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ABSTRACT Fog Computing (FC) and Conditional Deep Neural Networks (CDDNs) with early exits are two

emerging paradigms which, up to now, are evolving in a standing-alone fashion. However, their integration

is expected to be valuable in IoT applications in which resource-poor devices must mine large volume of

sensed data in real-time. Motivated by this consideration, this article focuses on the optimized design and

performance validation of Learning-in-the-Fog (LiFo), a novel virtualized technological platform for the

minimum-energy and delay-constrained execution of the inference-phase of CDDNs with early exits atop

multi-tier networked computing infrastructures composed by multiple hierarchically-organized wireless Fog

nodes. The main research contributions of this article are threefold, namely: (i) we design the main building

blocks and supporting services of the LiFo architecture by explicitly accounting for the multiple constraints

on the per-exit maximum inference delays of the supported CDNN; (ii) we develop an adaptive algorithm

for the minimum-energy distributed joint allocation and reconfiguration of the available computing-plus-

networking resources of the LiFo platform. Interestingly enough, the designed algorithm is capable to

self-detect (typically, unpredictable) environmental changes and quickly self-react them by properly re-

configuring the available computing and networking resources; and, (iii) we design the main building

blocks and related virtualized functionalities of an Information Centric-based networking architecture, which

enables the LiFo platform to perform the aggregation of spatially-distributed IoT sensed data. The energy-

vs.-inference delay LiFo performance is numerically tested under a number of IoT scenarios and compared

against the corresponding ones of some state-of-the-art benchmark solutions that do not rely on the Fog

support.

INDEX TERMS Conditional deep neural networks, distributed multi-tier fog platforms, early exit of

IoT inference, per-exit inference delays, virtualized networked computing architectures, adaptive resource

allocation and reconfiguration.

I. MOTIVATIONS OF THE WORK AND REFERENCE

FRAMEWORK

With the advent of the Internet of Things (IoT) era, it is

expected that a huge number of (mainly wireless and spatially

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang .

distributed) resource-limited devices will produce and/or

consume large volumes of (possibly, heterogeneous and

quickly changing) sensory data. Depending on the nature

of the supported IoT application, the raw data generated

by these devices may translate into big data streams which

may require real-time mining. A white paper by Cisco [1]

forecasts that more than 50 billion IoT devices will connect
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to the Internet by 2021, so that about 850 Zettabytes of

data per-year will be locally generated/consumed by these

devices outside the cloud, with the global intra-data center

traffic remaining limited up to 21 Zettabytes. This implies,

in turn, that producers/consumers of big data will progres-

sively move from large-scale centralized cloud-hosted data

centers to a wide range of spatially distributed ‘‘tiny’’ edge

devices [2]. However, it is expected that stand-alone cloud

computing will become gradually unable to process these

massive data, mainly because: (i) the IoT traffic gener-

ated in upstream towards cloud data centers will inflate

the core networks; and, (ii) a spectrum of emerging IoT-

supported applications, such as human activity recognition

and autonomous car driving, will require to mine of the

acquired data under strict real-time constraints, so to make

infeasible the transportation of IoT data to remote cloud data

centers [2].

Hence, in order to effectively exploit the IoT-driven Big

Data Stream tsunami for discovering in real-time fresh infor-

mation, the carried out analytic and supporting execution

technological platforms should meet three main requirements

[3]. First, the analytic should be powerful enough to effec-

tivelymine the heterogeneous and possibly noisy sensing data

generated by resource-limited IoT devices. Second, it should

be fast enough, in order to cope with the stream nature of

the IoT data. Third, the analytic should be amenable to dis-

tributed execution, in order to be compliant with the spatially

distributed nature of the IoT devices and, then, give rise to

low processing/communication delays.

In principle, the first two requirements could be simul-

taneously met by employing the emerging paradigm of the

so-called Conditional Deep Neural Networks (CDNNs) with

early exits [4]–[6] (also referred to as BranchyNets [7], [8]),

which provides an effective means to perform Deep Learn-

ing (DL) on structured/unstructured IoT data in real-time.

A sketch of a CDNN with L layers and NEE early exits is

presented in Fig. 1a. Essentially, a CDNN with early-exits is

obtained by augmenting the stack topology of a feedforward

Baseline Deep Neural Network (B-DNN) with a number

of side output branches (i.e., the early exits), which are

connected to intermediate local classifiers. The introduction

of side branch classifiers enables Early Exit of Inference

(EEoI) to make easy-to-classify input data exit early via these

branches, with high enough confidence (i.e., high enough

reliability).

However, in order to actually implement spatial scaling

and guarantee per-layer processing of the input data (see

Fig. 1a), the technological platform supporting the execution

of a CDNN with early exits cannot rely only on a standing-

alone remote and centralized cloud data center. It should

be composed, indeed, of the networked interconnection of a

number of hierarchically-organized computing nodes, which

are spatially scattered and operate nearby the IoT devices.

This is the native layout of the emerging paradigm of Fog

Computing (FC) [9]–[11]. As sketched in Fig. 1b, an FC

technological platform is typically composed of a set of (M−

FIGURE 1. (a) Stack topology of a CDNN with L layers, NEE early exits,
and a final exit; (b) Hierarchical topology of a networked Fog computing
platform with a bottom IoT tier, (M − 1) middle clusters of Fog nodes, and
a final Cloud node. FN: = Fog Node; AG: = Aggregator.

1) clusters of medium-size virtualized data centers (i.e., Fog

Nodes (FNs)), which are hierarchically-organized into tiers

and exploit (typically wireless) transport links for enabling

inter-tier communication, so to implement a communication

path from the lowermost IoT realm at tier #0 to the uppermost

Cloud Node (CN) at tier #M . At each intermediate tier #m,

with 1 ≤ m ≤ M − 1, an intra-tier local network allows an

Aggregator (AG) node to provide EEoI by suitably merging

the outputs of the corresponding FNs into a local output (see

the per-tier side branches in Fig. 1b). So doing, it is expected

that only a (small) fraction of the volume V0(t) of data gen-

erated by the IoT devices at time t needs to be transported up

to the remote CN for analytics, while a (hopefully, large) part

of V0(t) early exits through the available intermediate per-tier

local outputs.

IoT-CDNN-FC convergence: added value and main chal-

lenges— We anticipate that an overview of the related work

of Section II points out that, at the present time, two main sets

of challenges must be afforded, in order to fully exploit the

IoT-CDNN-FC convergence.
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A first set of challenges concerns the optimized design and

training of the CDNN of Fig. 1a for IoT-oriented real-time

applications and embraces:

1) the optimal setting of the number of local exits and their

corresponding placement along the stack of layers of

Fig. 1a;

2) the design of suitable criteria that allow an optimized

delay-vs.-reliability tradeoff, so to balance the two con-

trasting requirements of generating large volumes of

early exits with high confidence levels;

3) the design of suitable algorithms for the distributed

training of the designed CDNN; and,

4) the optimized mapping of the layers of the designed

CDNN of Fig. 1a onto the tiers of the underlying exe-

cution Fog platform of Fig. 1b.

A second set of challenges involves the optimized design,

implementation and running of the distributed multi-tier net-

worked FC technological platform of Fig. 1b and covers:

5) the support of the virtualized execution of data ana-

lytics, in order to allow the technological platform of

Fig. 1b to run in parallel multiple IoT applications

without interference;

6) the optimized joint allocation of the virtualized com-

puting and networking resources to the FNs of

Fig. 1b, so to minimize the resulting total consumed

networking-plus-computing energy;

7) the design of suitable adaptation strategies that enable

the Fog platform of Fig. 1b to track the (possibly unpre-

dictable) time-variations of the IoT operating environ-

ment;

8) the design of effective re-configuration mechanisms

that enable the Fog platform to be resilient against the

failures induced by the inherently unreliable nature of

the wireless IoT realm; and,

9) the simultaneous support of multiple delay-constraints

on the inference flows generated by the local outputs

of Fig. 1b, as dictated by the real-time nature of the

supported IoT applications.

A. THE CONSIDERED VIRTUALIZED FOG EXECUTION

PLATFORM

According to the aforementioned challenges, Fig. 2 provides

a sketch of the ordered steps to be carry out for the design,

training and execution of the CDNNwith early exits of Fig. 1a

over the distributed Fog technological platform of Fig. 1b.

The first four steps of Fig. 2 concern the training/setup

of the considered CDNN with early exits. All these steps

have been the focus of our previous contributions in [6], [12],

which tackle with the first four challenges in items 1–4 of the

previous list. The last two steps of Fig. 2 concern the inference

phase of the CDNN’s life-cycle and cover the second set of

the aforementioned challenges which are listed in items 5–

9. These last two steps and the associated (still open) five

challenges are the explicit focus of this contribution.

FIGURE 2. A sketch of the ordered step sequence of the CDNN’s life-cycle.

According to this last consideration, Fig. 3 shows a sketch

of the envisioned multi-tier networked Learning-in-the-Fog

(LiFo) technological platform for the distributed execution

of the inference phase of an (already designed, trained and

mapped) CDNN with early exits.

Basically, the proposed LiFo platform is composed of the

hierarchically organized cascade of three main segments,

namely:

1) the lowermost segment (i.e., tier #0), where a set of

spatially distributed resource-poor IoT sensors operate.

Since current IoT devices (for example, smartphone,

tablets and personal assistants, just to name a few) are

natively equipped with built-in sensors, IoT devices at

tier #0 are assumed to be co-located with Fog nodes

at tier #1 (see the dark red triangles at the bottom of

Fig. 3);

2) the middle segment, where a number of spatially dis-

tributed and networked Fog nodes operates. Accord-

ing to Fig. 3, this segment is hierarchically organized

into (M − 1) stacked tiers numbered from tier #1 to

tier #(M − 1). At tier #m, with 1 ≤ m ≤ M − 1,

a cluster: {FN (j,m), 1 ≤ j ≤ mm}, with mm ≥ 1,

of Fog nodes operates in a Peer-to-Peer fashion by

exchanging data with a local aggregator AG(m) over

an intra-tier Local Area Network (LAN). From time to

time, the final Detector #m generates a local decision

ĉm (i.e., a class label) on the current input data gen-

erated by the sensors at tier #0 when the confidence

level of the per-tier aggregated data
−→
Ŷ m delivered by

AG(m) is high enough. In the opposite case (i.e., when

the confidence level of
−→
Ŷ m is estimated to not be high

enough), the local output is the empty set: ∅, that is,
no data is generated by the m-th local output;
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FIGURE 3. A sketch of the proposed LiFo technological platform for the distributed execution of a
CDNN with early exits. Continuous red (resp., dashed azure) arrows denote one-way (resp., two-way)
TCP/IP (resp., UDP) inter-tier (resp., intra-tier) wireless transport flows. Red triangles denote IoT
sensing devices placed at tier #0. FN: = Fog Node; AG: = Aggregator; ĉm: = local decision at tier #m.

3) the uppermost segment (i.e., tier #M ), where a single

remote Cloud node (labeled as FN (1,M ) in Fig. 3)

operates. Its task is to perform complex analytics on

the most hard-to-classify input instances, so to provide

a final decision ĉM on the class label of the currently

sensed input data, regardless of its actual confidence

level.

From time to time, the sensors at the bottom of the LiFo

technological platform of Fig. 3 sense the local surrounding

environment and then pass the sensed data in upstream for its

tier-by-tier hierarchical mining. At each intermediate tier #m,

with 1 ≤ m ≤ (M − 1), an (average) fraction ρm of the input

data is passed to the next tier #(m+1) for further processing,

while the remaining fraction (1 − ρm) undergoes local exit,

in order to produce the corresponding decision ĉm. Due to the

real-time nature of the considered IoT application scenario,

the inference-delay at which the decision ĉm exits at each

tier #m, 1 ≤ m ≤ M , is assumed to be limited up to a per-tier

upper bound T
(m)
EXIT (s), 1 ≤ m ≤ M , whose actual value is set

on the basis of the Quality of Service (QoS) requirements of

the supported application.

In order to implement the aforementioned hierarchically-

organized data processing with intermediate local outputs,

the Fog nodes of the LiFo technological platform in Fig. 3

must be equipped with both networking and computing capa-

bilities. Specifically, the required inter-node message passing

is implemented by a number of inter-tier and intra-tier trans-

port connections (see the arrows of Fig. 3).

Up-link communication between Fog nodes falling in adja-

cent tiers is supported by a number of TCP/IP one-way
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reliable connections, which are sustained by wireless (pos-

sibly, single-hop and WiFi-based) communication channels

(see the continuous red arrows in Fig. 3 between adjacent

tiers). Since load balancing is assumed to be performed at the

outputs of each tier, all the transport connections going from

Fog nodes at tier #m to Fog nodes at tier #(m+ 1) operate at

a same bit-rate of Rm (bit/s).

Horizontal communication between the Fog nodes and

the Aggregator falling into a same tier is assured by an

intra-tier (wired or wireless) LAN which relies on (fast,

i.e., connection-less) UDP/IP two-way transport connections

(see the dashed green arrows in Fig. 3). Being of local-type

and used only for (sporadic) aggregation operations, these

intra-tier connections are assumed to operate at low bit-rates,

so that the impact of their energy consumption is expected not

to be so substantial.

B. FOG VIRTUALIZATION

Consider the computing capability needed by the Fog nodes

for carrying out the real-time processing of the sensed input

data, we note that, in principle, the technological platform of

Fig. 3 may run in parallel multiple CDNNs which carry out

different analytics on the same set of sensed data by resorting

to the virtualization of the full spectrum of available physical

resources [3].

Hence, according to these considerations, we assume that

all Fog/Cloud nodes of Fig. 3 are equipped with software

clones of the (possibly, multiple) run CDNNs. The number

of clones simultaneously hosted by each FN equates to the

number of (possibly, multiple) CDNNs which are running

in parallel over the LiFo technological platform of Fig. 3.

So doing, each clone is fully dedicated to the execution of a

single associated CDNN, then it acts as a virtual ‘‘server’’ by

providing resource augmentation to the tied ‘‘client’’ CDNN.

For this purpose, each clone is executed by a container that

is instantiated atop the hosting FN, so that it is capable of

using (through resource multiplexing) a slice of the physical

computing, storage, and networking resources of the hosting

FN.

Fig. 4 details a logical view of the resulting virtualized

container-based FN.

Specifically, according to Fig. 4, FN (j,m), 1 ≤ j ≤ mm,

1 ≤ m ≤ M , in Fig. 3 hosts a number nc(j,m) of containers

equal to the number of the executed CDNNs. All containers

hosted by FN (j,m) share: (i) a same Host Operating System

(HOS); and, (ii) the pool of computing (i.e., CPU cycles),

networking (i.e., bandwidth and I/O Network Interface Cards

(NICs) and switches) and storage physical resources done

available by the hosting FN. The task of the Container Engine

of Fig. 4 is to allocate these physical resources to the requiring

containers by performing dynamical multiplexing.

The execution of the tasks assigned to each clone is orches-

trated and synchronized by the corresponding CloneManager

of Fig. 4. For this purpose, under the LiFo paradigm, the log-

ical architecture envisioned for a clone is shown in Fig. 5.

Specifically, the j-th clone implemented at tier #m (in

short, clone(j,m), with 1 ≤ j ≤ mm, and 1 ≤ m ≤ M ) is

equipped with: (i) Virtual Input/Output Ports (see the blocks

labeled as VIP and VOP in Fig. 5); (ii) a virtual processor

composed of the cascade of two virtual cores (see the blocks

labeled as VC #1 and VC #2 in Fig. 5); and, (iii) a virtual

input cache and two virtual output caches (see the blocks

in Fig. 5 labeled as VIC , VOC #1 and VOC #2, respectively).

The inter-tier and intra-tier flows received by the input port

of the clone are temporarily queued at the input cache for

attaining inter-flow synchronization, and then are processed

by VC #1 and VC #2 at the processing speeds fjm (bit/s) and

f̃jm (bit/s) dictated by the Clone Manager of Fig. 4. The tasks

of VC #1 and VC #2 are to perform the processing operations

required for the implementation of the assigned CDNN layers

and associated early exits, respectively (see Fig. 1a). After

the buffering at the VOC #1 and VOC #2 output ports for

synchronization purpose, the data flow generated by VC #1

(resp., VC #2) is forwarded to the FNs at the next tier #(m+1)

(resp., to the Aggregator at tier #m) through the (previously

introduced) inter-tier (resp., intra-tier) transport connections

of Fig. 3.

C. CONTRIBUTIONS OF THE PAPER

On the basis of the overview of the related work presented

in Section II, and by referring to the inference phase of the

CDNNs’ life-cycle in Fig. 2, the main contributions of this

article may be summarized as follows:

1) we define the main building blocks, design the virtual-

ized functional architecture and define the supported

service model of LiFo, i.e., the proposed virtualized

technological platform for the real-time distributed

execution of the inference phase of CDNNs with early

exits under IoT realms. In particular, we propose an

architecture for the implementation of the intra-tier

local networks of Fig. 3, which is inspired by the

emerging paradigm of the so-called Information Cen-

tric Networking (ICN) [13];

2) we analyze and model the computing and networking

energy consumed by the virtualized Fog nodes of Fig. 3

by explicitly accounting for the real-time nature of the

supported IoT-oriented CDNN applications;

3) we formally define the LiFo Optimization Problem

(shortly, LOP) for the minimum-energy joint allocation

of the networking {Rm, 1 ≤ m ≤ M} (see Fig. 3) and
computing {fjm, f̃jm, 1 ≤ m ≤ mm, 1 ≤ m ≤ M}
(see Fig. 5) virtualized resources over the nodes of

the technological platform of Fig. 3 under the (afore-

mentioned) delays {T
(m)
EXIT , 1 ≤ m ≤ M} on the

per-tier inference decisions generated by the per-tier

local outputs of the platform in Fig. 3. Furthermore,

we also provide necessary and sufficient conditions for

the convexity and feasibility of the considered LOP;

4) we develop an adaptive solving approach to the LOP

that is based on primal-dual gradient-based iterations
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FIGURE 4. Logical view of a virtualized container-based Fog node.

FIGURE 5. Logical view of the j-th LiFo clone implemented at tier #m. Continuous (resp., dashed)
arrows denote inter-tier (resp., intra-tier) network flows. fjm (resp., f̃jm) denotes the processing
speed of VC #1 (resp., VC #2). Rm−1 (resp., Rm) is the bit rate of each input (resp., output) inter-tier
data flow. VIP: = Virtual Input Port; VOP: = Virtual Output Port; VIC: = Virtual Input Cache; VOC: =

Virtual Output Cache; VC: = Virtual Core.

with time-varying step-size parameters. It allows the

LiFo technological platform of Fig. 3 to self-detect and

self-track the (typically, unpredictable) time-variations

of the underlying operating environment, so to self-

reconfigure the available computing-plus-networking

resources. Interestingly enough, we develop a (seem-

ingly new) design of the involved step-size parameters,

which allows the joint adaptation of both the step-

size values and their allowed value ranges on the basis

of the current gaps between the actually experienced

inference delays and their target values {T
(m)
EXIT , 1 ≤

m ≤ M}. In this way, we have numerically ascertained

that the resulting reconfiguration delays suffered by

the LiFo technological platform after (unpredicted and

abrupt) failure events are up to 10 times less than the

corresponding ones which are experienced when the

values ranges of the step-sizes are held to be fixed;

5) we numerically test and compare the sensitivity of the

steady-state energy performance of the proposed LiFo

technological platform on a number of system parame-

ters (i.e., target inference delays, volume of the sensed

input data, actual topology of the Fog platform and

volume of the actually generated early-exit inference)

under some test CDNNs with early exits of practical

interest in the IoT realm [12]. Interestingly enough,

we anticipate that the carried out numerical perfor-

mance comparisons support the conclusion that the

(average) energy reduction provided by the proposed

LiFo technological platform compared to traditional

Cloud-based computer networks, is quite impressive

and it may be larger than 50% under tree-shaped Fog

topologies with depth (e.g., number of tiers) larger than

3–4.

D. ROADMAP OF THE PAPER

As reported by the roadmap of Fig. 6, the paper is organized

into four main parts.

The first part embraces the Sections I and II on the refer-

ence framework and related work, respectively.

The second part focuses on the (multi-facet) LiFo archi-

tectural aspects and covers: (i) Section III, where the CDNN

architecture is reviewed; (ii) Section IV, where we develop

the proposed virtualized architecture of the LiFo Fog nodes

and carry out a related analysis of the entailed inference

delays; and, (iii) Section V, where we introduce some models
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FIGURE 6. The paper roadmap. The red-marked Sections are the ones
where the major research contributions are provided. Sec.: = Section,
LOP: = LiFo Optimization Problem; IC: = Information Centric; App.: =

Appendix.

for formally characterizing the computing and networking

energy consumptions of the designed Fog-node architecture.

