
shown in the MoleculeNet [Wu et al., 2018] and GROVER
as follows: TF_Robust [Ramsundar et al., 2015] is a DNN-
based multitask framework taking the molecular fingerprints
as the input. GCN, Weave, and SchNet [Duvenaud et al.,
2015; Kearnes et al., 2016] are three graph convolutional
models. N-Gram [Liu et al., 2019] is a state-of-the-art unsu-
pervised representation method for molecular property pre-
diction. AttentiveFP [Xiong et al., 2019] is an extension of
the graph attention network. MPNN and its variants MGCN
[Lu et al., 2019], DMPNN and CMPNN are models consid-
ering the edge features during message passing. Specifically,
to demonstrate the power of the message-interaction mod-
ule, we also compare CoMPT with two transformer model:
Smiles Transformer [Honda et al., 2019] and GROVER. For
a fair comparison, we only report the results without the pre-
trained strategy.

In the node level task, we compared our CoMPT model
with the other 3 proposed methods in this benchmark. The
first one is HOSE codes, which attempted to summarize the
neighborhood around each atom in concentric spaces, and
then use a nearest-neighbor approach to predict the particu-
lar shift value. The rest baselines include GCN [Jonas and
Kuhn, 2019] and MPNN [Kwon et al., 2020], where they
used different deep graph neural networks to improve the per-
formance of prediction.

4.2 Performance Comparison (RQ1)
Performance in graph level task. Table 1 displays the
complete results of each model on all datasets, where cells
in the gray shadow denote the previous best methods, and
cells with the bold style show the best result achieved by
CoMPT. Table 1 presents some observations: (1) Both the
message passing neural network and transformer framework
perform better than graph neural network on most datasets,
and CoMPT combines the advantages of them to achieve
the best performances on 6 out of 7 datasets. Compared
to the previous best message passing method CMPNN and
transformer method GROVER, the general improvements are

Task Node Regression(MAE)
Dataset 1H-NMR 13C-NMR
HOSE 0.33 2.85
GCN 0.28 1.43

MPNN 0.229 ± 0.002 1.355 ± 0.022
CoMPT 0.214 ± 0.003 1.321 ± 0.012

Table 2: Performance on Node-level tasks

3.4% (2.0% on classification tasks and 3.4% on regression
tasks) and 4.7% (2.7% on classification tasks and 4.7% on
regression tasks), respectively. This notable incresing sug-
gests the effectiveness of the structural representation learned
by CoMPT for graph level prediction tasks. (2) The message
passing neural network performs better than the transformer
neural network, indicating the importance of edge features
relative to only an adjacency matrix or distance matrix. (3) In
the situation of small dataset, such as the Freesolv task with
only 642 labeled molecules, CoMPT gains a 6.6% relative
improvement over previous SOTAs, confirming that CoMPT
model could enhance the performance on the task with few
labeled data.

Performance in node level task. Table 2 shows the com-
parison results of the baseline and CoMPT on the predic-
tion of 1H-NMR and 13C-NMR spectra in terms of MAE.
We performed experiments 5 times independently with dif-
ferent random seeds and report the average and standard de-
viation over the 5 repetitions. The average values over the 5
repetitions for 1H-NMR and 13C-NMR are 0.214 and 1.321
ppm per NMR-active atom, respectively. This indicates that
our CoMPT model could extract the meaningful latent node
representations and thus enable more accurate predictions of
NMR spectra for new molecules.

4.3 Ablation Study (RQ2)
We conducted ablation studies on three benchmark datasets
to investigate factors that influence the performance of the
proposed CoMPT framework.

As shown in Table 3, CoMPT with the node position, edge
direction, and message diffusion shows the best performance
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CMPNN CoMPT (without diffusion) CoMPT

Figure 2: T-SNE visualization of atom embeddings for three similar molecules (in three colors) that have a common scaffold but various
side-chains in ClinTox dataset. Ideally, the scaffold atom embeddings of these three molecules should be mixed together while the unique
side-chains’ embeddings should be distinguishable.

Dataset ClinTox Lipophilicity 1H-NMR
Without All 0.862 0.653 0.231

Without message diffusion 0.868 0.651 0.221
Without node position 0.903 0.614 0.217
Without edge direction 0.902 0.612 0.218

CoMPT 0.934 0.592 0.214

Table 3: Ablation results on three kinds of datasets

among all architectures. The exclusion of all three modules in
the “without All” variant performed the worst. The exclusion
of the message diffusion mechanism caused larger decreases
in performances than the ones excluding two other modules,
showing the importance of reducing the message enrichment
explosion. Additionally, the uses of node position and edge
direction are both helpful for the final performance.

4.4 Atomic Representation Visualization (RQ3)
As shown in [Li et al., 2018], the node embeddings obtained
by deep GNNs tend to be over-smoothed and become indis-
tinguishable, while shallow GNNs cannot capture atom po-
sitions within the broader context of the molecular graph.
To investigate whether the CoMPT alleviated these issues as
expected, we used t-distributed stochastic neighbor embed-
ding (t-SNE) to visualize the atom embedding distributions
of three similar compounds that have a common scaffold (the
four-membered ring) but different side-chains. Ideally, the
scaffold atom embeddings of these three molecules should
be mixed together while the unique side-chains’ embeddings
should be distinguishable.

Figure 2 shows the projected atomic embeddings extracted
from different models using the t-SNE with default settings.
Overall, three methods provide reasonable results. MPNN in-
herits the over-smoothness issue from the GNN, making the
atom embeddings indistinguishable within the graph . In con-
trast, both CoMPT models (with or without diffusion) can
scatter the atoms well with distinguishable node embeddings.
Relative to CoMPT without diffusion, CoMPT could exactly
mix the scaffold atom embeddings and differentiate the side
chains. More interestingly, CoMPT can distinguish the same

functional groups in different chemical environments (the
Hydroxy Ketones in green and in yellow, respectively). These
results suggest that CoMPT can not only alleviate the over-
smoothness but also capture better representations within the
broader context of the molecular graph as expected.

In the node-level tasks, our CoMPT model reaches 0.214
MAE that many molecules with densely packed 1H-NMR
spectra can be resolved at these levels of accuracy. As an ex-
ample, Figure S1 depicts the structure of the 3-Formylbenzoic
acid, which has 6 hydrogen atoms, labeled from 11 to 16 with
peaks within the 4-14 ppm range. The small difference be-
tween the ground truth and the prediction further proves that
our model has a good capability in the node-level tasks.

5 Conclusions
In this paper, we propose a Communicative Message Pass-
ing Transformer (CoMPT) neural network to improve the
molecular representation by reinforcing the message inter-
actions between nodes and edges based on the Transformer
model. Further, we introduce a message diffusion mechanism
to decay the message enrichment explosion as well as over-
smoothness during the message passing process. Extensive
experiments demonstrate that our CoMPT model obtains su-
perior performance against state-of-the-art baselines on both
graph-level tasks and node-level tasks.
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