The third part of the paper is mainly devoted to: (i) the

definition of the afforded LOP and the analysis of its struc-

tural properties (see Section VI); (ii) the development of the

LOP solving approach and the presentation of the resulting

adaptive LiFo resource allocator (see Section VII); and, (iii)

the design of the ICN-inspired proposed architecture for the

support of intra-tier local networking (see Section VIII).

Finally, the last part of the paper covers: (i) Section IX,

where we present a spectrum of numerical tests which allow

us to gain insight about the performance sensitivity of the

proposed LiFo technological platform on the main param-

eters featuring the underlying Fog operating scenario; (ii)

Section X, where we draw some conclusions and address

some hints for future research; (iii) Appendix A, where we

summarize the adopted paper’s taxonomy, together with the

simulated setting; and, (iv) Appendix B, where the formal

proofs of some main formal results are provided.

Passing to consider the adopted notation, we note that Ez
indicates an n-dimensional column vector whose i-th scalar

component is z(i), |S| is the cardinality of the set S , Sn

indicates the n-fold Cartesian product of the set S by itself,

while [A] ,
[
aij
]
denotes a matrix, whose (i, j)-th element

is aij. Furthermore, dim(Ez) is the size in bit of the binary

vector Ez,,means equal by definition, δ(x) is the Kronecker’s

delta function (i.e., δ(0) = 1, and δ(x) = 0 for x 6= 0),

and: ∅ denotes the empty set. Finally, E(·) is the expectation
operator, while main assumptions are marked by bullets.

II. RELATED WORK AND PAPER POSITIONING

An overview of the recent literature on DL in the wireless

realm points out that resource-augmentation of resource-

limited IoT devices through edge computing may be pro-

vided according to four basic service modes, namely the

Offloading, Hierarchical, Peer-to-Peer and Hybrid service

modes [14]. Fig. 7 shows the (abstract) logical views of

these service modes. According to this observation, in the

following, we provide a review of the main literature on the

convergence-integration of the Deep Learning and Fog Com-

puting paradigms by using these service modes as roadmap.

A. OFFLOADING SERVICE MODE

Under this service mode, a resource-poor IoT device operat-

ing at tier #0 may decide to offload a (more or less large)

number of its pending tasks to a nearby Fog node and/or

a remote Cloud located at tier #1 by exploiting the Radio

Access Network (RAN) as inter-tier communication medium

[14]. Specifically, under the Full Offloading service mode,

the IoT device offloads all its tasks or executes all them by

itself, while the Partial Offloading service mode allows the

IoT device to locally execute a part of its tasks (see the self-

loop in Fig. 7a) and offloads the remaining ones.

The common focus of theMCDNN [15] andDeepDecision

[16] frameworks is on the design and management of techno-

logical platforms for supporting the Full Offloading service

mode. Specifically, the authors of [15] address the problem

to execute DNNs on resource-poor IoT devices which are

connected to the Cloud in an intermittent way. The proposed

solution combines an optimization engine that generates a set

of different versions of the DNN to be executed and a run-

time scheduler which decides whether the (full) execution

of each DNN version must happen at the device or at the

Cloud. For this purpose, the decision criterion pursued by the

scheduler is the maximization of the resulting DNN infer-

ence accuracy, while meeting the constraints on the device

computing resources. DeepDecision in [16] generalizes the

decision criterion pursued by MCDNN by including in the

decision process also the effects of the local-vs.-remote infer-

ence latency and network conditions. Overall, like our paper,

these contributions afford the optimized execution of a DNN

over distributed computing platforms, but, unlike our work,

the resulting MCDNN and DeepDecision frameworks: (i) do

not consider the minimization of the energy consumption as

key objective; and, (ii) do not consider the presence of early

exits as a means for speeding-up the inference process.

The target of the contributions in [17], [18] and [19]

is to enable partial offloading for the distributed exe-

cution of DNNs characterized by hierarchically-organized

stack-shaped DAGs. For this purpose, DeepWear in [17]

dynamically offloads DL tasks from a wearable device

to its paired handheld device over short-range (typically,

Bluetooth-based) connections. For this purpose, it relies on
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FIGURE 7. Service modes in IoT-Fog-Cloud ecosystems for the support of DL wireless applications.
(a) Offloading mode; (b) Hierarchical mode; (c) Pier-to-Pier mode; (d) Hybrid mode. The arrows
indicate data paths. ID: = IoT Device; FN: = Fog Node; CL: = CLoud.

the synergic exploitation of a number of strategies, like, for

example, context-awareness, DNN model partitioning and

pipelining. In order to reduce the start-up delay, IONN in

[18] proposes a partitioning-based technique in which the

device divides the DNN layers into a few subsets and offloads

them one by one, so to allow the receiving edge server to

immediately start up the DNN execution, while incremen-

tally building the overall DNN model as each DNN partition

arrives. In order to dynamically plan the best DNN partition

and the offloading ordered sequence, IONN proposes a novel

graph-based algorithm. Edgent in [19] considers the partial

offloading of a CDNN with early-exits over a two-node exe-

cution platform composed of the device and a nearby edge

data center. The target is the joint selection of the 2-way

device-edge partition of the CDNN layers and the place-

ment of their early-exits, in order to maximize the resulting

inference accuracy under hard constraints on the allowed

inference delay. Overall, like our proposal, all the contri-

butions in [17], [18] and [19] consider the problem of the

optimized execution of DNNs over distributed execution plat-

forms under various system constraints, but, unlike our paper,

they do not afford the problem of the energy-saving dynamic

joint scaling of the available computing and networking

resources.
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Finally, the recent contribution in [20] proposes DeSVig,

a decentralized swift vigilance framework for the detection

of adversarial attacks in artificial intelligence-empowered

industrial applications. Interestingly, by leveraging a two-

tier decentralized architecture which exploits proximate vir-

tualized Fog servers for resource augmentation, DeSVig

allows the reliable detection of abnormal inputs with sub-

millisecond latencies by exploiting the mining capability of

suitably designed Generative Adversarial Networks (GANs).

Hence, like our proposal, DeSVig exploits proximate Fog

nodes for providing reliable resource-augmentation with low

latencies. However, unlike our contribution, the authors of

[20] do not address the topics of the adaptive resource alloca-

tion and resource re-configuration.

B. HIERARCHICAL SERVICE MODE

Relying on the resource augmentation provided by a lim-

ited number of edge nodes, it is expected that the previ-

ously described offloading strategies may be effective for the

execution of computation-light shallow Machine Learning

(ML) applications, while they may fail to adequately support

more cumbersome DL-based algorithms [14]. Motivated by

this consideration, the Hierarchical service mode of Fig. 7b

leverages the hierarchical topology typically featuring the

supported DNNs of Fig. 1a, in order to organize a set of FNs

as a stack composed of an (in principle, arbitrary) number of

interconnected tiers and then provide vertical-scaling capa-

bility to the resulting execution platform (see Fig. 7b).

This is, indeed, the reference service mode considered by

the Neurosurgeon [21], BranchyNet [7] and Cascading NN

[22] frameworks. Specifically, the contribution in [21] per-

forms the profiling of all layers of a DNN both at the device

and edge node, in order to generate suitable performance

prediction models. Afterwards, based on these prediction

models and the currently experienced operating conditions,

Neurosurgeon evaluates each feasible layer partitioning in

terms of inference latency and energy consumption, then

partition the DNN accordingly, in order to execute it over

a two-tier distributed computing platform composed of the

mobile device and a remote cloud.

The main feature common to BranchyNet in [7] and Cas-

cade NN in [22] is the presence of multiple early-exits in the

topologies of the considered DNNs. Specifically, the authors

of [7] consider the problem of the optimized placement of

the early-exits over the stack of the layers of a baseline DNN.

The pursued goal is the reduction of the communication and

computing resource usages, while attaining a good tradeoff

among the two contrasting requirements of reliable and fast

EEoI. A similar goal is pursued by the authors of [22],

who propose a new architecture (referred to as ‘‘cascade

network’’) for the distributed execution of a DNN between

a local device and the cloud. The cascade network begins to

run on the device, and resorts to employ an edge data center,

when the local part of the network does not provide reliable

inference. For this purpose, the cascading network allows

for an early-stopping mechanism during the inference phase

of the network. The performance of the proposed cascading

network is numerically evaluated in terms of the attained

inference accuracy-vs.-inference delay tradeoff.

Overall, like our contribution, the works in [7], [21] and

[22] explicitly consider early-exits as a means to attain

good inference reliability-vs.-inference delay tradeoffs, while

reducing the communication traffic in the distributed multi-

tier execution of DNNs. However, unlike our proposal, these

works consider static and failure free-operating scenarios and

then do not afford the topic of the dynamic scaling of the

available computing-plus-communication resources.

C. PEER-TO-PEER SERVICE MODE

The emerging spectrum of DL applications requires to gather

data sensed by a number of spatially scattered (and possi-

bly mobile) IoT devices for data fusion/mining [14]. This

requires, in turn, that the underlying execution platform is

equipped with spatial-scaling capability, as natively provided

by the Peer-to-Peer service mode of Fig. 7c. Under this ser-

vice mode, a number of spatially-distributed and horizontally

interconnected FNs operate at tier #1 of the underlying exe-

cution platform in a peer-to-peer way, so to allow a (possibly

mobile) IoT device at tier #0 to change, from time to time,

its service point without service interruption. Sporadically,

the FNs may require further resource augmentation to a

remote Cloud node which operates at tier #2 of the resulting

technological platform (see Fig. 7c).

This is, indeed, the service mode exploited by theMoDNN

[23], DeepThings [24], DeepCham [25], LAVEA [26] and

ECO [27] frameworks.

Specifically, user mobility is the focus of the MoDNN in

[23], which proposes a distributed mobile computing system

for the parallel execution of DNN applications. Main feature

of MoDNN is its capability to partition already trained DNN

models over several cooperative mobile peer devices. The

involved peer devices run in parallel, so to speed up the DNN

execution through resource pooling, while minimizing the

resulting non-parallel data delivery delay.

DeepThings in [24] proposes a framework for the par-

allel execution of Convolutional Neural Networks (CNNs)

on peer-to-peer distributed computing platform. The peculiar

feature of the DeepThings approach is that it exploits the

convolutional nature of the underlying DNN for performing

a vertical (i.e., bottom-up) partition of the DNN layers into

independent parallel tasks, i.e., the so-called Fused Tile Par-

titioning. Furthermore, it also develops a distributed work

stealing scheduler, in order to dynamically enable workload

balancing among the available set of co-working nodes at

runtime.

Customizing edge infrastructure for supporting DL is the

common feature of the contributions in [25], [26] and [27].

Specifically, the paper [25] focuses on the development on

an edge-placed orchestration platform for coordinating the

DNN training over a set of cooperative peer devices, while the

authors of [26] design a number of distributed algorithms for

optimizing the DNN task placement, so to enable inter-peer
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collaboration and minimize the resulting service response

time. Finally, in order to enable the distributed execution of

DNN models by spatially-scattered peer nodes, ECO in [27]

develops a graph-based peer-to-peer overlay network in order

to: (i) track pipelines and task dependencies; and, (ii) map

them onto the available geographically distributed computing

system.

Overall, like our paper, all the reviewed contributions aim

at providing spatial-scaling capabilities to the underlying

technological execution platform, so to support device mobil-

ity and distributed sensing. However, unlike our proposal,

the reviewed papers: (i) do not tackle aspects related to the

adaptation and re-configuration of the considered peer-to-

peer execution platforms; and, (ii) do not address the topic

of EEoI.

D. HYBRID SERVICE MODE

According to Fig. 7d, the goal of the (recently proposed)

Hybrid servicemode is to provide both vertical and horizontal

scaling capabilities for the implemented execution platform

through the hierarchical inter-connection of multiple tiers of

clusters, with each cluster being composed of the peer-to-peer

horizontal inter-connection of a number of cooperative FNs.

If required, local outputs may be also provided by equipping

the clusters with Aggregator nodes.

Being still an emerging paradigm, only a limited number

of contributions explicitly rely on this service mode [8], [28]

and [29]. Specifically, D-DDN in [8] develops and discusses

the main implementation aspects of a computing architecture

for the distributed execution of a CDNN with early-exits

over spatially and vertically-organized hierarchies, composed

of Cloud nodes, Fog nodes and IoT devices. Besides some

architectural aspects, the focus of the paper is on the role

played by the aggregator nodes in achieving distributed data

fusion, as well as on the distributed training of the sup-

ported CDNN. The DeepFog contribution in [28] is more

application-oriented. It presents a Fog-based deep learning

model for the execution of DNNs without early-exits that

aims at collecting data from users. The final goal is to predict

the user wellness states by exploiting the mining capability

of a supported DNN that can process heterogeneous and

multi-dimensional data. For attaining this goal, three abnor-

malities in the user wellness (namely diabetes, hypertension

attacks and stress type classification) are considered for the

numerical DNN test. Finally, the authors of [29] propose and

validate EdgeLaaS. It is an edge learning-as-a-service frame-

work that relies on an ICN-inspired networking architecture

and exploits the emerging Knowledge-Centric Connected

Healthcare (KCCH) paradigm, in order to process patients’

healthcare supervision data with the right knowledge of the

right guardians (e.g., nurses and/or doctors). For attaining this

goal, EdgeLaaS relies on a hybrid service mode in which: (i)

different Reinforcement Learning-based processing models

are hierarchically organized over different Fog tiers; and, (ii)

all Fog nodes falling into a same tier cooperate to complete

their shared learning tasks.

Overall, like our paper, the contributions in [8], [28], and

[29] consider aspects related to the spatially distributed min-

ing of DNNs, but, unlike our proposal, all these contribu-

tions do not consider adaptive resource allocation and do

not formally analyze the performance effects of the enforced

maximum delays on the per-exit inference time.

Table 1 provides a summarizing synoptic view of the afore-

mentioned related work. Overall, on the basis of the carried

out research overview, we may conclude that the peculiar

features of the proposed LiFo technological platform are the

following ones. Its ultimate goal is the minimization of the

computing-plus-networking energy wasted by the distributed

execution of a CDNN with early-exits over a Device-Fog-

Cloud networked infrastructure composed of the hierarchical

interconnection of a number of spatially-distributed Fog clus-

ters placed at multiple tiers. In order to provide EEoI under

delay-constraints on the maximum (i.e., worst-case) per-exit

inference delays, a scheduler is designed that exploits the vir-

tualization of the available computing-networking resources

by dynamically performing resource allocation and platform

reconfiguration. This is accomplished by accounting for: (i)

the (possibly) time-varying conditions of the TCP/IP inter-

tier wireless connections; (ii) the random fluctuations of the

volume of the sensed data to be processed by the supported

CDNN; and, (iii) the maximum bandwidth and computing

resources actually available for the execution of the virtual-

ized clones hosted by each Fog node.

III. DISTRIBUTED EXECUTION OF CDNNs WITH EARLY

EXITS – FUNCTIONAL ARCHITECTURES

Themain task of the IoT devices operating at tier #0 of Fig. 1b

is to sense the environment at discrete instants and, then,

generate a set of input data which is mined by running the

CDNN of Fig. 1a over the Fog-Cloud computing platform

of Fig. 1b. The goal is to deliver a (hopefully, reliable and

fast) inference decision on the pattern actually present in

the input data. For this purpose, in the LiFo framework,

the time axis is partitioned into time-slots which are labeled

by a discrete-time slot-index t ≥ 0. In the case of periodic

sensing, the slot duration is fixed at TS (measured in second,

i.e., (s)), so that the t-th slot spans the semi-open time-

interval: [tTS , (t + 1)TS ). In the more general case of event-

driven sensing, the duration 1S (t) of the t-th slot depends

on the slot-index t , so that the t-th slot covers the semi-open

interval: [ξ (t), ξ (t) + 1S (t)), where: ξ (t) ,
∑t−1

i=0 1S (i)

is the starting time of the t-th slot. We anticipate that all

the formal results presented in the sequel hold verbatim in

both cases of periodic and event-driven sensing, provided

that, in the second case, the minimum slot duration is lower

bounded by TS , that is, 1S (t) ≥ TS , ∀t .
It is further assumed that the sensing action is performed

by the IoT devices of Fig. 1b at the beginning of each

slot t and it generates an n0-dimensional (with n0 ≥ 1)

binary-valued data vector Ez0(t), which, by design, gathers the
set of bits of the input feature to be mined by the CDNN

of Fig. 1b at slot t . The corresponding size (measured in
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TABLE 1. Comparative overview of main related work and LiFo positioning.

(bit)): V0(t) , dim(Ez0(t)) (bit) of the input feature vec-

tor Ez0(t) is the workload to be processed by the execution

platform of Fig. 1b during the t-th slot interval. Since the

nature of the per-slot sensing actions performed by the IoT

devices of Fig. 1b is inherently random and the inference

process must be carried out in real-time, we formally assume

that:

• the sequences {Ez0(t), t ≥ 0} and {V0(t), t ≥ 0} of

the feature vectors and workload at the input of the

CDNN and Fog-Cloud computing platform of Fig. 1a

and Fig. 1b are random, with a priori unknown steady-

state probability distributions;

• each input feature vector Ez0(t) is an instance drawn from
an (a priori unknown) class c of a finite-size set: C ,

{1, 2, . . . , |C|} of allowed input classes (also referred to

as input labels). The goal of the mining process per-

formed by the CDNNof Fig. 1a is to deliver a (hopefully,

reliable) estimate ĉ ∈ C of the actual class c ∈ C of the

input feature vector Ez0(t); and,
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• the workload V0(t) (bit) arriving at the input of the

platform of Fig. 1b at the beginning of slot t must be fully

processed during the corresponding t-th slot interval,

i.e., the t-th maximum inference time is upper-bounded

by the t-th slot duration.

Hence, since the inference process is assumed to be carried

out on a slot-by-slot basis, we refrain to explicitly indicate the

slot-index t when not strictly needed and, then, we refer to Ez0
andV0 as the per-slot input feature vector and input workload,

respectively.

A. PER-LAYER FUNCTIONAL ARCHITECTURE

The task of this sub-section is to describe the transformation

undergone by the information flow when it crosses a layer of

the CDNN with early-exits of Fig. 1a, in order to formally

define the per-layer fraction of the locally exited inference.

For this purpose, Fig. 8a (resp., Fig. 8b) presents the basic

architecture of the l-th hidden layer, with 1 ≤ l ≤ (L − 1),

(resp., the final L-th output layer) of the CDNN of Fig. 1a.

Since an in-depth analysis of the architectures of Fig. 8 is

provided in [6] and [12], in the following we only summarize

some basic functional aspects, which, in turn, are instrumen-

tal for the analysis of the volume of the locally delivered

inference data. Therefore, regarding Fig. 8a, we briefly point

out that [6], [12]:

1) Ezl−1 (resp., Ezl) is the binary-valued input (resp., output)
vector at layer #l. Ezl−1 (resp., Ezl) is composed of nl−1 ≥
1 (resp., nl ≥ 1) scalar components, with each scalar

component coded by a word of n
(b)
l−1 ≥ 1 (resp., n

(b)
l ≥

1) bits, so that we have: Ezl−1 ∈
(
{0, 1}n

(b)
l−1

)nl−1

(resp.,

Ezl ∈
(
{0, 1}n

(b)
l

)nl
), and also: dim(Ezl−1) = n

(b)
l−1nl−1

(bit) (resp., dim(Ezl) = n
(b
l )nl (bit));

2) the l-th Digital-to-Analog Converter (DAC) Q−1
l

(resp., the l-th Analog-to-Digital Converter (ADC)Ql)

transforms the nl−1-dimensional binary input vector

Ezl−1 (resp., the nl-dimensional real-valued input vector
Ẽzl ∈ R

nl ) into the nl−1-dimensional real-valued output

vector Ẽzl−1 ∈ R
nl−1 (resp., into the nl-dimensional

binary output vector Ezl ∈
(
{0, 1}n

(b)
l

)nl
);

3) [Wl] is the (nl×nl−1) matrix of the real-valued weights

of the l-th layer, while Ebl is the (possibly, vanishing) nl-
dimensional real-valued bias column vector;

4) 8l(·) is the l-th scalar-valued nonlinear activation func-
tion. It acts element-wise on the nl-dimensional real-

valued column vector vl , [Wl]Ẽzl−1 + Ebl , which is

generated by the l-th fully connected layer of Fig. 8a;

5) Poll(·) is the (nonlinear and/or not invertible) pooling

operator possibly present at layer #l.When it is present,

this operator may also perform down sampling;

6) [W̃l] is the (|C| × nl) real-valued weight matrix of

the local classifier LCl possibly present at the local

output of the l-th layer, while
Ẽ
bl is the corresponding

(possibly, vanishing) |C|-dimensional real-valued bias

column vector;

7) ĉl ∈ C is the scalar decision (i.e., the class label)

delivered by the local classifier LCl (possibly) present

at the output of the l-th hidden layer. In principle,

various criteria may be adopted for generating the local

decision ĉl [30]. To fix the ideas and without loss of

generality, we assume that ĉl is obtaining by applying

the so-called softmax criterion as in [31]:

ĉl = softmax

(
−→
Ŷ l

)
, argmax

1≤c≤|C|

{
Ŷl(c)

}
. (1)

In Eq. (1), Ŷl(c) is the c-th scalar component of the |C|-

dimensional soft-decision vector ÊY l , and it is formally

defined as [31]:

Ŷl(c) ,
eb̃l (c)+W̃l (c,.)Ẽzl

∑
k∈C e

b̃l (k)+W̃l (k,.)Ẽzl
, 1 ≤ c ≤ |C| , (2)

where W̃l(c, .) indicates the c-th row of the matrix [W̃l].

The rationale behind the adoption of the softmax crite-

rion is that, under some technical assumptions detailed

in [31], Ŷl(c) in Eq. (2) provides a reliable estimate of

the probability: Prob(c | Ezl−1) that the input feature Ez0
in Fig. 1a falls into the c-th decision class conditioned

on the vector Ezl−1 present at the input of layer #l.

About the architecture in Fig. 8b of the final layer #L, let

us note that its output:

ĉl = softmax(EzL) , (3)

is still obtained by applying the previously defined softmax

transformation to the vector: EzL = [WL]Q
−1
L (EzL−1) + EbL ,

which is generated by the final output classifier of Fig. 8b.

Before proceeding, we explicitly point out that, although

we have considered fully connected layers in the above

description, all the framework developed in the following

apply verbatim to the case in which convolutional layers are

present. Intuitively, this a consequence of the formal fact that

a convolutional layer may be described as a fully connected

layer with circulant weight matrix [Wl] (see [30] for addi-

tional details on this aspect).

The performed review of the per-layer functional architec-

ture of a CDNN with early-exits is, indeed, instrumental for

deriving three first formal results.

First, the input-output relationship implemented by the l-

th hidden layer of a CDNNmay be formally characterized by

composing the ordered cascade of the chain of transforma-

tions shown in Fig. 8a, i.e.,

Ezl = Ql

(
Ẽz
)

≡ Ql

(
Poll

(
8
(
[Wl]Q

−1
l (Ezl−1)+ Ebl

)))
, (4)

for 1 ≤ l ≤ L − 1.

Second, in order to formally characterize the volume of the

inference data which exits at layer #l, let ρl , 1 ≤ l ≤ (L−1),

be the steady-state fraction of the input vectors at layer #l
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FIGURE 8. (a) Functional architecture of the l -th hidden layer of a CDNN with early exits,
1 ≤ l ≤ L − 1. (b) Functional architecture of the final L-th layer. LCl : l -th Local Classifier.

which do not undergo early-exit, that is,

ρl , lim
t→∞

Nl(t − 1)

t
, 1 ≤ l ≤ L − 1, (5)

whereNl(t− 1) is the number of the input vectors at layer #l

which do not undergo early exit.

Hence, by using the definition in (5), the early exit-induced

average compression factor: cml , E{dim(Ezl)} /E{dim(Ezl−1)}
of the volume of data crossing the l-th hidden layer may be

formally evaluated through the following formula:

cml ,
E{dim(Ezl)}

E{dim(Ezl−1)}
=

nln
(b)
l ρl

nl−1n
(b)
l−1ρl−1

≡

(
nln

(b)
l

nl−1n
(b)
l−1

)
×

(
ρl

ρl−1

)
, 1 ≤ l ≤ L − 1, (6)

with ρ0 , 1. The above formula jointly accounts for: (i)

the dimensions nl , nl−1 of the involved input-output vectors;

(ii) the number of bits n
(b)
l , n

(b)
l−1 used for the binary coding

of their scalar components (see Fig. 8); and, (iii) the fraction

of the data which undergo early exit at layer #l (see the ratio

ρl/ρl−1).

Third, by exploiting the defining relationship in (6),

the per-slot average volume of data V l , E{dim (Ezl)} (bit)
generated in output by the l-th hidden layer and passed to

the input of (l+ 1)-th layer admits the following closed-form

expression:

V l = cml × E{dim(Ezl−1)} ≡

(
l∏

k=1

cmk

)
× V0, (7)

for 1 ≤ l ≤ L − 1, where V0 , E{V0(t)} (bit) is the average
size of the workload generated by the IoT devices of Fig. 1b

during a slot interval.

According to [12], all the ρ’s coefficients in (5) and com-

pression factors in (6) are profiled during the training phase
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of the considered CDNN and, then, in our framework, they

play the role of known constants (see Fig. 2).

Remark 1 (On the Role Played by the DAC and ADCBlocks

in the LiFo Framework):

Under the LiFo framework, there are (at least) three main

reasons for explicitly considering the presence of the DAC

and ADC (i.e., quantizer) blocks in the per-layer functional

architecture of Fig. 8.

First, the modulation formats utilized by current Fog-

based technological platforms for IoT applications are all of

numerical type (see Ch. 4 of [3]), and this requires, in turn,

the presence of the DAC and ADC blocks of Fig. 8.

Second, fixing the set
{
n
(b)
l

}
of the per-layer per-sample

numbers of used quantization bits is the key step for evalu-

ating the resulting rates {Rm} of the inter-tier connections of
Fig. 3.

Third, a main new of the recent contribution in [32] is that

it utilizes quantized weights, activation functions and inter-

tier numerical flows during both the training and inference

phases. In this case, all the analog multiply-and-add opera-

tions are replaced by binary XNOR operations. The numeri-

cal results presented in [32] support the conclusion that 1-bit

quantized weights, 2-bit quantized activation functions and

6-bit quantized scalar gradients suffice to obtain classifying

accuracy within 5.5% – 6% the corresponding ones of the

analog counterparts. For attaining this performance, per-layer

scalar (i.e., memory-less) logarithmic quantizers are used in

[32]. In this regard, we anticipate that all results developed

in this article apply verbatim to any considered quantization

scheme, because they rely only on the spectrum
{
n
(b)
l

}
of the

adopted quantization bits.

B. ON THE ENERGY-EFFICIENT LAYER-TO-TIER MAPPING

AND RESULTING INTER-TIER NETWORK TOPOLOGY

A factor impacting on the energy consumed by the execution

of the inference phase of the CDNN of Fig. 1a on the dis-

tributed multi-tier networked computing platform of Fig. 1b

is the adopted strategy for mapping the CDNN layers onto

the available Fog/Cloud tiers. This problem has been afforded

in deep in our recent contribution in [12]. Hence, in the

remaining part of this section, we only recap some main

results which will be employed in the sequel for the formal

characterization of the energy consumed by the proposed

LiFo technological platform of Fig. 3 during the inference

phase.

Therefore, according to [12], let us consider a partition:

S∗
m ⊆ {1, 2, . . . ,L} , m = 1, . . . ,M , (8)

of the set of the layers of the CDNN of Fig. 1a into M sub-

sets, which is characterized by the following three defining

properties:

• the first (resp., last) layer of the CDNN of Fig. 1a is

mapped onto an element of the set S∗
1 (resp., S∗

M ) of the

considered partition;

• the
∣∣S∗

m

∣∣ elements of S∗
m are the indexes of consecutive

(that is, adjacent) CDNN layers;

• the cluster of computing nodes at tier #m, 1 ≤ m ≤ M ,

exhibits sufficient computing power and communication

bandwidth to host all the layers of the m-th partition set

S∗
m.

Therefore, Proposition 8 of [12] formally proves that, at least

in the case in which all the involved computing nodes exhibit

the same power-consumption profile, such a kind of partition

individuates a feasible Layer-to-Tier mapping which mini-

mizes the average energy wasted by the multi-tier platform of

Fig. 1b for the execution of the CDNN of Fig. 1a. Motivated

by this formal result, we assume that the mapping of the

layers of the CDNN of Fig. 1a onto the tiers of the execution

platform of Fig. 1b has been already performed according to

the just reviewed minimum-energy criterion (see Fig. 2).

In this regard, we also note that both the actual network

interconnections from Fog nodes at tier #(m− 1) to the ones

at tier #m, 2 ≤ m ≤ M , and the resulting numbers of the per-

node input/output ports are dictated by the nonzero elements

of the weight matrix: [Wl], with l ≡
∑m−1

i=1

∣∣S∗
i

∣∣, which
describes the last (i.e., highest order) layer of the supported

CDNNof Fig. 1a, which ismapped by the performed partition

in (8) onto the (m − 1)-th tier of the execution platform

in Fig. 1b. Hence, after implementing the Layer-to-Tier map-

ping according to the partition in (8), we may also assume

that:

• the topologies of the inter-tier interconnections in Fig. 3

are defined, as well as the corresponding numbers of

input and output ports equipping the Fog nodes.

Motivated by these considerations, we directly focus on

the (still open) challenges of the design of the per-node

virtualized architecture and per-tier adaptive allocation of the

computing-plus-networking resources.

IV. THE LIFO VIRTUALIZED PLATFORM: NODE

ARCHITECTURE, SERVICE MODEL AND EXECUTION TIMES

The goal of this section is threefold. First, we detail the virtu-

alized architecture envisioned for a LiFo Fog node. Second,

we describe the resulting LiFo protocol stack and define the

roles of the various protocol layers. Third, we formally char-

acterize the per-node and per-tier execution time and, then,

we model their impact on the resulting early-exit inference

times.

To beginwith, Fig. 9 shows the internal functional architec-

ture envisioned for the (j,m)-th Fog node (briefly, FN (j,m))

of Fig. 3, so to detail the corresponding logical view already

sketched in Fig. 5.

Specifically, in Fig. 9 we have that:

1) the virtualized (j,m)-th Main Processor (in short,

MP(j,m)) provides computing support for the execu-

tion of the (previously described) blocks labeled as

DAC, Connected Layer, Activation Function, Pooling

Layer and ADC in Fig. 8a. In principle, MP(j,m)

in Fig. 9 is implemented by the first virtual core VC #1
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FIGURE 9. Functional architecture of the virtualized (j, m)-th Fog node under the
LiFo paradigm. NIC: = Network Interface Card; VOC: = Virtual Output Cache; VIC:
= Virtual Input Cache; MUX: = Multiplexer; DEMUX: = De-multiplexer.

equipping the corresponding clone in Fig. 5, and its

operating processing speed fjm (bit/s) is orchestrated at

runtime by the associated Clone Manager of Fig. 4.

In the envisioned framework, the input data Ezm−1(j)

at the MP(j,m) is a feature vector received from the

Fog nodes working at the previous tier #(m− 1), while

the corresponding output data Ezm(j) is provided to the

associated Auxiliary Processor, as well as forwarded to

the Fog nodes operating at the next tier #(m+ 1);

2) the virtualized (j,m)-th Auxiliary Processor (briefly,

AP(j,m)) provides computing support for the execution

of the block labeled as Local Classifier in Fig. 8a. It is

implemented by the second virtual core VC #2 present

in the clone of Fig. 5, and its operating processing speed

f̃jm (bit/s) is still orchestrated at runtime by the Clone

Manager of Fig. 4. The task of AP(j,m) is to process

the feature vector generated by the correspondingMain

Processor, so to produce the output vector ŷm(j) to

be delivered to the corresponding m-th Aggregator of

Fig. 3 for the (possible) generation of an early-exit;

3) FN (j,m) is also equipped with a number FanIn(j,m)

≥ 1 of virtualized input ports. Hence, the task of

the MUltipleXer (MUX) at the bottom of Fig. 9 is to

merge the corresponding information flows received

by the Fog nodes operating at the previous tier #(m −
1), so to generate a (single) aggregate feature vector

Ezm−1(j). According to the architecture of the overall

LiFo technological platform of Fig. 3, all input flows
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at the bottom of Fig. 9 operate at a same bit-rate Rm−1

(bit/s), which, in turn, is orchestrated at runtime by the

Clone Manager of Fig. 4;

4) the main task of the De-MUltipleXer (DEMUX) at

the top of Fig. 9 is to replicate the received feature

vector Ezm(j) over the FanOut(j,m) ≥ 1 virtualized

output ports equipping FN (j,m). Each output flow is

forwarded to the Fog nodes at the next tier #(m+ 1) at

a bit-rate Rm (bit/s) which is still dictated by the Clone

Manager;

5) the task of the Virtual Switch (VS) of Fig. 9 is to enable

the transmission of the output feature Ezm(j) to the Fog

nodes at the next tier #(m + 1) only when early-exit

does not occur at tier #m. For this purpose, a binary

turn ON/OFF control signal is generated by the m-

th Detector of Fig. 3 on a per-slot basis. This signal

triggers the VS of Fig. 9 to open (resp., to shut) when a

local exit is delivered (resp., is not delivered) at tier #m;

6) the common task of the (j,m)-th Virtual Input Cache

(VIC(j,m)), Virtul Ouput Cache #1 (VOC#1(j,m))

and Virtul Ouput Cache #2 (VOC#2(j,m)) is to

allow the temporarily buffering of the received data,

in order to enable: (i) inter-processor synchroniza-

tion (i.e., VIC(j,m)); (ii) inter-tier synchronization

(i.e., VOC#1(j,m)); and, (iii) delayed retrieving of

stored data by the m-th Aggregator of Fig. 3 (i.e.,

VOC#2(j,m)). The storing/retrieving operations on

these cache units take place under the supervision of

the corresponding Clone Manager in Fig. 4.

The presented per-node architecture is the key to for-

mally characterize the volumes of input data VI (j,m) ,

dim(Ezm−1(j)) (bit) (resp., output data VO(j,m) , dim(Ezm(j))
(bit)) received (resp., transmitted) by the input (resp., output)

ports of FN (j,m) in Fig. 9 over a slot interval. In this regard,

we note that, by design, the LiFo paradigm requires that

all Fog nodes at tier #m cooperate, in order to process the

aggregate workload needed for the execution of the CDNN

layers embraced by the m-th set S∗
m of the performed Layer-

to-Tier partition of Eq. (8). As a consequence, after perform-

ing workload balancing over the available input/output ports

of Fig. 9, the volume of data received by all input ports of

FN (j,m) over a slot interval can be analytically evaluated as:

VI (j,m) = V0 ×




(∑m−1
j=1

∣∣∣S∗
j

∣∣∣
)

∏

k=1

cmk




×

(
FanIn(j,m)∑mm
r=1 FanIn(r,m)

)
(bit), (9)

for 1 ≤ j ≤ mm, 2 ≤ m ≤ M , with:

VI (j, 1) = V0

(
FanIn(j, 1)∑mm
r=1 FanIn(r, 1)

)
(bit), (9.1)

while the following companion expressions hold for the cor-

responding per-slot volume of data generated by all the output

ports of FN (j,m):

VO(j,m) = V0 ×




(∑m−1
j=1

∣∣∣S∗
j

∣∣∣
)

∏

k=1

cmk




×

(
FanIn(j,m)∑mm
r=1 FanIn(r,m)

)
(bit), (10)

for 1 ≤ j ≤ mm, 2 ≤ m ≤ M , with:

VO(j, 1) = V0(j)




(∑m−1
j=1 |S∗

1 |
)

∏

k=1

cmk


 (bit), (10.1)

for 1 ≤ j ≤ m1. In the above expressions, we have that: (i)

{cmk} are the per-layer compression factors in Eq. (6) of the

supported CDNN; (ii) {S∗
j } are the sets of the implemented

Layer-to-Tier partition in Eq. (8); and, (iii) V0(j) (bit) is the

input traffic received by FN (j, 1) at tier #1 of Fig. 3 from the

attached IoT devices during the current slot. Since, by design,

the per-slot aggregate workload generated by all IoT devices

operating at tier #0 of Fig. 3 equates to V0 (see Fig. 1b), then,

we must have:
∑m1

j=1 V0(j) = V0.

Before proceeding, we point out that Eqs. (9) and (10)

are derived by recursively applying the defining relationship

in (6) from: tier #m down to tier #0, while simultaneously

accounting for the following two architectural properties.

First, the cluster of Fog nodes at tier #k , 1 ≤ k ≤ m, provides

the support for the execution of the CDNN layers embraced

by the k-th set S∗
k , 1 ≤ k ≤ m, of the implemented Layer-

to-Tier mapping in Eq. (8) (see the second factors at the

r.h.s.’s of Eqs. (9) and (10)). Second, due to the performed

workload balancing, each input (resp., output) port of a Fog

node at tier #m conveys the same per-slot volume of data

(see the third factors at the r.h.s.’s of Eqs. (9) and (10)). As a

consequence, the expressions in Eqs. (9) and (10) differ only

in the upper limits of the therein present product forms. This

is due to the fact that, by design, the performed Layer-to-

Tier partition in Eq. (8) enforces the first (m − 1) (resp.,

m) tiers of the LiFo execution platform of Fig. 3 to host the

first
(∑m−1

j=1

∣∣∣S∗
j

∣∣∣
)
(resp., the first

(∑m
j=1

∣∣∣S∗
j

∣∣∣
)
) layers of the

supported CDNN.

A. LOCAL AGGREGATORS AND DETECTORS: FUNCTIONAL

ARCHITECTURES AND ROLES

The envisioned functional architecture for the m-th local out-

put of the LiFo platform of Fig. 3 is composed of the cascade

of the blocks detailed in Fig. 10.

In this regard, we note that, by design, the functional role

of them-th local Aggregator in Fig. 10 is to perform a suitable

component-wise fusion of the set:
{−→
ŷ m(j), 1 ≤ j ≤ mm

}
of

the |C|-dimensional feature vectors generated by the (pre-

viously described) auxiliary processors of the Fog nodes at

tier #m (see Fig. 9), in order to produce a |C|-dimensional

fused feature vector Ŷm (see Fig. 10). According to [8],
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FIGURE 10. Planned functional architecture for the m-th local output of the proposed LiFo
technological platform.

examples of aggregation rules are the max one, i.e.,

Ŷm(k) , max
1≤j≤mm

{̂ym(j, k)} , k = 1, . . . , |C| , (11)

and the average one, i.e.,

Ŷm(k) ,
1

|C|

mm∑

j=1

ŷm(j, k), k = 1, . . . , |C| . (12)

Overall, the task of the Aggregator is twofold. First, per-tier

aggregation enables cooperation between multiple spatially

distributed Fog nodes which support the same set of CDNN

layers, so to provide the key for attaining spatial scaling.

Second, the Aggregator allows multiple local exits equipping

adjacent layers of the supported CDNN to be fused into a

single per-tier local output. As a consequence, without loss

of generality, in the sequel, we assume that the number NEE
of the CDNN local exits in Fig. 1a coincides with the number

(M − 1) of the local outputs of the supporting execution

platform, i.e., we assume that:

NEE ≡ M − 1. (13)

For describing the architecture planned for the m-th local

Detector (see the dashed box in Fig. 10), we observe that

the reliability level of the inference data delivered by the m-

th local output may be evaluated on the basis of a suitable

statistic computed by the Calculator block of Fig. 10 by

exploiting the corresponding aggregate vector Ŷm. Without

loss of generality and according to [7], we may assume that

this statistic is the normalized entropy:

Hm , −
1

|C|

|C|∑

k=1

Ŷm(k) log2Ŷm(k) ∈ [0, 1] , (14)

of the aggregate vector Ŷm, which the Threshold Detector of

Fig. 10 compares, in turn, against to a suitably set entropy

threshold ηm ∈ (0, 1). Afterwards, on the basis of the

performed comparison,

1) if Hm ≤ ηm, the m-th Detector in Fig. 10 assumes that

the decision:

ĉm , argmax
1≤k≤|C|

{
Ŷm(k)

}
, (15)

is reliable enough. As a consequence, the switch

in Fig. 10 is closed and the decision in (15) is locally

delivered. At the same time, a feedback control signal is

generated that forces all Fog nodes operating at tier #m

to open own virtual switches in Fig. 9, so to stop the for-

warding of the corresponding set: {Ezm(j), 1 ≤ j ≤ mm}
of output feature vectors to the next tier #(m + 1);

however,

2) ifHm > ηm, them-thDetector considers the decision in

(15) be unreliable. Then, the switch in Fig. 10 is open,

so that no data is delivered by the m-th local output.

Furthermore, the control signal generated by the m-

th Detector forces all the virtual switches in Fig. 9 to

shut, so to enable the forwarding of the feature vectors

{Ezm(j), 1 ≤ j ≤ mm} to the next tier #(m+1) for further

processing.

Before proceeding, two explicative remarks are in order.

First, we observe that the tuning of the set: {ηm, 1 ≤ m ≤
(M − 1)} of the per-tier decision thresholds in Fig. 10 is

performed during the setup phase of the supported CDNN

(see Step 3 of Fig. 2). In this regard, we note that too low

(resp., too high) threshold values increase (resp., decrease)

the average reliability levels of the delivered local decisions

in (15), but also increase (resp., decrease) the fraction of the

input data that propagate up to the last tier #M of the platform

of Fig. 3, so to annihilate (resp., emphasize) the benefits

arising from the exploitation of early-exits. The challenging

topic of the optimized tuning of these thresholds is afforded in

depth in the contribution in [12], where an adaptive algorithm

is proposed for balancing the two contrasting requirements

of reliable local decisions and small per-layer compression

factors (see Eq. (6)).

Second, since, by design, both theAggregator andDetector

in Fig. 10 operate locally at tier #m (see Fig. 3), in the sequel,

we will assume that:
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• the networking/computing resources needed for the sup-

port of the per-tier Aggregators and Detectors may be

considered negligible with respect to the corresponding

ones required for supporting the computing operations

performed by the Fog nodes and the associated inter-tier

communication flows.

B. THE ENVISIONED LIFO PROTOCOL STACK

In agreement with the per-node functional architecture of

Fig. 9, we plan the protocol stack for the LiFo technological

platform drawn at the left of Fig. 11. For comparison pur-

poses, this figure also illustrates: (i) the general functional

stack of an IoT ecosystem recently proposed by Cisco [3];

and, (ii) the protocol stack of a traditional networked platform

for the support of remote Cloud applications in which all Fog

nodes at the intermediate tiers: tier #1 – tier #(M − 1) of

Fig. 1b are replaced by network switches/routers.

A comparative view of the stacks of Fig. 11 unveils the

peculiar features retained by the proposed LiFo paradigm and

leads, indeed, to four main remarks.

First, the three-layered architecture of the LiFo proto-

col stack of Fig. 11 reflects the corresponding partition

of the LiFo technological platform of Fig. 3 into three

hierarchically-organized main segments, namely (see Fig. 3):

(i) the lower-most segment, at which the IoT devices operate;

(ii) the middle segment, which embraces the clusters of Fog

nodes; and, (iii) the upper-most segment, where the remote

Cloud works.

Second, adaptive resource and reliability managements are

cooperatively carried out by all layers of the LiFo protocol

stack of Fig. 11. We anticipate that this feature is in agree-

ment with the distributed and adaptive nature of the resource

allocation strategy we develop in Sections VI and VII. This

is, indeed, of cross-tier type and, then, it jointly involves the

computing and networking resources of all tiers of the LiFo

platform of Fig. 3.

Third, interestingly enough, besides fully embracing the

Communication Layer of the corresponding IoT Functional

stack, the intermediate Fog Layer of the LiFo protocol stack

of Fig. 11 also partially encloses the corresponding Analytics

sub-Layer. This is in agreement, indeed, with the per-node

functional architecture of Fig. 9. In fact, this architecture

allows each LiFo Fog node to simultaneously act as network

switch (see the input/output ports of Fig. 9) and computing

node (see the main and auxiliary processors of Fig. 9), so to

perform packet forwarding, while enabling EEoI through the

associated local outputs (see Fig. 10 and related text). This

twofold role played by the LiFo Fog nodes is in sharp contrast

with the corresponding role covered by the switches of a

traditional networked platform for Cloud applications (see the

protocol stack at the right side of Fig. 11), whose only task

is that of data forwarding. In this regard, we anticipate that

the numerical results of Section IX support the conclusion

that the average energy consumption of the LiFo technolog-

ical platform may be significantly below the corresponding

ones of a traditional switch-based network supporting remote

Cloud applications.

Finally, the spatially-scalable and virtualized nature of the

proposed LiFo technological platform of Fig. 3 enables both:

(i) multi-tenant single-mined sensing applications, in which

the IoT devices operating at tier #0 of Fig. 3 are owned

and managed by different spatially-scattered clients, but the

resulting aggregate data is collectively mined through the

execution of a single CDNN; and, (ii) single-tenant multi-

mined sensing applications, where the containers in Fig. 4

equipping each Fog node run in parallel multiple different

CDNNs that carry out different inference processes on the

data set of a single client.

C. CHARACTERIZING THE LIFO INFERENCE TIMES

According to the architecture of Fig. 9, the following two

tasks are executed by Fog node FN (j,m) on a per-slot basis:

(i) the Main Processor (resp., Auxiliary Processor) in Fig. 9

processes the input workload VI (j,m) (bit) in Eqs. (9), (9.1)

(resp., the output workload VO(j,m) (bit) in Eqs. (10), (10.1)

at a processing speed of fjm (bit/s) (resp., f̃jm (bit/s)); and, (ii)

the input (resp., output) ports in Fig. 9 receive (resp., transmit)

in parallel the workload VI (j,m) (resp., VO(j,m)) at a per-port

rate of Rm−1 (bit/s) (resp., Rm (bit/s)). However, by design,

the transmission time from tier #(m−1)must overlap with the

receive time at tier #m, so that the resulting per-slot execution

time TEXE (j,m) (measured in seconds) of FN (j,m) is given

by the following three contributions:

TEXE (j,m) , TMP(j,m) + TAP(j,m) + TNET (j,m)

≡
VI (j,m)

fjm
+

VO(j,m)

f̃jm
+

VO(j,m)

Rm
, (16)

for 1 ≤ j ≤ mm, 1 ≤ m ≤ (M − 1), with the following

auxiliary relationship:

TEXE (1,M ) ≡ T
(CLOUD)
XE =

VI (1,M )

f1M
+

VO(1,M )

f̃1M
, (16.1)

accounting for the fact that the Cloud node operates at the

uppermost tier.

In order to evaluate the per-tier execution time, we observe

that the m-th aggregator AG(m) in Fig. 10 may per-

form the fusion of the received information features:{
Eyj(m), 1 ≤ j ≤ mm

}
only after that all the corresponding

Fog nodes {FN (j,m), 1 ≤ j ≤ mm} finished their tasks.

Hence, the resulting per-tier execution time TEXE (m) is dic-

tated by the execution time of the slowest Fog node, and, then,

it equates:

TEXE (m) = max
1≤j≤mm

{TEXE (j,m)} , 1 ≤ m ≤ M . (17)

Finally, the hierarchical organization of the tiers of the LiFo

technological platform of Fig. 3 guarantees that the aggregate

execution time T
(1,m)
EXE needed for generating a local exit at

tier #m equates the summation of the corresponding per-tier
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FIGURE 11. LiFo-vs.-traditional protocol stacks: who does what under the LiFo paradigm.

execution times in (17) up to the m-th one, i.e.,

T
(1,m)
EXE =

m∑

k=1

TEXE (k) ≡

m∑

k=1

(
max

1≤j≤mk
{TEXE (j, k)}

)
, (18)

for 1 ≤ m ≤ M . This relationship provides the formal

characterization of the inference time (i.e., delivering delay)

at the m-th early exit of the LiFo platform in Fig. 3.

V. FEATURING THE LIFO ENERGY CONSUMPTION

The goal of this section is to formally model the power

and energy consumption of the virtualized processors and

input/output ports which equip each Fog node in Fig. 9. Since

an in-depth presentation of general power and energy mod-

els for virtualized networked computing platforms has been

carried out in the recent contribution in [33], in the sequel,

we directly focus on the aspects of the models developed

in Section V of [33] which are more specific to the LiFo

framework considered here.

A. MODELING THE COMPUTING POWER AND ENERGY

In this sub-section, we focus on the formal characterization

of the power and energy consumed for computing purpose

by the main and auxiliary processors of Fig. 9.

1) MODELING THE COMPUTING POWER AND ENERGY OF

THE VIRTUALIZED MAIN PROCESSOR

According to [33], the total power PMP(j,m) (Watt) con-

sumed by the main processor equipping the virtualized (j,m)-

th Fog in Fig. 9 is the summation of the idle (i.e., static) power

P
(IDLE)
MP (j,m) (Watt) and the dynamic power P

(DYN )
MP (j,m)

(Watt).

Under the virtualized architecture featured by Fig. 9,

the (j,m)-th idle power equates [33]:

P
(IDLE)
MP (j,m) = 0.5 ×

P
(IDLE)
CPU (j,m)

nc(j,m)
, (19)

where: (i)P
(IDLE)
CPU (j,m) (Watt) is the total power consumed by

the (j,m)-th Fog node for sustaining the hosted nc(j,m) ≥ 1

containers in the idle state (see Fig. 4); and, (ii) the scaling

factor: 0.5 accounts for the fact that the total idle power(
P

(IDLE)
CPU (j,m)/nc(j,m)

)
consumed by the Fog node is evenly

split over the main and auxiliary processors of Fig. 9.

Under theLiFo framework, the dynamic powerP
(DYN )
MP (j,m)

consumed by the main processor in Fig. 9 depends on three

main factors, namely: (i) the processing frequency fjm (bit/s)

at which the main processor runs; (ii) the processing density

εjm (measured in (CPU cycle/bit)) of the workload processed

by the main processor; and, (iii) the number
∣∣S∗

m

∣∣ of layers
of the supported CDNN in Fig. 1a which are mapped onto

the m-th tier of the LiFo platform of Fig. 1b (see Eq. (8)

and related text). Specifically, according to [33],P
(DYN )
MP (j,m)

may be modeled as follows:

P
(DYN )
MP (j,m) = K

(j,m)
MP

(∣∣S∗
m

∣∣ εjmfjm
)γ (j,m)MP , (20)

for 1 ≤ j ≤ mm, and 1 ≤ m ≤ M . In the above expression,

we have that [33], [34]:

• γ
(j,m)
MP is a dimensionless positive exponent whose actual

value depends on the power-profile of the underlying

physical CPUs equipping the considered Fog node;

• according to [35], the processing density εjm ((CPU

cycle)/bit) is defined as the average number of CPU

cycles that are required for the processing of a single bit

of the workload generated by a single layer of the sup-

ported CDNN of Fig. 1a. As a consequence, the actual

value of εjm depends on the average number of neurons

that compose a single layer of the considered CDNN,

as well as the average number of add-and-multiply alge-

braic operations performed by each neuron (see [35] for

numerical examples of processing densities of someDL-

supported applications of practical interest);

• being
∣∣S∗

m

∣∣ the number of layers of the supported CDNN

to be executed by them-th cluster of Fig. 1b, the presence

of this factor in Eq. (20) accounts for the fact that the

workload to be processed by the main processor in Fig. 9

scales up in a linear way for increasing values of
∣∣S∗

m

∣∣;
and,

• K
(j,m)
MP (measured in (Watt/(CPU cycle)/s)γ

(j,m)
MP ) is a scal-

ing factor, whose actual value depends on the power

profile of the virtual core which implements the main

processor of Fig. 9 (see, for instance, [36] for some

profiled examples).

Now, in order to characterize the resulting computing

energy EMP(j,m) (measured in (Joule)) consumed by themain

25734 VOLUME 9, 2021



E. Baccarelli et al.: LiFo: DL Meets FC for the Minimum-Energy Distributed EEoI in Delay-Critical IoT Realms

processor of Fig. 9 over a slot time, we note that: (i) the

main processor must remain turned ON for the time T
(1,M )
EXE

in Eq. (18) needed by the Cloud node at the top tier #M of

Fig. 3 to deliver its final inference; and, (ii) according to

Eq. (16), the time TMP(j,m) (s) needed by the main processor

for processing the workload received by its input ports of

Fig. 3 equates to:

TMP(j,m) =
VI (j,m)

fjm
. (21)

Hence, on the basis of these considerations, the per-slot com-

puting energy EMP(j,m) consumed by the main processor of

Fig. 3 may be formally characterized as follows:

EMP(j,m) = P
(IDLE)
MP (j,m) × T

(1,M )
EXE︸ ︷︷ ︸

Idle Energy

+ P
(DYN )
MP (j,m) × TMP(j,m)︸ ︷︷ ︸

Dynamic Energy

, (22)

for 1 ≤ m ≤ mm, and 1 ≤ m ≤ M .

2) MODELING THE COMPUTING POWER AND ENERGY OF

THE VIRTUALIZED AUXILIARY PROCESSOR

The power and energy consumed by the auxiliary processor

of Fig. 9 can be formally characterized by formulas analogous

to those presented for the main processor. In this regard,

we observe that:

1) being different the workloads to be processed (see

Fig. 9), the virtual cores in Fig. 5 implementing the

main and auxiliary processors can be heterogeneous,

i.e., they may exhibit different dynamic-power profiles;

2) the processing speed f̃jm (bit/s) at which operates the

auxiliary processor can be different from the corre-

sponding one fjm of the main processor; and,

3) being application-depending, the processing density

βjm (CPU cycle/bit) of the workload processed by the

auxiliary processor can be different from the corre-

sponding one εjm of the main processor. More impor-

tantly, βjm does not longer scale proportionally to

the number
∣∣S∗

m

∣∣ of sustained CDNN layers, because,

by design, the functional architecture of the supported

m-th local branch in Fig. 10 does not depend on the

number of CDNN layers which are mapped onto the

m-th tier of the LiFo technological platform of Fig. 3.

Hence, on the basis of the above considerations, the idle

power P
(IDLE)
AP (j,m) (Watt) consumed by the (j,m)-th auxil-

iary processor of Fig. 9 is similar to that presented in Eq. (19),

that is:

P
(IDLE)
AP (j,m) = 0.5 ×

P
(IDLE)
CPU (j,m)

nc(j,m)
, (23)

while, for the corresponding dynamic power P
(DYN )
AP (j,m)

(Watt), the following expression holds (see Eq. (20)):

P
(DYN )
AP (j,m) = K

(j,m)
AP

(
βjm f̃jm

)γ (j,m)AP
, (24)

for 1 ≤ m ≤ mm, and 1 ≤ m ≤ M . Therefore, the resulting

per-slot energy consumption EAP(j,m) (Joule) of the auxiliary

processor of Fig. 9 is given by (see Eq. (22)):

EAP(j,m) = P
(IDLE)
AP (j,m) × T

(1,M )
EXE︸ ︷︷ ︸

Idle Energy

+ P
(DYN )
AP (j,m) × TAP(j,m)︸ ︷︷ ︸

Dynamic Energy

, (25)

for 1 ≤ m ≤ mm, and 1 ≤ m ≤ M , with (see (16)):

TAP(j,m) =
VO(j,m)

f̃jm
. (26)

Remark – Fog devices-vs.-power models fitting. By refer-

ring to the virtualized architecture of a Fog node sketched

in Fig. 4, we point out that the actual values of the CPU idle

powers, scaling K-factors and γ -power exponents present

in the previously reported power models mainly depend

on: (i) the virtualization strategy actually implemented by

the Container Engine; and, (ii) the power profiles of the

underlying Physical CPUs (such as, for example, Raspberry

Pi, Arduino or Intel Galileo board, just to name a few).

Detailed analysis of this topic are recently provided in the

contributions [33], [37] and, then, they are not duplicated

here. However, in order to give some insights on how the

reported power/energy models reflect, indeed, the actual fea-

tures of real-world virtualized Fog nodes, three main explica-

tive remarks are in order.

First, the analysis reported, for example, in [33] supports

the conclusion that the scalingK-factors in Eqs. (20) and (24)

depend on both: (i) the number of cores ncore ≥ 1 equipping

each virtual processor; and, (ii) the corresponding fraction

rcore ∈ [0, 1] of the dynamic power shared by all cores for

common operations, as shown below:

K = ncore × (1 − rcore)× CCPU . (27)

In the above relationship, the positive constant CCPU (mea-

sured in (Watt/(bit/s)γ )) features the dynamic-power con-

sumption of the physical CPU which is actually employed

for implementing the Fog node.

Second, actual profiling of the power models of Eqs. (19),

(20), (23) and (24) may be performed online by equipping

each Clone Manager of Fig. 4 with the so-called Jouleme-

ter tool in [38]. This is a software package tailored ‘‘ad

hoc’’ on virtualized environments, which provides the same

power and energy metering functionalities for virtual cores as

there exist in hardware for physical cores [37]. As detailed

in Section 5 of [38], Joulemeter uses container-observable

hardware power states to track the per-virtual core energy

usage on each hardware component. Interestingly enough,

the experimental measurements reported in [38] lead to the

general conclusion that the idle powerwasted by a virtual core

is proportional to the corresponding idle power consumed by

the underlying hosting physical server, with the scaling factor

being proportional to the number of virtual cores actually

supported by the physical server. This is in agreement, indeed,
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with the relationships adopted in (19) and (23) for modeling

the idle power consumed by a virtual clone.

Finally, we stress that, in our setting, all the parameters

featuring the previously reported power and energy models

play the role of known constants. In agreement with the

numerical datasets reported, for example, in [33] and [37],

typical values assumed by these power/energy-model param-

eters in Fog operating environments are reported in Table 9

of final Appendix A.

B. MODELING THE PER-FLOW INTER-TIER NETWORK

ENERGIES

Before characterizing the energy consumption of the TCP/IP-

based inter-tier transport connections of the LiFo platform of

Fig. 3, two main remarks about the considered underlying

network model are in order.

First, according to the functional protocol stack of Fig. 11,

the bit rates: {Rm, 1 ≤ m ≤ (M − 1)} in Fig. 3 are to be

understood as per-connection Transport layer throughputs.

The reason is that these throughputs are, indeed, the actual

rates at which the per-tier workloads generated by the sup-

ported CDNN of Fig. 1a are transported over the inter-tier

networks of Fig. 3. However, both the resulting network

power and energy scale up with the corresponding bit rates:{
R̂m, 1 ≤ m ≤ (M − 1)

}
measured at the Access sub-layer

of the functional protocol stack of Fig. 11. In general, these

two sets of bit rates scale proportionally according to [3]:

R̂m = ψmRm, 1 ≤ m ≤ M − 1. (28)

In the above expression, ψm is a larger-than-the-unit

dimension-less coefficient that accounts for [3]: (i) the pro-

tocol overhead (i.e., the sizes of the packet headers) of the

actually implemented protocol stack; and, (ii) the average

number of per-packet collisions experienced by the m-th

inter-tier flows under the Multiple ACcess (MAC) protocol

actually implemented at the Access sub-layer of Fig. 11.

Second, we assume that all the TCP connections going

from tier #m to tier #(m + 1) share the same throughput Rm
and Round-Trip-Time RTTm (s). In principle, these assump-

tions reflect the consideration that all Fog nodes at tier #m

support the same set S∗
m in (8) of CDNN layers, so that

the corresponding traffic flows can be assumed to be load

balanced. However, we point out that the generalization of

the results presented in the sequel to the general case in which

each flow generated by the output ports in Fig. 9 exhibits own

throughputRk (j,m) and round-trip-timeRTT k (j,m), 1 ≤ k ≤
FanOut(j,m), is quite direct and requires only a somewhat

more cumbersome formal notation.

1) MODELING THE RECEIVE NETWORK ENERGIES

Let P
(IDLE−Rx)
NET (j,m) (Watt) be the network power consumed

by each input port of the (j,m)-th Fog node in Fig. 9 in the

idle state. According to [33], the corresponding per-receive

port dynamic power P
(DYN−Rx)
NET (j,m) (Watt) can be modeled

as:

P
(DYN−Rx)
NET (j,m) = �

(Rx)
NET (j,m) × (ψm−1Rm−1)

ζ (Rx)(j,m) .

(29)

In the above expression, we have that:

• ζ (Rx)(j,m) ≥ 2 is a positive dimension-less exponent,

whose actual value depends on the transmission tech-

nology actually implemented at the Access sub-layer of

the functional stack of Fig. 11 [39], [40]; and,

• the positive coefficient �
(Rx)
NET (j,m) (measured in

(Watt/((bit/s)ζ×(s)η)) accounts for the effect of the

round-trip-time RTTm−1 of the received flows. Specif-

ically, in the case of single-hop connections, it can be

formally modeled as in the following [41], [42]:

�
(Rx)
NET (j,m) =

(RTTm−1)
η χ (j,m)(Rx)

1 + (lm−1)
α , (30)

where: (i) η ≈ 0.6 is a dimension-less positive exponent;

(ii) lm−1 is the length (measured in meter (m)) of the

wireless connections of Fig. 3 going from tier #(m− 1)

to tier #m; (iii) α ≥ 2 is a fading-induced path-loss

exponent; and, (iv) the positive coefficient χ (j,m)(Rx)

accounts for the power profile of the receive ports Fig. 9.

Therefore, after noting that the idle time is still given by

T
(1,M )
EXE (see Eq. (18) with m = M ), while the per-port receive

time T
(Rx)
NET (j,m) of the (j,m)-th Fog node equates to (see

Fig. 9):

T
(Rx)
NET =

VI (j,m)

Rm−1 × FanIn(j,m)
, (31)

from the outset, it follows that the energy E
(Rx)
NET (j,m) (Joule)

wasted by all receive ports of the (j,m)-th Fog node during a

slot time is given by:

E
(Rx)
NET (j,m) = FanIn(j,m)

×


P

(IDLE−Rx)
NET (j,m) × T

(1,M )
EXE︸ ︷︷ ︸

Idle Receive Energy

+ P
(DYN−Rx)
NET (j,m) × T

(Rx)
NET︸ ︷︷ ︸

Dynamic Receive Energy


 . (32)

2) MODELING THE TRANSMIT NETWORK ENERGY

Companion expressions hold for the power and energy con-

sumed by the output ports in Fig. 9. However, we note

that wireless transmissions are more power expensive than

wireless receptions, so that the power profiles of the output

ports are typically different from the corresponding ones of

the input ports. Therefore, on the basis of this consideration,

the energy E
(Tx)
NET (j,m) (Joule) consumed by all output ports of

the (j,m)-th Fog node of Fig. 9 during a slot interval may be

evaluated as:

E
(Tx)
NET (j,m) = FanOut(j,m)
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×


P

(IDLE−Tx)
NET (j,m) × T

(1,M )
EXE︸ ︷︷ ︸

Idle Transmit Energy

+ P
(DYN−Tx)
NET (j,m) × T

(Tx)
NET︸ ︷︷ ︸

Dynamic Transmit Energy


 . (33)

Similarly to Eq. (29), the (j,m)-th dynamic transmit power

P
(DYN−Tx)
NET (j,m) (Watt) present in Eq. (33) may be expressed

as:

P
(DYN−Tx)
NET (j,m) = �

(Tx)
NET (j,m) × (ψmRm)

ζ (Tx)(j,m) , (34)

while the following formula for the per-port transmit time:

T
(Tx)
NET =

VO(j,m)

Rm
, (35)

accounts for the fact that, by design, the overall workload

VO(j,m) generated by the (j,m)-th Fog node is entirely repli-

cated over each output port of Fig. 9.

Typical values of the various parameters featuring the

networking power/energy models of Eqs. (29)–(34) in Fog

operating environments are reported in Table 9 of final

Appendix A.

C. MODELING THE PER-SERVICE TOTAL ENERGY OF THE

LIFO PLATFORM

The above analysis of the per-slot energy consumed by each

Fog node leads to the conclusion that the resulting total

energy ETOT (Joule) consumed by the virtualized LiFo plat-

form of Fig. 9 during a slot interval for the execution of the

inference phase of the supported CDNN is the summation of

a computing energy ECOP (Joule) and a network energy ENET
(Joule). Hence, it can be expressed as:

ETOT = ECOP + ENET , (36)

where, in turn, the computing and networking contributions

are given by:

ECOP =

M∑

m=1

mm∑

j=1

(EMP(j,m) + EAP(j,m)) , (37)

and:

ENET =

m1∑

j=1

E
(Tx)
NET (j, 1)

︸ ︷︷ ︸
Tx energy at tier #1

+

M−1∑

m=2

mm∑

j=1

(
E
(Rx)
NET (j,m) + E

(Tx)
NET (j,m)

)

︸ ︷︷ ︸
Tx−plus−Rx energy at the middle tiers

+ E
(Rx)
NET (1,M )︸ ︷︷ ︸

Rx energy at tier #M

. (38)

About the practical meaning of ETOT in (36), we remark that

this energy is evaluated on a per-slot basis, and accounts for

the total energy consumed for the execution of the inference

phase of a single CDNN. Since the virtualized nature of the

proposed LiFo technological platform allow the isolated and

parallel executions of multiple CDNNs through the exploita-

tion of the nc ≥ 1 containers equipping each Fog node

(see Fig. 4), we point out that, in principle, the full energy

consumed by the LiFo platform of Fig. 3 in practical operative

scenarios can be up to nc times larger than the one modeled

by Eq. (36).

Overall, the final Table 9 reports the adopted taxonomy,

as well as the typical values of the parameters involved by

the computing/networking power/energy models introduced

in this Section V.

VI. THE LIFO OPTIMIZATION PROBLEM (LOP) AND ITS

STRUCTURAL PROPERTIES

Let Q ,
∑M

m=1mm be the number of Fog-plus-Cloud com-

puting nodes composing the LiFo technological platform of

Fig. 3 and let:

−→
F , [f11, f21, . . . , fM1]

T ∈ R
Q
+,

−→
F̃ ,

[
f̃11, f̃21, . . . , f̃M1

]T
∈ R

Q
+,

−→
R , [R1,R2, . . . ,RM ]T ∈ R

M−1
+ , (39)

be the (column) vectors of the (previously introduced) pro-

cessing frequencies of the main and auxiliary processors and

the (column) vector of the inter-tier network throughputs (see

Fig. 9). Furthermore, let:

−→
X ,

[
−→
F T ,

−→
F̃ T ,

−→
R T

]T
∈ R

2Q+(M−1)
+ , (40)

be the resulting compound resource (column) vector.

By design, the LiFo technological platform of Fig. 3 aims

at supporting DL-based applications in which: (i) the most

relevant QoS metrics are the experienced per-exit inference

delays in Eq. (18); (ii) the total energy consumption in

Eq. (36) must be driven to the minimum; (iii) the per-clone

processing frequencies embraced by the vectors
−→
F and

−→
F̃

in (39) are upper limited, in order to allow each physical

Fog node in Fig. 3 to maximize the number of containers

which may run in parallel (see Fig. 4); and, (iv) the inter-tier

throughputs gathered by the vector
−→
R in Eq. (39) must be

also upper bounded, in order to allow the interference-free

concurrent implementation of multiple transport connections

over a same physical bandwidth [39].

According to these considerations, we formulate the LiFo

Optimization Problem (LOP) for the constrained allocation

of the available computing-plus-networking resources to the

computing nodes of the platform in Fig. 3 as follows:

min
−→
X

ETOT , (41a)

s.t.: 0 ≤ T
(1,m)
EXE ≤ T

(m)
EXIT , (41b)

0 ≤ fjm ≤ f
(MAX )
im , (41c)

0 ≤ f̃jm ≤ f̃
(MAX )
im , (41d)
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0 ≤ Rm ≤ R(MAX )m , (41e)

for m = 1, . . . ,M and j = 1, . . . ,mm, where the elements

of the sets:
{
T
(m)
EXIT

}
,
{
f
(MAX )
jm

}
,
{
f̃
(MAX )
jm

}
and

{
R
(MAX )
m

}
play

the role of (positive) assigned constants. Specifically, in the

presented LOP formulation, we have that:

• the objective function ETOT in (41a) to be minimized is

formally given by Eq. (36);

• the M constraints in (41b) guarantee that each

per-exit inference time T
(1,m)
EXE in Eq. (18) is lim-

ited up to a corresponding QoS-dictated maximum

value T
(m)
EXIT (s);

• the box constraints in Eq. (41c) (resp., in Eqs. (41d)

and (41e)) limit each main processing frequency

fjm (resp., auxiliary processing frequency f̃jm and

inter-flow throughput Rm) up to a corresponding

maximum value f
(MAX )
jm (bit/s) (resp., f̃

(MAX )
jm (bit/s)

and R
(MAX )
m (bit/s).

From a formal point of view, the LOP in (41) is an optimiza-

tion problem which embraces: 2Q + (M − 1) nonnegative

continuous-valued variables and: 2(M + Q) − 1 constraints.

The constraints in Eqs. (41b) – (41e) are of box-type, while

the M constraints in Eq. (41b) on the allowed per-exit infer-

ence times are nonlinear constraints involving all elements of

the optimization vector
−→
X in (40).

Hence, regarding the convex/nonconvex nature of the LOP,

the following result is proved in the final Appendix B.

Proposition 1 (On the convexity of the LOP): Assume that

the values of all the γ ’s and ζ ’s exponents present in the power

models previously presented in Eqs. (20), (21), (29) and (34)

are not less than 2. Hence, the resulting LOP in Eq. (41) is a

convex optimization problem. �

To examine the feasibility of the considered LOP, let:

−→
F (MAX ) ,

[
f
(MAX )
11 , . . . , f

(MAX )
M1

]T
∈ R

Q
+,

−→
F̃ (MAX ) ,

[
f̃
(MAX )
11 , . . . , f̃

(MAX )
M1

]T
∈ R

Q
+,

−→
R (MAX ) ,

[
R
(MAX )
1 , . . . ,R

(MAX )
M

]T
∈ R

M−1
+ , (42)

be the (column) vectors of the maximum allowable

computing-networking resources (see the box constraints in

Eqs. (41c) – (41e)), and, then, let :

−→
X (MAX ) ,

[
−→
F (MAX )

T
,
−→
F̃ (MAX )

T

,
−→
R (MAX )

T
]T
, (43)

be the corresponding compound maximal (column) vector.

Furthermore, let:

T
(1,m)
EXE

(−→
X (MAX )

)
, 1 ≤ m ≤ M , (44)

be the value assumed by the m-th inference time in Eq. (18)

when all the resources are clipped at their own maximal

values. Hence, the following result holds.

Proposition 2 (On the feasibility of the LOP): Let theLOP

be convex. Then, it is feasible if and only if the following

inequalities are simultaneously met:

T
(1,m)
EXE

(−→
X (MAX )

)
≤ T

(m)
EXIT , 1 ≤ m ≤ M . (45)

�

Proof: In order to prove the sufficiency of the conditions

in (45), we simply note that:
−→
X ≡

−→
X (MAX ) is a feasible

solution of the LOP in (41), because, by design, it meets all

the box constraints in (41c) – (41e) on the allowed maximal

resources with the equality.

The necessary part can be proved by contradiction. For

this purpose, let us assume that at least one of the condition

in (45) fails, i.e., let us suppose that the m̃-th inequality

in (45) falls short. Hence, in order to reduce the corre-

sponding value T
(1,m̃)
EXE

(−→
X (MAX )

)
of the m̃-th inference time,

we are forced to increase at least one scalar component of
−→
X (MAX ), because Lemma 1.b in the Appendix B proves that

the function T
(1,m̃)
EXE

(−→
X
)
is not increasingwith respect to each

scalar component of the resource vector
−→
X in (40). However,

by doing so, we arrive to an infeasible vector
−→
X , because

all the components of
−→
X (MAX ) are already set, by definition,

to their own allowedmaximum allowable values. This proves,

in turn, that the conditions in (45) are also necessary for the

LOP feasibility. �

To formally characterize the LOP solution, let us assume

that the LOP in (41) is convex and feasible, and, then, let:

−→
X ∗ ,

[
−→
F ∗T ,

−→
F̃ ∗

T

,
−→
R ∗T

]T
, (46)

indicate its (possible, not unique) vector solution. Hence,

the general results provided, for example, in Theo-

rems 4.3.7 and 4.3.8 of [43] guarantee that the Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient for

the evaluation of the LOP solution in (46) when the LOP

also meets the Slater’s qualification condition. In this regard,

the following formal result can be proved.

Proposition 3 (Slater’s qualification for the LOP): Let us

assume that the LOP is convex and, in addition, all the feasi-

bility conditions in (45) are met with the strict inequalities.

Then, the LOP in (41) satisfies the Slater’s qualification

condition. �

Proof: Since the LOP is assumed to be convex, all the

delay constraints in (41b) are, by definition, convex. There-

fore, as detailed, for example in [43], the Slater’s qualification

condition requires that there exists at least one resource allo-

cation vector
−→
X in (40) which is feasible and meets all the

M constraints in (41b) with the strict inequalities. However,

if the feasibility conditions previously presented in (45) are

met with the strict inequalities, then, the vector
−→
X (MAX ) in

(43) of the maximal allowed resources is, by definition, fea-

sible, and, in addition, it satisfies all the convex constraints in

Eq. (41b) with the strict inequalities. This guarantees, in turn,

that the Slater’s qualification condition holds. �

Overall, according to the presented results and in order to

formally characterize the LOP vector solution in (46), we will
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assume that the considered LOP in (41) is convex, feasible

and meets the Slater’s qualification condition.

VII. THE LOP SOLVING APPROACH

The previously described operative setting allows us to resort

to a suitable application of the so-called Primal-Dual Solving

Approach (PDSA) [43], in order to evaluate the solution
−→
X ∗

in (46) of the considered LOP. Towards this end, we note

that, since the LOP is a convex optimization problem by

Proposition 1, the box constraints in Eqs. (41c) – (41e) may

be retained as implicit ones and, then, managed by perform-

ing clipping operations [43]. Hence, the Lagrangian function

L
(−→
X ,

−→
λ
)
(measured in (Joule)) associated to the LOP in

(41) is defined as follows:

L
(−→
X ,

−→
λ
)
, ETOT

(−→
X
)

+

M∑

m=1

λm



T
(1,m)
EXE

(−→
X
)

T
(m)
EXIT

− 1


 ,

(47)

where λm (Joule) is the (scalar nonnegative) Lagrange mul-

tiplier associated to the m-th delay-constraint in Eq. (41b),

and:

−→
λ , [λ1, λ2, . . . , λM ]T ∈ R

M
+ , (48)

is the corresponding M -dimensional multipliers’ vector.

Therefore, from a formal point of view, the constrained max–

min optimization problem to be solved for the evaluation of

the LOP solution
−→
X ∗ in (46) and the corresponding optimum

multiplier vector
−→
λ ∗ is the following one [43]:

max
−→
λ ≥

−→
0

{
min

−→
0 ≤

−→
X ≤

−→
X (MAX )

{
L
(−→
X ,

−→
λ
)}}

, (49)

where
−→
X (MAX ) is the vector in (43) of the maximal allowable

resources. Now, let:
−→
∇ L

(−→
X ,

−→
λ
)
be the (2(Q+M ) − 1)-

dimensional gradient vector of the Lagrangian function in

(47) done with respect to both the (2Q+M − 1) scalar com-

ponents of
−→
X in (40) (i.e., the vector of the so-called primal

variables of the LOP; see [43]) and theM scalar components

of
−→
λ in (48) (i.e., the vector of the so-called dual variables of

the LOP; see [43]). Hence, Theorem 6.2.6 of [43] guarantees

that the solution of themax–min optimization problem in (49)

(that is, the so-called saddle-point of the Lagrangian function

in (47)) can be computed by performing the orthogonal pro-

jection over the Cartesian-product set:
[−→
0 ,

−→
X (MAX )

]
×R

M
+ of

the compound vector solution
[−→
X T ,

−→
λ T

]T
of the following

(2(Q+M ) − 1)-dimensional algebraic equation system:

−→
∇ L

(−→
X ,

−→
λ
)

=
−→
0 . (50)

A. THE SOLVING APPROACH

Two remarks about the solution:
{−→
X ∗,

−→
λ ∗
}
, (51)

of the equation system in (50) are in order. First, since both

the objective function ETOT in (41a) and the inference times{
T
(1,m)
EXE

}
in (41b) are nonlinear functions of the resource

allocation vector
−→
X in (40) (see Eqs. (18) and (36) and the

related texts), the resulting system in (50) is also nonlinear in
−→
X , so that its solution resists closed-form evaluation. Second,

even if it would possible to solve in closed-form the system

in (50) under some specific cases, the obtained closed-form

solution should be re-evaluated from scratch when, due to

the mobility of the IoT devices in Fig. 1b and/or fading

effects, the operating conditions1 of the LiFo platform of

Fig. 3 undergo abrupt (and, typically, unpredictable) time

variations.

In order to tackle with these challenges, we develop a

suitable set of projected gradient-based primal-dual iterations

whose step-sizes are adaptively-scaled on the basis of suit-

ably designed time-varying clipping thresholds.

Towards this end, we begin to remark that, as detailed, for

example, in [43], the primal-dual algorithm is an iterative

procedure that updates step-by-step both the involved primal:
−→
X , and dual:

−→
λ vector variables, in order to throttle the

corresponding Lagrangian function in (47) towards its saddle-

point, i.e., the solution of max–min optimization problem in

(49). Hence, according to [43], after introducing the dummy

position:

[z]ba , max {a; min {z; b}} , (52)

the (k + 1)-th updating of the i-th scalar component xi, for

i = 1, . . . , (2Q + M − 1), of the compound resource vector
−→
X in (40) reads as in:

xi(k + 1)=


xi(k)−αi(k)

∂L
(−→
X (k),

−→
λ (k)

)

∂xi



x
(MAX )
i

0

, (53)

for k ≥ 0 and i = 1, . . . , (2Q+M − 1), while the (k + 1)-th

updating of the m-th scalar component λm, m = 1, . . . ,M ,

of the multiplier vector
−→
λ is given by:

λm(k + 1) =


λm(k) − ξm(k)

∂L
(−→
X (k),

−→
λ (k)

)

∂λm




∞

0

, (54)

for k ≥ 0 andm = 1, . . . ,M . In the above iterations, we have

that:

1) k ≥ 0 is an integer-valued iteration index;

2) ∂L
(−→
X (k),

−→
λ (k)

)
/∂xi (resp., ∂L

(−→
X (k),

−→
λ (k)

)
/∂λm)

is the partial derivative of the Lagrangian function in

(47) with respect to the i-th scalar component xi of the

resource vector
−→
X (resp., them-th scalar component of

the Lagrange multiplier vector
−→
λ ) at the k-th iteration;

3) x
(MAX )
i is the i-th scalar component of the maximal

resource vector
−→
X (MAX ) in (43); and,

1That is, the components of the maximal resource vector
−→
X (MAX ) in (43),

and/or the volume V0 of the data generated by the IoT devices over a slot
interval.
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4) {αi(k), i = 1, . . . , (2Q+M − 1)} and {ξm(k), m =
1, . . . ,M} are nonnegative k-varying step-size

sequences.

B. ACHIEVING FAST ADAPTATION AND FAILURE

RESILIENCE: THE PROPOSED OPTIMIZED STEP-SIZE

DESIGN

A still open challenge is how the time-varying step-size

sequences in Eqs. (53) and (54) should be actually designed,

in order to allow the resulting LiFo technological platform

of Fig. 3 to: (i) quickly adapt to abrupt changes of the wire-

less (possibly, mobile) IoT operating scenario; and/or, (ii)

fast react to (typically, unpredictable) failure events. For this

purpose, we further optimize the approach presented in [44]

by introducing a ‘‘clipped’’ version with adaptive per-tier

clipping thresholds of the step-size design presented in [44].

In this regard, we observe that Theorem 3.3 of [44] proves

that it suffices to update each step-size sequence present in

Eqs. (53) and (54) proportionally to the current squared value

of the corresponding primal-dual variable, in order to guaran-

tee the asymptotic convergence to the global optimum of the

full set of primal-dual iterations. However, too large (resp.,

too low) instantaneous values of the step-sizesmay stretch the

resulting convergence times by introducing unstable transient

oscillatory phenomena (resp., by reducing the capability of

the system to react to environmental changes).

Hence, motivated by these considerations, we planned to

implement the adaptively clipped relationships for updating

the step-sizes in (53) and (54), given by Eqs. (55) and (56)

as shown at the bottom of next page, where m in (55) is the

index of the tier in Fig. 3 at which the i-th (scalar) resource xi
is allocated.

1) THE PROPOSED OPTIMIZED DESIGN OF THE STEP-SIZE

CLIPPING THRESHOLDS

The goal of the (positive-valued) clipping threshold a
(m)
MAX (k)

in (55) and (56) is to avoid that the corresponding step-sizes

assume too small or too large instantaneous values, in order

to attain both quick reactions to environmental changes and

small oscillations in the steady-state. However, unlike state-

of-the-art contributions (see, for example, [45] and the refer-

ences therein), the peculiar feature of the clipping threshold

a
(m)
MAX (k) in (55) and (56) is that it is no longer fixed as a static

hyper-parameter, but it may vary over both the time k and

the spatialm dimensions of the underlying LiFo technological

platform of Fig. 3. For this purpose, we propose the following

relationship for the adaptive updating of a
(m)
MAX (k) over the

space-time indexes:

a
(m)
MAX (k) = A0

(
1 + σ

∣∣∣∣∣
T
(1,m)
EXE (k)

T
(m)
EXIT

− 1

∣∣∣∣∣

)
, (57)

for k ≥ 0 and m = 1, . . . ,M .

In the above relationship, we have that: (i) k (resp., m) is

the iteration (resp., tier) index; (ii) T
(1,m)
EXE (k) is the actual value

assumed by the m-th inference time in (18) at the k-th iter-

ation, while T
(m)
EXIT is the corresponding tolerated maximum

value in (41b); and, (iii) A0 and σ are positive dimension-less

hyper-parameters.

The rationales leading to the proposed relationship in (57)

rely on the following four formal considerations.

First, values of the ratio T
(1,m)
EXE (k)/T

(m)
EXIT larger than the

unit would violate the LOP constraint in (41b) and, then,

are infeasible. However, since Lemma 1.b in Appendix B

proves that T
(1,m)
EXE is a not increasing function with respect

to each scalar component of the resource vector
−→
X in (40),

values of the ratio T
(1,m)
EXE (k)/T

(m)
EXIT too below the unit would

cause useless resource wasting, and, then, they should be

avoided. As a consequence, the optimal target value of the

ratio T
(1,m)
EXE (k)/T

(m)
EXIT is the unit one, and this motivates the

presence of the absolute term |·| in (57).
Second, since larger (resp., smaller) values of the absolute

term |·| in (57) increase (resp., decrease) the current value

of a
(m)
MAX (k), they dynamically enlarge (resp., narrow) the

ranges of the values allowed to the corresponding step-sizes

in (55) and (56). So doing, the capability of the associated

iterations in (53) and (54) to explore new solutions falling into

a neighborhood of the current one
−→
X (k),

−→
λ (k) is increased

(resp., decreased).

Third, the (positive) hyper-parameterA0 > 0 in (57) lowers

bound, by design, the allowable range of values a
(m)
MAX (k).

Therefore, its role is to forbid vanishing values of a
(m)
MAX (k),

which, in turn, would give rise to vanishing step-sizes in (55)

and (56) and, then, would annihilate the adaptive capability

of the iterations in (53) and (54) to self-react to environmental

changes.

Forth, the main role of the nonnegative sensitivity hyper-

parameter σ ≥ 0 in (57) is to amplify the effect on

a
(m)
MAX (k) induced by nonzero values of the absolute gap:∣∣∣
(
T
(1,m)
EXE (k)/T

(m)
EXIT

)
− 1

∣∣∣, so to magnify the dynamic of the

allowable ranges of the step-sizes values in (55) and (56).

In this regard, we explicitly note that the limit case of vanish-

ing σ is the state-of-the-art case in which the iterations in (53)

and (54) work with their maximal step-size values statically

fixed at A0.

Finally, regarding the actual effectiveness of the proposed

dynamic relationship in (57) for the updating of the per-tier

maximal step-sizes values, we anticipate that the numerical

results presented in Section IX support the conclusion that its

utilization allows to (at least) halve the convergence time of

the set of primal-dual iterations in (53) and (54) with respect

to the corresponding static cases in which all the step-size

thresholds in (57) are taken fixed at A0.

C. IMPLEMENTATION COMPLEXITY OF THE LOP

ITERATIONS

The pseudo-code of Algorithm 1 presents the ordered list of

relationships that are needed for the software implementation

of the set of LOP iterations in (53) and (54).

After noting that IMAX in Algorithm 1 is the number of

performed primal-dual iterations, an examination of the pre-

sented pseudo-code leads to two main conclusions.
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Algorithm 1 Computing the LOP Resource Allocation Vec-

tor and Related Energy Consumptions

Input: Hyper-parameters A0, σ and number IMAX of itera-

tions to be carried out.

Output: Resource allocation vector
−→
X and corresponding

total, computing and network energies ETOT , ECOP and ENET .

blank row ⊲ Begin LOP function

1: Initialize:
−→
X =

−→
0 and ETOT = ECOP = ENET = 0;

2: if the set of LOP feasibility conditions in (45) is met then

3: for k = 0 : (IMAX − 1) do

4: Update the set of Lagrangian derivatives in (53)

and

(54);

5: Update the inference times in (18);

6: Update the step-size thresholds in (57);

7: Update the step-sizes in (55) and (56);

8: Update the set of primal-dual iterations in (53)

and (54);

9: Update the current values of the energies ETOT ,

ECOP

and ENET in (36), (37) and (38);

10: end for

11: end if

12: return the final resource allocation vector
−→
X and the

related energies ETOT , ECOP and ENET . ⊲ End LOP

function

First, the computational complexity, needed for the imple-

mentation of the LOP iterations in (53) and (54), scales up in

a linear way with IMAX as:

O(IMAX × (2 × (Q+M ) − 1)) . (58)

Second, this complexity is fully independent of the (possi-

bly large) number L of the layers of the supported CDNN of

Fig. 1a. Furthermore, it scales in a linear way with respect to

the summation of the number Q ≡
∑M

m=1 mm of the comput-

ing nodes and the number M of the tiers of the implemented

LiFo platform of Fig. 3.

Overall, since the actual values of both Q and M are

typically limited due to the monetary cost of the underlying

IoT technological platform [3] and the iterations in (53) and

(54) are to be carried out only in response to (substantial)

changes of the surrounding operating conditions, we expect

that, in practice, the computation complexity required for the

implementation of proposed Algorithm 1 remains, indeed,

limited.

VIII. IMPLEMENTATION ASPECTS OF THE PROPOSED

LIFO TECHNOLOGICAL PLATFORM

The goal of this section is to details a number of imple-

mentation aspects of the proposed LiFo technological plat-

form of Fig. 3 which mainly concern: (i) the centralized-vs.-

distributed implementation of the primal-dual iterations in

(53) and (54); (ii) the online profiling of the power and energy

models of Section V of a LiFo virtualized Fog node; and, (iii)

the design of the main building blocks and functionalities of

the network architecture for the support of intra-tier message

passing and information retrieving.

A. IMPLEMENTING THE LOP ITERATIONS

Regarding the implementation of the iterations in (53) and

(54), the following three main aspects should be investigated,

namely: (i) who runs the iterations; (ii) when starting the

iterations; and, (iii) when stopping the iterations.

1) WHO RUNS THE ITERATIONS

In principle, the primal-dual iterations in (53) and (54) could

be implemented in a centralized or distributed way.

Under the centralized implementation, the Cloud node at

the top of the hierarchy of Fig. 3 runs the full set of iterations

and, then, after their convergence, broadcasts down to the

underlying Fog nodes the vector
−→
X ∗ in (46) of the optimized

resource allocation.

In the distributed case, we have that: (i) the (j,m)-th Fog

node of Fig. 3 runs only two primal iterations, i.e., the

ones needed for updating the frequencies fjm(k) and f̃jm(k)

of own main and auxiliary virtual processors of Fig. 9; (ii)

the Cloud node of Fig. 3 runs the (2M − 1) primal and dual

iterations for updating the sets of the inter-tier throughputs

{Rm(k), m = 1, . . . , (M − 1)} and Lagrange multipliers

{λm(k), m = 1, . . . ,M}, whose values are, indeed, shared

by all Fog nodes of Fig. 3; and, (iii) the Cloud node also

updates all the Lagrangian derivatives needed for computing

the iterations in (53) and (54), whose computations require

αi(k) = max

{
a
(m)
MAX (k); min

{
a
(m)
MAX (k) ×

(
x
(MAX )
i

)2
; (xi(k))

2

}}
, (55)

ξm(k) = max

{
a
(m)
MAX (k); min

{
a
(m)
MAX (k) × max

i

{(
x
(MAX )
i

)2}
; (λm(k))

2

}}
. (56)
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the joint utilization of all components of the resource vector
−→
X and Lagrangian multipliers’ vector

−→
λ .

Overall, the centralized (resp., distributed) solution does

not require (resp., demand for) synchronized inter-Fog sig-

naling, but focuses (resp., scatters) the overall computational

effort of Eq. (58) on a single computing node (resp., over

multiple cooperating computing nodes).

2) WHEN RUNNING THE ITERATIONS

The iterations in (53) and (54) must be run from scratch

at the beginning of the inference phase, i.e., when the LiFo

platform of Fig. 3 is bootstrapped for the first time. After their

convergence, they no longer run, provided that no changes

occur in the operating conditions of the underlying LiFo

platform. However, if some environmental changes happens

at slot t (i.e., the volume V0(t) of the data generated by

the IoT devices at the beginning of slot t is very different

from the one experienced in the previous slot (t − 1) or a

failure event occurred at the current slot t), the iterations in

(53) and (54) must be run once a time by starting from the

most recently computed resource allocation vector
−→
X ∗(t−1).

This means that, under the envisioned LiFo paradigm: (i) the

execution of the iterations for resource allocation is inherently

event-driven; and, (ii) the proposed dynamic design in (57) of

the ranges of the allowable step-size values enables the Lifo

platform to both self-detect environmental changes and self-

react to them.

3) ADAPTIVE STOPPING OF THE ITERATIONS

In practical application scenarios, the convergence time of the

iterations in (53) and (54) is not known in advance, and, which

is the most, it could change from time to time, in response

to the nature of the fluctuations/failures actually experienced

by the environmental operating conditions. Hence, it would

be worth designing a stopping mechanism which adaptively

(i.e., autonomously) stops the execution of the iterations in

(53) and (54) when they are approaching the steady-state. For

this purpose, we designed the following rule for the adaptive

setting of the stopping iteration index kSTOP:

kSTOP : 0.99 ≤ max
1≤m≤M

{
T
(1,m)
EXE (kSTOP)

T
(m)
EXIT

}
< 1. (59)

The above stopping rule guarantees that, at the stopping

instant kSTOP, the following two properties are retained: (i)

all the constraints in (41b) on the inference times are met

(see the maximum operator and the strict unit-valued upper

bound in (59)); and, (ii) no wasting of computing/networking

resources occurs at the stopping instant (see the nearly-unit

lower bound in (59)). We anticiapte that all the numerical

results of Section IX have been obtained under the stopping

rule in (59).

B. IMPLEMENTING THROUGHPUT ADAPTATION

In order to consider the actual implementation of mechanisms

for the adaptive scaling of the rates: {Rm, m = 1, . . . ,M}

supported by the inter-tier transport connections of Fig. 3,

we note that these mechanisms may be implemented through

flow control [46]. In this regard, we remark that, by design,

the inter-tier LiFo transport connections of Fig. 3 are TCP

supported and, then, flow control is to be considered already

implemented at the Transport sub-layer of the protocol stack

equipping each LiFo Fog node (see Fig. 11). Hence, according

to this observation, in the LiFo setting, the throughput Rm of

the m-th TCP flow of Fig. 3 equates, by design, to:

Rm =
wdm

RTTm
, (60)

where [46]: (i) wdm (measured in (bit)) is the current size

of the congestion window of each TCP connection oper-

ating at tier #m; and, (ii) RTTm (measured in second) is

the corresponding per-connection Round Trip Time. There-

fore, since RTTm can be considered constant under steady-

state operating conditions [46], throughput adaptation can be

directly implemented by dynamically scaling up/down the

corresponding TCP window size wdm in (60).

C. IMPLEMENTING THE INTRA-TIER LOCAL NETWORKS –

AN INFORMATION CENTRIC APPROACH

We propose anUDP-supported and Information Centric Net-

work (ICN) architecture for sustaining inter-Fog and Fog-

Aggregator communication over each cluster of the LiFo

technological platform of Fig. 3. The reason for this archi-

tectural proposal is threefold.

First, ICN is emerging as an effective paradigm to cope

with the scarcity of address-space which typically affects

standard IP-based networks in IoT realms [13]. The main

feature doing interesting the utilization of ICN in IoT operat-

ing scenarios is that this network paradigm allows to enlarge

the address space of the state-of-the-art Internet protocol by

adopting a name-based content addressing. Doing so, ICN

enables both name-driven routing and name-based content

caching at the intermediate network nodes [13].

Second, the Aggregator equipping each cluster of the

LiFo platform of Fig. 3 can carry out the fusion of the

data locally generated by the corresponding Fog nodes by

efficiently exploiting the aforementioned properties natively

retained by the ICN paradigm. We note that, for this purpose,

the Aggregator can directly exploit the publish-subscribe

functionalities supported by the ICN suite, in order to issue

request/response commands for the selective and name-based

retrieving of data temporarily stored by the virtual caches of

the Fog nodes (see Fig. 9).

Third, the choice of the (unreliable but connection-less)

UDP as intra-tier transport protocol arises from the con-

siderations that: (i) since intra-tier communication involves

proximate nodes scattered over a same spatial cluster (see

Fig. 3), Transport-layer reliability is expected not to be a

major issue; and, (ii) the connection-less nature of UDP

avoids the per-connection signaling overhead associated to

the initial SYN/SYN–ACK/ACK three-way handshake and the

final FIN/ACK two-way termination required by TCP-based
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network architectures. Doing so, the resulting intra-tier data

delivery delays are reduced and, then, fast data fusion by the

Aggregator is enabled.

In the following, we sketch the main building blocks and

the associated data-retrieving mechanisms envisioned for the

proposed ICN architecture.

1) MAIN BUILDING BLOCKS AND PROTOCOL MESSAGES

Fig. 12 shows the main blocks which should equip each LiFo

Fog node of Fig. 3 for the support of the proposed intra-tier

ICN architecture.

Specifically, the ICN setting envisioned for the LiFo

paradigm relies on the following main data messages and

signaling mechanisms:

1) each data chunk stored by the virtual caches in Fig. 9

of a LiFo Fog node is assumed to be identified by

an unique, persistent and location-independent name,

which is used by the corresponding Aggregator for

search and retrieval purposes. Inter-Fog and Fog-

Aggregator intra-tier communication uses two signal-

ing messages, that is: (a) the Interestmessage, which is

used to request a specific data addressed by its name;

and, (b) the Data message, which carries out the data

required by the corresponding Interest message. Since

both such types of message are assumed to be con-

veyed by connection-lessUDP-based pipes, unsatisfied

Interest messages can be simply re-sent at any time

by the requiring node, without the need to resume any

previous data connection; and,

2) each Data message is, by design, self-consistent, so that

it can be cached by any intermediate Fog node of

Fig. 3, in order to serve future requests without involv-

ing the original source node. Doing so, both the intra-

tier network traffics and the resulting retrieval delays

are expected to be reduced with respect to the case of

a host-centric IP-based network architecture. Further-

more, an AgeTimemay be also included by the original

source in each generated data message, so to allow the

requiring node to evaluate the actual freshness of the

received data.

According to Fig. 12, in the LiFo setting, each Fog node

is assumed to be also equipped with the following building

blocks, in order to enable the name-based data retrieving

process by the corresponding Aggregator:

1) the (already introduced) VIC and VOC of Fig. 9, to tem-

porarily cache input/output Data messages;

2) a Pending Interest Table (PIT), to temporarily buffer

incoming Interest messages which are not still con-

sumed by the corresponding Data messages;

3) a Forwarding Information Data Base (FIDB), to for-

ward the received Interest messages to the correspond-

ing data source nodes;

4) a Routing Information Base (RIB), to record already

acquired route paths; and,

5) a Strategy Rule Table (SRT), to gather specific routing

strategies chosen by the system administrator for tack-

ling with specific operating conditions and/or Interest

messages.

2) DESIGNED INTRA-TIER DATA RETRIEVING PROCESS

The processing chain followed by an Interest message is

illustrated in Fig. 12a. Specifically, when a Fog node receives

in upstream an Interest message by the Aggregator from an

input port, it begins to search in its VIC for a name matching.

If a name matching is found, then, the corresponding stored

Data message is sent back to the Aggregator immediately.

Otherwise, the Fog node passes to look into its PIT: if a name

matching is found, it means that the current request has been

already sent in upstream, and the Fog node is, indeed, waiting

for the result. As a consequence, the Fog node only proceeds

to update the already present PIT entry with the number of the

input port fromwhich the Interest message has been received.

Otherwise, the Fog node passes to look into its FIDB of

Fig. 12a. If a matching is found, the Fog node generates a

new PIT entry and broadcasts the Interest message over all

its output ports for further forwarding. Otherwise, the Inter-

est message is dropped and a negative acknowledgment is

returned back to the requesting Aggregator.

A retrieved Data message follows the reverse path, in order

to reach the Aggregator. Specifically, according to Fig. 12b,

at the reception of a Data message, the Fog node forwards the

message to the ports from which the corresponding Interest

message was been previously received. At the same time,

the Fog node stores the forwarded data into its VOC of

Fig. 12b and, then, deletes the associated PIT entry. Received

Data messages that do not match any current PIT entry are

directly dropped and not forwarded at all.

Overall, from the outset, it follows that the main expected

benefit arising from the adoption of the described UDP-

supported ICN architecture for intra-tier communication may

be twofold. First, the planned architecture allows the Aggre-

gator to perform the on-demand and selective retrieving of

the data cached by the corresponding Fog nodes, without

suffering from the delays induced by the dial-up/tear-down

phases of the utilized transport pipes. Second, it is expected

that the in-network caching mechanism natively supported

by the planned ICN architecture decreases both the intra-tier

network traffic and the resulting retrieving delays.

IX. NUMERICAL TESTS AND PERFORMANCE

COMPARISONS

The goal of this section is to numerically evaluate and com-

pare the adaptive capability, fault resilience and energy-vs.-

inference delays performance of the proposed Algorithm 1

for the optimal allocation of the computing-plus-networking

resources of the designed LiFo technological platform of

Fig. 3. In order to account for the multiple aspects of the

carried out tests, we organized this section according to the

following roadmap. After specifying in Section IX-A the

simulated settings and the considered benchmark solutions,
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FIGURE 12. Planned forwarding mechanism and main supporting functional blocks for
ICN-based intra-tier communication under the LiFo paradigm. (a) Upstream
Aggregator-to-Fog data forwarding; (b) Downstream Fog-to-Aggregator data forwarding. PIT:
= Pending Interest Table; VOC: = Virtual Output Cache; VIC: = Virtual Input Cache; FIDB: =

Forwarding Interest Data Base; RIB: = Routing Information Base; SRT: = Strategy Rule Table.

in Sections IX-B and IX-Cwe check the adaptive and resilient

capabilities of the proposed Algorithm 1 to copewith (abrupt)

time-variations of the operating IoT realm and (unpredicted)

fault phenomena, respectively. Section IX-D numerically

checks and compares against the considered benchmark solu-

tions the performance sensitivity of Algorithm 1 of a number

of parameters featuring the operating conditions of the under-

lying LiFo technological platform, like, the per-slot input

workload, the per-exit inference delays and the per-layer

compression factors of the supported CDNN with early exits.

Afterwards, the goal of Section IX-E is to give insights about

the effects on the energy-vs.-inference delay performance

of Algorithm 1 induced by topology of the underlying LiFo

technological platform of Fig. 3. Finally, Section IX-F numer-

ically compares the energy performance of the proposed Fog-

based Lifo solution to the corresponding ones of a traditional

switch-based network for Cloud applications in which all the

intermediate LiFo Fog nodes are replaced by switch nodes

that perform only workload forwarding but not workload

processing.

A. SIMULATED FRAMEWORK AND BENCHMARKS

The performed simulations have been carried out by exploit-

ing the recently developed DeepFogSim toolbox [47] run-

ning over a hardware execution platform equipped with: (i)

40 GB of DDR 4 RAM; (ii) a 512 GB SSD with a 2 TB

HHD; (iii) an Intel 12-core i9-7900X processor; and, (iv) a

GPU ZOTAC GetForce GTX 1070. The adopted hardware

platform is equipped with a software execution environment

which relies on the release R2018a of MATLAB.

1) FEATURING THE SIMULATED CDNNs WITH EARLY EXITS

A joint examination of the: (i) expressions of VI (j,m) and

VO(j,m) in Eqs. (9) and (10) for the volumes of the input

and output workloads processed by the (j,m)-th Fog node;

and, (ii) the related model in Eq. (20) for the dynamic power

profile P
(DYN )
MP (j,m) of the (j,m)-th main processor, points

out that the data about the CDNN with early exits, which are

needed for the implementation of the proposed Algorithm 1

reduces to the set of the per-layer compression factors in

Eq. (6) and the set of the Layer-to-Tier mappings featured by

the actually performed optimal partition in Eq. (8). Hence,

after selecting the CDNN with early exits to be run atop the

LiFo technological platform of Fig. 3, it must be considered

known both the corresponding (L − 1)-dimensional (positive

real-valued) vector:

−→cm , [cm1, cm2, . . . , cmL−1]
T ∈ R

L−1
+ , (61)

of the per-layer compression factors in (6), as well as theM -

dimensional (positive integer-valued) vector:

−−→
L2T ,

[ ∣∣S∗
1

∣∣ ,
∣∣S∗

2

∣∣ , . . . ,
∣∣S∗

M

∣∣ ]T ∈ N
M
+ , (62)

of the numbers in (8) of the layers of the considered CDNN,

which are mapped onto each tier of the underlying LiFo exe-

cution platform. As detailed in [12], we note that, in practice,

the actual values of these vectors depend on a number of

design factors, like, for example, the topology of the consid-

ered CDNN, the number and placement of the correspond-

ing early exits, the setting of the decision thresholds {ηm}
in Fig. 10, the sets of examples used to train and validate the

CDNN, just to name a few. An in-depth analysis of the overall

topic of the optimized design of CDNNs with early exits is

presented in [12], together with numerical examples of the

vectors in (61) and (62) for some CDNNs of practical interest

(see, in particular, Tables 4, 5, and 6 of [12] and the related

texts). According to these mentioned results, we assume the

following default numerical settings for the compression and
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mapping vectors in (61) and (62) [12]:

−→cm0 = [0.045, 0.1, 0.3, 0.5, 0.71, 0.7, 0.7, 0.9, 0.9]T ,

(63)

and,

−−→
L2T 0 = [2, 3, 4]T . (64)

They refer to a suitably optimized version of the standard

AlexNet [48] with 3 early exits, trained over the SVHN

dataset2 and, then, running over a 3-tier LiFo platform (see

[12] for more details).

Finally, the default setting of the M -dimensional (with

M = 3, our setting) vector
−→
T

(EXIT )
0 of the per-tier maximum

allowed inference times in Eq. (41b) is:

−→
T

(EXIT )
0 = [0.30, 0.35, 0.40]T (s), (65)

with the corresponding default setting of the (minimum) slot-

duration TS equal to 1.0 (s).

2) CONSIDERED BENCHMARK SOLUTIONS

An examination of the related work of Section II points out

that the overall topic of the optimized execution of CDNNs

with early exits over multi-tier Fog platform under constraints

on the per-exit inference delays is quite new, so that no

specific algorithms for the related problem of the adaptive

resource allocation appear to be still available in the open

literature. Hence, on the basis of this consideration, the per-

formance of the LiFo technological platform of Fig. 3 under

the proposed resource allocation Algorithm 1 is compared

with the corresponding ones of two benchmarks solutions,

namely:

1) Static Maximal Solution (SMS): under the SMS, all

available computing-plus-networking resources are

held fixed at their corresponding maximal allowable

values, so that, by definition, the resource alloca-

tion vector
−→
X (SMS) returned by SMS coincides with

the maximal one
−→
X (MAX ) in (43). In the following,

the energy consumed by the SMS will be labeled with

the upper-script (•)(SMS);
2) Only Switched Solution (OSS): under the OSS, all Fog

nodes at the intermediate tier #1 – tier #(M − 1) of

Fig. 3 are replaced by conventional network switches,

which perform data forwarding but do not execute

any processing on the forwarded data. Hence, under

the OSS setting, only the remote Cloud, at the top of

Fig. 3, performs data processing and, then, may deliver

inference data. In the following, the energy consumed

by the OSS and the returned resource allocation vector

will be labeled with the upper-script (•)(OSS).

2Available at: http://ufldl.stanford.edu//housenumbers

3) CONSIDERED FOG TOPOLOGIES

According to the hierarchically organized structure of the

LiFo platform of Fig. 3, we plan to test the corresponding per-

formance by considering two broad families of tree-shaped

Fog topologies.

The first family is composed of maximally-connected

binary-tree topologies of depthM . By definition, amaximally-

connected tree of depthM : TR(MXC)(2,M ) is a directed binary

tree which retains the following topological properties: (i)

it is composed of M ≥ 2 tiers, which are progressively

numbered from the bottom to the top; (ii) each not-leaf node

has 2 children and a single node (i.e., the root node) is present

at the upper-most tier #M ; and, (iv) each node at tier #m

is connected to all nodes at tier #(m + 1), i.e., the tree is

maximally connected. As an example, Fig. 13a illustrates

the topology of TR(MXC)(2, 3). We anticipate that this fam-

ily of maximally-connected tree-shaped topologies will be

employed for testing the performance sensitivity of the LiFo

paradigm on the depth M of the implemented technological

platform of Fig. 3.

The second family of test topologies is composed of bal-

anced r-ary trees of depth M . By definition, a balanced r-

ary tree of depthM : TR(BAL)(r,M ) is a directed tree featured

by the following properties: (i) it is composed of M ≥ 2

tiers, which are progressively numbered from the bottom to

the top; (ii) each not-leaf node has r ≥ 2 children and a

single node (i.e., the root node) is present at the upper-most

tier #M ; (iii) each node at tier #m is connected to a single

node at tier #(m + 1); and, (iv) all nodes at tier #m, with

2 ≤ m ≤ M , share a same number of input edges, i.e., the

topology is balanced. For illustrative purposes, Fig. 13b

shows the topology of TR(BAL)(4, 3). We anticipate that this

family of balanced tree-shaped topologies will be employed

for testing the performance sensitivity of the LiFo paradigm

on the Communication-to-Computing Ratio (CCR)3 of the

implemented LiFo platform.

Finally, we note that, by default, the size of the input

workload to be processed by the LiFo platform of Fig. 3 is

set to V0 = 6 (Mb), and it is assumed to be even split over the

Fog nodes at tier #1 of the implemented LiFo topology.

The last column of Table 9 in Appendix A recaps the

default settings of the main parameters used in the carried

out simulations.

B. TESTING THE LIFO ADAPTIVE CAPABILITY

The twofold goal of this section is to numerically check the

sensitivity of the tracking capability of the proposed LiFo

resource-allocation iterations in (53) and (54) on both the

hyper-parameters σ and A0 in Eq. (57), as well as to evaluate

their corresponding convergence time (in multiple of the

iteration index k).

3In our setting, this is defined as the ratio of the number of the edges
(#edges) of the considered tree to the corresponding number of nodes
(#nodes), that is CCR , #edges/#nodes.
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FIGURE 13. (a) Topology of TR(MXC)(2, 3); (b) Topology of TR(BAL)(4, 3).

Towards this end, we have simulated an event-driven

dynamic operating scenario in which the size V0 of the

input workload to be processed by the LiFo platform of

Fig. 3 undergoes unpredicted up/down changes at the iteration

indexes k = 1, 70, 140, 210 and 280, according to the

following piece-wise constant pattern:

V0(k = 1) = 6 (Mb) → V0(k = 70) = 9 (Mb)

→ V0(k = 140) = 6 (Mb) →

→ V0(k = 210) = 4.5 (Mb) →

→ V0(k = 280) = 6 (Mb). (66)

After each change, Algorithm 1 reacts in an autonomousway

by re-starting the execution of the iterations in (53) and (54),

so to properly re-compute the components of the resource

vector
−→
X in (40).

The obtained dynamic behaviors of the total, computing

and networking energies E
(LiFo)
TOT , E

(LiFo)
COP and E

(LiFo)
NET returned

by Algorithm 1 under the Fog topology TR(MXC)(2, 3) of

Fig. 13a are shown in Figs. 14 and 15. In this regard, we note

that the plots of Fig. 14 (resp., Fig. 15) aim to check the per-

formance sensitivity of Algorithm 1 on the hyper-parameter

σ (resp., A0) in (57), and then, they are evaluated at fixed

A0 = 1.3×10−5 (resp., at fixed σ = 3.5) and for four values

of σ , namely σ = 0, 3.0, 3.5 and 3.8 (resp., for three values

of A0, namely A0 = 2.3× 10−5, 1.3× 10−5 and 8.5× 10−6).

An examination of the plots of Figs. 14 and 15 leads

to three main insights about the performance impact of the

hyper-parameters A0 and σ of Eq. (57). First, in Fig. 14,

values of σ positive and around 3.5 allow Algorithm 1 to

convergence within about 30 – 40 iterations after each envi-

ronmental change, so to nearly halve the corresponding con-

vergence time of the state-of-the-art approaches, which do

not perform any adaptive tuning of the parameters a
(m)
MAX ’s in

Eq. (57) (see the plots of Fig. 14 at vanishing σ ). Second,

the convergence time exhibited by the plots of Fig. 14 for

values of σ ranging over the simulated set: {3.0, 3.5, 3.8} are
nearly equal. Third, a comparative examination of the plots

of Fig. 15 shows that, after setting σ = 3.5, the residual

performance sensitivity of Algorithm 1 on the lower threshold

A0 in (57) is not very high, so that values of A0 ranging over

the interval: 8.0 × 10−6 – 2.5 × 10−5 are to be considered

almost equivalent.

Overall, two main conclusions arise from the carried out

comparative analysis. First, the performance sensitivity of the

resource allocation Algorithm 1 on the σ hyper-parameter in

(57) is significantly larger than the corresponding one on the

lower threshold A0 and vanishing values of σ strongly penal-

ize, indeed, the tracking capability of Algorithm 1. Second,

at least in the carried out tests, values of the sensitivity hyper-

parameter σ (resp., A0) in (57) strictly positive and around

3.5 (resp., around 10−5) appear to guarantee the best tradeoff

among the two contrasting requirements of fast response to

changes of the operating conditions and stable behavior in

the steady-state.

C. TESTING THE LIFO FAULT-TOLERANCE CAPABILITY

The twofold goal of this section is to: (i) check the reconfigu-

ration capability of the LiFo resource-allocation Algorithm 1

in the presence of unpredicted failure events of the underlying

technological platform of Fig. 3; and, (ii) evaluate the effects

of non-vanishing values of the sensitivity hyper-parameter σ

in (57) on the corresponding recovery time.

For this purpose, we have simulated a failure-affected sce-

nario in which nodes: FN (1, 2) and FN (2, 2) at tier #2 of the

topology of Fig. 13a sequentially fail and then resume at the
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FIGURE 14. Tracking capability of LiFo resource-allocation Algorithm 1 under the Fog topology of
Fig. 13a at fixed A0 = 1.3 × 10−5 and for σ = 0, 3.0, 3.5 and 3.8. The simulated setting is the one

of Section IX-B. (Top) Dynamic behaviors of E
(LiFo)
TOT

; (middle) Dynamic behaviors of E
(LiFo)
COP

; and,

(bottom) Dynamic behaviors of the E
(LiFo)
NET

.

FIGURE 15. Tracking capability of LiFo resource-allocation Algorithm 1 under the Fog topology of
Fig. 13a at fixed σ = 3.5 and for A0 = 2.3 × 10−5, 1.3 × 10−5 and 8.5 × 10−6. The simulated

setting is the one of Section IX-B. (Top) Dynamic behaviors of E
(LiFo)
TOT

; (middle) Dynamic behaviors

of E
(LiFo)
COP

; and, (bottom) Dynamic behaviors of the E
(LiFo)
NET

.

iteration indexes k = 1, 80, 160, 240 and 320 according

to the following pattern: (i) at k = 1, all nodes and links

of Fig. 13a are ON; (ii) at k = 80, the (1, 2)-th Fog node

of Fig. 13a fails, i.e., both the operating frequencies of its

main and auxiliary processors in Fig. 9 vanish; (iii) at k =
160, the (1, 2)-th Fog node resumes its normal operating
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conditions; (iv) at k = 240, the main and auxiliary processors

of the (2, 2)-th Fog node in Fig. 13 fail; and, finally, (v) at

k = 320, the (2, 2)-th Fog node turns to be operative. After

each change in the operating conditions, Algorithm 1 self-

reacts by re-computing the components of the resource vector
−→
X in (40), in order to suitably reconfigure the underlying

LiFo technological platform of Fig. 3, so to attempt to still

meet the constraints in (41b) on the inference times.

Fig. 16 illustrates the obtained dynamic behaviors of the

total and networking energies E
(LiFo)
TOT and E

(LiFo)
NET , as well as

the Lagrange multipliers λ
(LiFo)
1 and λ

(LiFo)
3 associated to the

first and last constraints on the inference times in (41b) for the

two cases of σ = 3.5 (i.e., the proposed solution; red curves)

and σ = 0 (i.e., the state-of-the-art solution; blue curves).

In all simulated cases, the lower threshold A0 in (57) is held

fixed at 1.0 × 10−5.

A comparative examination of these plots leads to two

main conclusions about the impact on non-vanishing values

of σ in (57) on the recovery time of the underlying simulated

technological platform. First, an examination of Figs. 16a and

16b shows that, after each failure-resume event, the proposed

solution in Eq. (57) at σ = 3.5 allows the convergences

of the (red-marked) energy curves within 30–40 iterations,

while 80 iterations are not sufficient for the convergence of

the corresponding (blue-marked) plots obtained at vanishing

σ (see the behaviors of the blue traces of Figs. 16a and

16b at the iteration indexes 80, 240 and 400). Second, this

conclusion is supported by the corresponding behaviors of the

Lagrange multipliers of Figs. 16c and 16d. In fact, a compar-

ative examination of the traces presented in Figs. 16c and 16d

confirms that the multipliers’ behaviors at σ = 3.5 are more

responsive to environmental changes than the corresponding

ones at vanishing σ , thus giving further support about the

actual effectiveness of the proposed dynamic relationship in

Eq. (57).

Overall, the main lesson stemming from the above perfor-

mance analysis is that the proposed adaptive tuning of the

parameters a
(m)
MAX ’s in Eq. (57) significantly improves, indeed,

the resilient capability of the LiFo technological platform

against failure events.

D. LIFO PERFORMANCE SENSITIVITY TO THE

COMPUTING-NETWORKING PARAMETERS

The goal of this section is twofold. First, we check the sensi-

tivity of the energy performance of the LiFo Algorithm 1 on:

(i) the size V0 in (10) of the per-slot workload to be processed;

(ii) the setting of the vector
−→
T (EXIT ) ,

[
T
(1)
EXIT , . . . ,T

(M )
EXIT

]T

in (41b) of the maximum allowable inference times; and, (iii)

the setting of the vector −→cm , [cm1, . . . , cmL−1]
T in (6)

of the per-layer compression factors. Second, we compare

the obtained LiFo energy performance to the corresponding

ones of the (previously defined) SMS benchmark, in order to

evaluate the actual energy saving arising from the adaptive

mechanisms implemented by proposed Algorithm 1. All the

results presented in Section IX-D refer to the test Fog topol-

ogy TR(MXC)(2, 3) drawn in Fig. 13a.

1) PERFORMANCE SENSITIVITY TO THE PER-SLOT INPUT

WORKLOAD

Table 2 provides the numerically evaluated steady-state

energy performance of the proposed LiFo Algorithm 1 and

the SMS benchmark under the default settings of Eqs. (63),

(64) and (65).

A column-wise comparative examination of Table 2

unveils three main performance trends.

First, as it could be expected, all the obtained energy values

increase for increasing values of the size V0 of the workload

to be processed during each slot time.

Second, the percent values reported in the 6th column of

Table 2 point out that the fraction
(
E
(LiFo)
NET /E

(LiFo)
TOT

)
of the

total LiFo energy E
(LiFo)
TOT consumed by the inter-tier network-

ing infrastructure of Fig. 3 is no negligible at low/medium

workload sizes, and it is higher than 10% for values of V0

up to 6 (Mb). This supports the basic design choice of the

proposed Algorithm 1 to perform the adaptive tuning of the

inter-tier transport rates, in order to dynamically optimize the

usage of the available networking resources.

Third, the percent values reported in the last column of

Table 2 show that the per-slot total energy E
(LiFo)
TOT con-

sumed by the LiFo platform under the (adaptive) Algorithm 1

remains a fraction of about 69% of the corresponding energy

E
(SMS)
TOT wasted by the (not adaptive) benchmark SMS, even

at workload sizes exceeding 10 (Mb). This means, in turn,

that the adaptive joint optimization of the networking-plus-

computing resources pursued by proposed Algorithm 1 trans-

lates into energy savings over 40%, even under operating

conditions featured by high input workload and stringent

requirements on the allowed inference times (see Eq. (65)).

2) PERFORMANCE SENSITIVITY TO THE PER-TIER DELAY

CONSTRAINTS

The goal of Table 3 is to allow a comparative analysis of the

sensitivity of the energy performance of proposed LiFoAlgo-

rithm 1 and the benchmark SMS under more or less stringent

constraints on the allowed per-tier inference delays. For this

purpose, the scalar components of the vector
−→
T

(EXIT )
0 in (65)

of the default values of the maximum allowable inference

time are scaled up/down as shown in the first column of

Table 3. The presented numerical results refer to the default

settings of Eqs. (64) and (65) at V0 = 6 (Mb).

An examination of Table 3 leads to four main conclusions

about the impact of the actual setting of the allowed inference-

time vector
−→
T (EXIT ) on the energy performance of the simu-

lated resource-allocation algorithms.

First, since, by design, SMS fixes at their maxima all

the available resources regardless of the actually enforced

constraints, it is expected that the corresponding consumed

energy E
(SMS)
TOT does not depend, indeed, on the required max-

imum inference time. This expectation is validated by the
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FIGURE 16. Reconfiguration capability of LiFo Algorithm 1 after unpredicted failure events under the Fog
topology of Fig. 13a at A0 = 1.0 × 10−5. Red (resp., blue) plots refer to the case of σ = 3.5 (resp., σ = 0).

The simulated setting is the one of Section IX-C. (a) Dynamic behaviors of E
(LiFo)
TOT

; (b) Dynamic behaviors of

E
(LiFo)
NET

; (c) Dynamic behaviors of the λ
(LiFo)
1

multiplier; and, (d) Dynamic behaviors of the λ
(LiFo)
3

multiplier.

TABLE 2. Energy sensitivity on the size of the per-slot input workload under the simulated setting of Section IX-D.

entries in the 2nd column of Table 3, which share, indeed,

a same value. However, since the proposed LiFo Algorithm 1

adapts, by design, the returned resource allocation vector in

(46) to the constraints in (41b) on the inference times, all the

corresponding LiFo energies in the 3rd, 4th and 5th columns

of Table 3 scale down for increasing values of the maximum

allowable inference time.

Second, the entries of the 6th column of Table 3 confirm

that the fractions of the total LiFo energy E
(LiFo)
TOT needed for

the support of the inter-tier network flows of Fig. 3 are no

negligiblewhen the imposed constraints on the inference time

are not too stringent, i.e., under operating conditions which do

not stress toomuch the corresponding computing resources of

the simulated LiFo platform.

Third, the above conclusion is further corroborated by the

entries of the last column of Table 3. They show that the

adaptive mechanisms equipping the proposed Algorithm 1

allow the LiFo total energy E
(LiFo)
TOT to remain less than 61%

than the corresponding energy E
(SMS)
TOT of the benchmark SMS,

even when the imposed maximum inference time is reduced

by 40% below the default setting of Eq. (65) (see the 6th row

of Table 3).

Finally, the numerical results shown in the last row of

Table 3 confirm the expectation that, when the constraints on
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TABLE 3. Energy sensitivity on the vector
−→
T (EXIT ) (s) of the maximum allowed inference times under the simulated setting of Section IX-D.

the allowed inference time become so stringent to push the

operating point of the LiFo platform towards the boundary

of the underlying feasibility region of Proposition 2, then

the resulting LiFo energy consumptions approach the corre-

sponding ones of the benchmark SMS, so to annihilate the

resulting energy savings (see the last entry of Table 3).

3) PERFORMANCE SENSITIVITY TO THE PER-LAYER

COMPRESSION FACTORS

Table 4 gives the energy consumption of proposed LiFoAlgo-

rithm 1 and the benchmark SMS when the scalar components

of the default per-layer compression vector −→cm0 in (63) are

scaled up/down by factors ranging from 2.0 to 0.1 (see the

first column of Table 4). All the results presented in Table 4

refer to the default settings of Eqs. (64) and (65) at V0 = 6

(Mb).

A comparative examination of the columns of Table 4

allows us to arrive at three main conclusions about the impact

of the early exits of the supported CDNN of Fig. 1a on

the energy performance of the corresponding Fog execution

platform of Fig. 1b.

First, the relationship in Eq. (9) points out that, at fixed size

V0 of the input workload, the corresponding size: VI (j,m),

1 ≤ j ≤ mm, 2 ≤ m ≤ M , of the workload to be processed

by the (j,m)-th Fog node decreases for decreasing values

of the scalar components of the corresponding compression

vector −→cm. This is the reason why all the energies presented

in Table 4 scales down passing from: −→cm = 2.0 × −→cm0 to:
−→cm = 0.1 × −→cm0. This is also true for the energy E

(SMS)
TOT con-

sumed by the (not adaptive) SMS, because also the execution

time in (21) (and then the corresponding dynamic energy in

(22)) scales down for decreasing values of workload to be

processed by Fog nodes.

Second, an examination of the 6th column of Table 4

unveils that the behavior of the LiFo networking-to-

computing energy ratio
(
E
(LiFo)
NET /E

(LiFo)
TOT

)
is no longer

monotonic for decreasing values of the components of the

compression vector −→cm, but it is, indeed, ∩-shaped. This

means that the ratio
(
E
(LiFo)
NET /E

(LiFo)
TOT

)
assumes larger values

around the default setting of −→cm in (63), while it tends to

decrease both for larger and smaller settings. A comparison

of the 3rd and 4th columns of Table 4 supports the conclusion

that this nomonotonic behavior is induced by the correspond-

ing behavior of the LiFo computing energy E
(LiFo)
COP , which

tends to dominate the total LiFo energy E
(LiFo)
TOT in both limit

cases of high and low settings of the compression vector −→cm.
Third, the last column of Table 4 points out that LiFo

Algorithm 1 allows to attain noticeable energy savings with

respect to the benchmark SMS, which range from: 89.4% at
−→cm = 0.1×−→cm0 (i.e., small setting of the compression vector
−→cm) to: 32.9% at −→cm = 2.0 × −→cm0 (i.e., large setting of the

compression vector−→cm). This leads, in turn, to the conclusion
that proposed LiFo Algorithm 1 is capable of effectively

capitalizing the reduction in the workload to be processed by

the Fog platform of Fig. 1bwhich is induced by the early-exit-

of-inference performed by the supported CDNN of Fig. 1a.

E. LIFO PERFORMANCE SENSITIVITY ON THE TOPOLOGY

OF THE FOG EXECUTION PLATFORM

The goal of this section is to numerically evaluate and assess

the sensitivity of the energy performance of the LiFo Algo-

rithm 1 on the structural properties of the topology of the

implemented Fog platform of Fig. 1b. For this purpose,

the maximally connected and balanced tree-shaped topolo-

gies presented in the first column of Table 5 have been

considered.

The 2nd, 3rd and 4th columns of Table 5 report the main

formal properties (i.e., number of nodes, number of edges and

resulting CCR) of the considered topologies, while the last

two columns specify the Layer-to-Tier mapping vector and

maximum inference-time vector under which each topology

is simulated.

In this regard, three remarks are in order. First, the Layer-

to-Tier mapping vector used for the simulation of each topol-

ogy has been optimized by applying the minimum-energy

mapping criterion developed on [12]. Second, since the con-

sidered topologies of Table 5 are composed of a variable

numberM of tiers ranging fromM = 3 toM = 5, we cannot
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TABLE 4. Energy sensitivity on the compression vector
−→
cm under the simulated setting of Section IX-D.

TABLE 5. Main topologic properties of the test topologies of Section IX-E and corresponding simulated Layer-to-Tier vector
−−→
L2T and maximum

inference-time vector
−→
T (EXIT ).

utilize a single setting for the vector
−→
T (EXIT ) of the maximum

allowable inference times. Hence, in order to carry out fair

energy comparisons, we pursued the unifying criterion to set

the maximum inference times of all intermediate tiers of the

simulated topologies to the default slot-duration TS = 1 (s),

while fixing at the default value of 0.4 (s) the inference time

of the corresponding upper-mostM -th tier (see the settings of

the
−→
T (EXIT )) vectors in the last column of Table 5). Third, all

the numerical results of this section refer to the default setting

in Eq. (63) at V0 = 6 (Mb).

1) ENERGY PERFORMANCE SENSITIVITY ON THE DEPTH OF

THE FOG TOPOLOGY

In order to check the sensitivity of the energy performance

of the LiFo Algorithm 1 on the depth M (i.e., number of

tiers) of the topology used for the implementation of the

Fog platform of Fig. 1b, we have considered the first three

topologies presented in Table 5. They refer to maximally-

connected binary trees of depth M ranging from 3 to 5. The

corresponding numerically evaluated energy consumptions

are given in Table 6.

A column-wise comparative examination of the entries of

Table 6 leads to three main remarks.

First, all the energy values presented in the 2nd, 3rd, 4th

and 5th columns of in Table 6 scale down for increasing

values of the depth M of the considered binary-tree topolo-

gies. This is due to the fact that, under the simulated topolo-

gies, both the numbers of computing nodes and transport

links increase for increasing values of M (see the 2nd and

3rd columns of Table 5). This allows a finer distribution of

the input workload over the computing nodes and network

links of the underlying execution platform, which, due to the

convexity of the adopted networking and computing energy

models (see Proposition 1), leads, in turn, to a reduction of

all involved energies.

Second, the percent values in the 6th column of Table 6

point out that the fraction
(
E
(LiFo)
NET /E

(LiFo)
TOT

)
of the total LiFo

energy E
(LiFo)
TOT consumed by the inter-tier networking infras-

tructure of Fig. 3 increases from 9.3% to 16.8% by passing

from the 3-tier topology TR(MXC)(2, 3) to the 5-tier topology

TR(MXC)(2, 5). This is due to the formal fact that the CCR of

TR(MXC)(2, 5) is about 3.8 times larger than the corresponding

one of TR(MXC)(2, 3), so that the TR(MXC)(2, 5) topology is

more communication expensive than the TR(MXC)(2, 3) one.

Third, the entries in the last column of Table 6 show that

the energy savings offered by the (adaptive) LiFoAlgorithm 1
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TABLE 6. Energy sensitivity on the depth of the considered binary-tree Fog topologies under the simulated setting of Section IX-E.

TABLE 7. Energy performances under 2-ary (i.e., tall), 3-ary (i.e., normal) and 4-ary (i.e., fat) tree-shaped Fog topologies and the simulated setting of
Section IX-E.

TABLE 8. OSS-vs.-LiFo energy performance comparisons under binary Fog topologies of depth 3, 4 and 5, and the simulated setting of Section IX-F.

over the (not adaptive) SMS are quite substantial and, under

the simulated topologies, range over the interval: 86.2% –

87.8%.

2) COMPUTING-VS.-NETWORKING ENERGY

CONSUMPTIONS

The goal of the set of tests presented in this sub-section is to

numerically check and assess the LiFo energy performance

under a number of (r,M )-tree topologies which exhibit dif-

ferentwidth r and/or depthM , but share a (nearly) same value

of the corresponding CCR values. This is motivated by the

following two considerations.

First, the main disadvantage of deeper tree-shaped topolo-

gies is that they exhibit longer leaf-to-root paths. Hence,

under any fixed upper bound on the overall inference time,

it is expected that deeper tree-shaped topologies would

require higher per-connection inter-tier transmit rates, that,

in turn, would increase the dynamic parts of the per-

connection network energy in Eqs. (32) and (33). Hence,

deeper tree topologies are expected to consumemore network

energy.

Second, the main advantage of wider tree-shaped topolo-

gies is that they exhibit bigger numbers of tiers. Hence,

under a fixed number of layers of the CDNN to be

supported, wider tree-shaped topologies allow finer (i.e.,

more equalized) Layer-to-Tier mappings, that, in turn,

would reduce the average per-node processing workload

and then would decrease the dynamic parts of the per-

node computing energy in Eqs. (22) and (25). Hence, wider

tree topologies are expected to consume less computing

energy.

In order to numerically support these expectations and then

acquire insight into the resulting computing-vs.-networking

energy tradeoff, we have considered the last three topologies

of Table 5. They refer to balanced r-ary tree topologies with

r = 2, 3, 4, and depthM = 5, 4, 3, respectively. In this regard,

we observe that theCCR values of all the considered balanced

tree topologies are nearly the same. However, the nodes of the

binary (resp., 4-ary) TR(BAL)(2, 5) (resp., TR(BAL)(4, 3)) tree

topology are mainly placed along the vertical (resp., horizon-

tal) dimension, so that TR(BAL)(2, 5) (resp., TR(BAL)(4, 3)) is

an example of ‘‘tall’’ (resp., ‘‘fat’’) tree topology. An interme-

diate ‘‘normal’’ shape is retained by the 3-ary tree topology

TR(BAL)(3, 4) of Table 5.

Table 7 shows the obtained energy performance under the

default setting in Eq. (63) of the per-layer compression vector

at V0 = 6 (Mb).

A comparative examination of the columns of Table 7

unveils the multi-facet nature of the computing-vs.-

networking energy tradeoff and leads, indeed, to three main

conclusions.

First, according to the previously reported expectations,

the LiFo networking-to-total energy ratio
(
E
(LiFo)
NET /E

(LiFo)
TOT

)

scales down by passing from the ‘‘tall’’ TR(BAL)(2, 5) topol-

ogy to the ‘‘fat’’ TR(BAL)(4, 3) one, while an opposite trend

is exhibited by the corresponding computing-to-total energy
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ratio
(
E
(LiFo)
COP /E

(LiFo)
TOT

)
(compare the 6th and 7th columns of

Table 7).

Second, all the energies reported in the 2nd, 3rd, 4th and

5th columns of Table 7 exhibit a no-monotonic ∪-shaped
behaviors when we move from the ‘‘tall’’ TR(BAL)(2, 5)

topology to the ‘‘fat’’ TR(BAL)(4, 3) one. This supports the

conclusion that the best tradeoff among the computing-vs.-

networking energy consumption is, indeed, attained under the

‘‘normal’’ TR(BAL)(3, 4) topology.

Finally, the decreasing trend of the numerical results

reported in the last column of Table 7 points out that

the energy saving attained by the (adaptive) LiFo Algo-

rithm 1 over the (not adaptive) benchmark SMS (substan-

tially) increases by passing from ‘‘tall’’ topologies to ‘‘fat’’

ones.

F. HOW MUCH COMMUNICATING-WHILE-COMPUTING IS

GOOD? LIFO-VS.-OSS PERFORMANCE COMPARISONS

A key feature of the proposed LiFo technological platform is

that the all Fog nodes at the intermediate tier #m, 1 ≤ m ≤
(M − 1), are equipped with both computing and networking

capabilities (see Fig. 9). As a consequence, they may: (i)

process the received workload; (ii) early exit part of it; and,

(iii) forward the remaining part toward higher-tier Fog nodes.

This enables early-exit-of-inference, which, reduces, in turn,

the size of the input workload to be processed by the full M -

tier execution stack of Fig. 1b. However, since nothing is for

free, the computing energy in Eqs. (22) and (25) required by

themain and auxiliary processors equipping each Fog node of

Fig. 9 add to the corresponding receive and transmit network

energy in Eqs. (32) and (33).

Therefore, the following crucial question naturally arises:

• how much communicating-while-computing is really

energy saving?

To address this question, we have implemented the (pre-

viously introduced) benchmark OSS. It aims at emulating a

traditional multi-tier switched network infrastructure for the

support of remote Cloud applications, in which all the Fog

nodes at the intermediate tiers tier #m, 1 ≤ m ≤ (M − 1),

of the execution platform of Fig. 1b are replaced by network

switches that perform only workload forwarding. Hence,

under the benchmark OSS, we have, by design, that: (i) only

the remote Cloud at the upper-most tier #M is equipped with

computing capability; (ii) intermediate early exits are no

longer present; and, then, (iii) all the input workload flows

over the full stack of Fig. 1b from tier #1 to tier #M .

In order to carry out fair performance comparisons,

the benchmark OSS is simulated under the following setting:

(i) the computing capacity of the OSS Cloud node equates

to the aggregate computing capacities of all LiFo Fog-plus-

Cloud nodes; (ii) the aggregate networking capacity of the

OSS equates to the corresponding ones of the competing LiFo

platform; and, (iii) the maximum inference time at the OSS

Cloud node equates to the corresponding value 0.4 (s) allowed

the corresponding LiFoCloud node. Finally, we point out that,

in order to carry out fair performance comparisons, the pro-

posed Algorithm 1 has been still applied for attaining the

optimized adaptive tuning of all computing-plus-networking

resources available under the benchmark OSS.

Table 8 shows the numerically evaluated LiFo-vs.-OSS

energy performance under the maximally-connected binary-

tree topologies of Table 5. The presented results refer to the

default setting in (63) of the per-layer compression vector at

V0 = 6 (Mb).

An examination of Table 8 allows us to unveil three main

trends regarding the OSS-vs.-LiFo energy performance.

First, the entries of the 2nd column of Table 8 point

out that the networking-plus-computing total energy E
(OSS)
TOT

wasted by the benchmark OSS increases by increasing the

depth of the simulated Fog topologies, that is, by passing

from TR(MXC)(2, 3) to TR(MXC)(2, 5). We have numerically

ascertained that this trend is due to the increment of the

corresponding number of switches of the simulated OSS

networks, which, in turn, induces companion increments in

the corresponding OSS network energy (see the 3rd and 4th

columns of Table 8).

Second, an opposite trend is exhibited, indeed, by the total

energy E
(LiFo)
TOT wasted by the Fog-based LiFo platform, which

decreases passing from TR(MXC)(2, 3) to TR(MXC)(2, 5). This

is due to the fact that, since Fog nodes are equipped with

computing capabilities under the LiFo paradigm, the number

of computing nodes increments from 7 to 31 by passing from

TR(MXC)(2, 3) to TR(MXC)(2, 5). This increment allows a finer

per-tier distribution of the overall workload over the available

computing nodes, which, in turn, leads to a reduction of the

resulting total energy E
(LiFo)
TOT .

Finally, the percent values of the ratio
(
E
(LiFo)
TOT /E

(OSS)
TOT

)

given in the last column of Table 8 point out that the energy

savings offered by the Fog-based LiFo paradigm over the

traditional Switch-basedOSS one are, indeed, noticeable, and

may reach 88%–89% under deep tree topologies (see the last

entry of 6th column in Table 8).

Overall, the final lesson arising from the carried out

analysis is that communicating-while-computing is, indeed,

a (very) good strategy for attaining energy savings.

X. CONCLUSION AND HINTS FOR FUTURE RESEARCH

The incoming convergence of the Deep Learning and Fog

Computing paradigms is enabling the real-time and energy-

efficient inference of aggregate volumes of data gener-

ated by spatially-scattered and resource-limited IoT devices.

Motivated by this consideration, in this article, we focused

on the optimized design and validation of LiFo, a virtualized

Fog-based multi-tier technological platform for the energy-

efficient and delay-constrained execution of the inference

phase of a novel family of Deep Neural Networks, i.e., the

so-called Conditional Deep Neural Networks with early exits.

Specifically, after designing the main building blocks and

associated virtualized functionalities of the LiFo paradigm,

we develop a framework for the joint allocation and
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TABLE 9. List of the main parameters, their meaning/role, measuring units and simulated default values.
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TABLE 9. List of the main parameters, their meaning/role, measuring units and simulated default values.

re-configuration of the available computing-plus-networking

resources. The final goal is to allow the resulting LiFo tech-

nological platform to quickly self-detect (typically, unpre-

dictable) environmental changes and promptly self-react

them. The sensitivity of the energy-vs.-inference delay per-

formance of the designed LiFo platform on a number of

system parameters is numerically checked and comparedwith

the corresponding ones of some state-of-the-art benchmark

solutions under various IoT-oriented operative scenarios.

Being the era of the Deep Learning-Fog Computing con-

vergence just incoming, we think that the results of this article

are only the tip of the iceberg, and, then, they could be

amenable of further developing along (at least) four main

research directions.

First, Federated Learning (FL) is emerging as an interest-

ing paradigm for training complex Deep Neural Networks

on the basis of heterogeneous data-sets generated on-line by

spatially-distributed IoT devices [49]. Therefore, how exploit

the spatial-scaling and data-aggregation capabilities natively

supported by the proposed LiFo paradigm for performing the

real-time FL of CDNNs with early exits in an asynchronous

and energy-efficientwaymay be a first research line of poten-

tial interest.

Second, in the stack topology in Fig. 1a, the here

considered CDNNs with early exits could be augmented by

inter-layer feedback connections, so to give arise to recurrent-

type CDNNs for the effective mining of time-correlated data

sequences [6]. How generalize the proposed LiFo technolog-

ical platform of Fig. 3 for the support of recurrent CDNNs

with early exits may be a research topic of practical interest.

A third possible research line stems from the considera-

tion that the envisioned 6G communication paradigm would

adopt massive numbers of terminal antennas which would

operate in the (up to date nearly unexplored) Terahertz band

[50]. Hence, generalizing the networking energy models of

Section V for accounting for the effects of spatial coding and

multiplexing [51] operating over Terahertz communication

channels may be a third valuable research line.

Forth, the ultimate goal of the emerging paradigm of

the so-called Social IoT (SIoT) is to make scalable (very)

large IoT networks through the self-establishment and self-

management of suitable inter-thing social relationships [52].

How effectively exploiting the developed LiFo technological

platform for performing in real-time the mining operations

needed to discover the inter-thing social networks featuring

the SIoT paradigmmay be a further research topic of potential

interest.

Overall, the final message of this article is: the Learning-

in-the-Fog era is knocking at the door. Please, come in!

APPENDIX A

TAXONOMY AND DEFAULT SIMULATED SETTING

Table 9 details the main symbols used in the paper, their

meaning/role, measuring units and simulated default values.

These last are quite typical of the here considered Fog-based

settings [33], [37].

APPENDIX B

PROOF OF THE LOP CONVEXITY

The proof of Proposition 1 of Section VII uses some auxiliary

formal results, which are of own interest and are presented by

the following Lemmas 1 and 2.

Lemma 1 (On the Convexity and Monotonic Behavior of

the Per-Exit Inference Times):

a) Each per-node execution time TEXE (j,m), 1 ≤ j ≤ mm,

1 ≤ m ≤ M , in (16), (16.1) is a jointly strictly convex

and decreasing function in the involved optimization

variables fjm, f̃jm and Rm;

b) each inference time function T
(1,m)
EXE , 1 ≤ m ≤ M ,

in (18) is jointly convex and not increasing in the scalar

components of the compound resource vector
−→
X in (40).

Proof:

a) Since the function f (y) , 1/y, y ≥ 0, is strictly convex

and decreasing in y, each per-node execution time in

(16) and (16.1) retains, by design, the same properties,

because it is a linear superposition with nonnegative

coefficients of strictly convex and decreasing compo-

nent functions.

b) The max function is convexity preserving and not

decreasing with respect to its arguments [43]. Hence,

being the summation of multiple max functions, each

inference time in Eq. (18) is jointly convex in
−→
X and

does not decrease for increasing values of each scalar

component of
−→
X . However, T

(1,m)
EXE in (18) is not jointly

strictly convex and/or strictly decreasing with respect to

the scalar components of
−→
X , because T

(1,m)
EXE does not
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depend, indeed, on the subset of optimization variables:{
fjk , f̃jk ,Rk

}
for k ≥ m+ 1.

�

Lemma 2 (On the Convexity of the Computing and Net-

work Energies): Let us assume that all the γ ’s and ζ ’s expo-

nents present in the power models of Eqs. (20), (21), (28)

and (33) are equal or larger than 2. Hence, all the main-

auxiliary computing and receive-transmit network energies in

Eqs. (22), (25), (32) and (33) are jointly convex in the scalar

components of the compound resource vector
−→
X in (40).

Proof: The proof directly follows from the following

three formal properties:

1) Lemma 1.b guarantees that the Cloud inference time

T
(1,M )
EXE is jointly convex in the components of

−→
X (see

Eq. (18) with m = M );

2) the power-function g(y) , ya−1, y ≥ 0, is convex in y

for each exponent a ≥ 2; and,

3) any linear combination with nonnegative coefficients

of jointly convex functions is still jointly convex [43].

�

Afterwards, the proof of Proposition 1 directly follows

from the following two observations.

First, each nonlinear constraint in (41b) is jointly convex

in the involved optimization variables by Lemma 1.b. Sec-

ond, under the assumption of Proposition 1 on the values of

the exponents γ ’s and ζ ’s present in the power models of

Section V, the resulting objective function ETOT in (41a) is

jointly convex in the scalar components of the vector variable
−→
X in (40). This is due to the fact that Lemma 2 guarantees that

ETOT is the summation of jointly convex energy functions (see

the defining relationships in Eqs. (36), (37) and (38)).

The proof of Proposition 1 is now completed.
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