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Leonardo and Theoretical  
Mathematics
Abstract. Leonardo’s mathematical notes bear witness to a 
work in progress and allow us to look directly into the mind 
of the writer. In Leonardo we find two of the three 
fundamental classical geometric problems: the duplication of 
the cube and the quadrature of the circle. While Leonardo is 
extremely familiar with two-dimensional geometry 
problems, and proposes playful graphic exercises of adding 
and subtracting polygonal surfaces of all kinds, he is still 
unable to solve the problem of the duplication of the cube. 
Numerous pages testify of the attempt to rise above planar 
geometry and reach the realm of the third dimension, but 
Leonardo always bumps against the limits of quantity 
calculation possibilities of his age. 

Introduction 

Leonardo came to the study of mathematics rather late in life. We know from Giorgio 
Vasari that he attended in his youth, as any student of his time, the scuola d’abbaco, where 
he is presumed to have learned the bases of arithmetic and geometry. Vasari also reports 
that he was so clever that he did not attend the school for more than a few months, and 
soon left because he used to argue with the teacher, who was not able to give satisfactory 
answers to his objections [Vasari 1991: 557-558].  

We must believe the biographer when he tells us that Leonardo quickly decided to leave 
the school, but we cannot agree with him when he says that he did so because he was too 
good a student and would not increase his knowledge in this popular institution. Until  he 
met Luca Pacioli in Milan, whom he accepted as a teacher and a master, Leonardo was far 
from being a brilliant mathematician. Looking through the various folios of the early 
codices we can see that he was unfamiliar with arithmetic, and very clumsy in 
computational operations involving fractions, both in multiplication and division. He 
would not believe, for instance, that the division of a number (or fraction) by a number (or 
fraction) inferior to one would give a result superior to the original number. He also used 
to make basic mistakes when multiplying large numbers including zeros.  

The zero symbol, 0, had been introduced into the Western arithmetic annotation 
system, together with the full series of Arab numerals – 1,2,3, … 9 – by Leonardo of Pisa, 
better known as Leonardo Fibonacci, nearly three full centuries earlier, in 1202, with the 
publication of his famous Liber Abaci which at the time of Leonardo da Vinci’s youth was 
still the main textbook on which teachers relied for their lessons.

Leonardo da Vinci and Luca Pacioli met in Milan in 1496, at the Court of Ludovico 
Sforza. Leonardo had been in the Duke’s service since 1482, and he was 44 years old when 
he first met Luca Pacioli, who had been called by the Duke to teach mathematics. Pacioli 
himself was 51, and had just published two years before, in 1494, his Summa de aritmetica 
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geometria proportioni e proportionalità, which was for the most part a revisitation of the 
Trattato d’abaco written (but not published) by his own master, Piero della Francesca.  

The encounter with Pacioli marks a turning point in Leonardo’s life as regards the study 
of mathematics. Guided by his master and friend, he started a systematic study of 
theoretical mathematics, going from recent and contemporary publications back to classical 
sources and textbooks. It is clear that, just like every scientist of his period, he carefully 
studied the Elements of Euclid, and became familiar with all the classical geometrical 
problems.

We have at our disposal a fair number of architectural and mathematical treatises from 
the Renaissance period, but the preliminary research notes necessary for the compilation of 
those books were all lost. We only have the final compositions, printed and illustrated in 
order to offer a didactic edition. Leonardo, on the other hand, never wrote a proper treatise, 
but left to posterity a huge quantity of manuscript papers that can be considered as 
preliminary notes for books never written. His notes, although confused and somewhat 
disordered, are very precious to us because they testify to work in progress and allow us to 
look directly into the mind of the scientist. While real treatises only show the solutions to 
problems and the certified rules, in Leonardo’s manuscripts we find numerous questions 
that sometimes reach a conclusion, sometimes not, giving us valuable information as 
regards the process of mathematical research in the Renaissance period, covering a wide 
range of approaches, from graphic and arithmetic, to geometric and analytical.  

The duplication of the cube  

The first striking thing to notice is how at least two of the three fundamental classical 
geometric problems were still present in the minds of the scientists of Renaissance times: 
the duplication of the cube and the squaring of the circle.  

Leonardo put a lot of effort into trying to solve the problem of the duplication of the 
cube. This problem, according to the legend attached to it, is the most ancient example of a 
relationship between architecture and mathematics. The people of Delos were faced with 
an architectural conundrum concerning a religious monument. The oracle had told them 
to build an altar to Apollo twice as big as the previous one, which was of a cubic form. But 
what should the dimension of the side of the new cube be in order to obtain a cube twice 
the volume of the original one? After a first, wrong, attempt consisting in doubling the side 
of the cube, the architectural request was for mathematicians, who had not yet discovered 
the algebraic calculation of irrational quantities. Leonardo’s predilection for this specific 
problem surely comes from his obvious interest in three-dimensional geometry and 
stereometry. His many efforts to solve the problem go from somewhat ingenuous and 
empirical attempts, to the study of classical solutions, and follow different sorts of scientific 
research methodologies.

A graphic approach: Codex Arundel, folio 283v. Leonardo asks himself whether any kind 
of simple extension from two- to three-dimensional geometry exists (fig. 1).  

Can Plato’s theorem on the duplication of the square be extended to the duplication of 
the cube? 

Is the volume of a cube built from a double square twice the volume of a single unity 
cube?
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If the diagonal (or diameter) of a square with a side of 1 is the graphic visualisation of 
the incommensurable quantity of the square root of two, is the diagonal of a cube with a 
side of 1 the graphic answer to the irrational number equal to the cube root of 2?  

Fig. 1. Leonardo da Vinci, Codex Arundel, fol. 283v. Graphic and arithmetical 
approaches to the duplication of the cube, starting from the theorems of Plato and 

Pythagoras

The answers are no. The diagonal of the cube is equal to the square root of 3, and not 
the cube root of 2, which is a smaller number than the square root of 2.  

An arithmetic approach: Codex Arundel, folio 283v. Following another idea, Leonardo 
then tries to extend Pythagoras’s theorem on right-angled triangles from squares to cubes. If 
the sum of the squares of the sides of these triangles is equal to the square of the 
hypotenuse, can the same apply to cubes?  

Taking the simplest example, the 3-4-5 triangle (the so-called “Egyptian triangle”), the 
calculation quickly appears disappointing.  
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More generally, is there a cubic number that can be split into the sum of two lesser 
cubic numbers? Would those three numbers lead to the discovery of a particular family of 
triangles?

The answer is no. The equation nnn
cba  does not have a solution in integers for 

2n . But this theorem had yet to be demonstrated. It was not before 1753 that Leonhard 

Euler demonstrated that the equation 333
cba  does not have a solution. And the final 

demonstration of the so-called “Fermat’s third theorem”, which is that the general equation 
nnn
cba  does not have a solution for 2n , was given by Andrew Weil in 1993.  

A stereometric approach: Codex Arundel folios 223v and 223r.

Fig. 2. Leonardo da Vinci, Codex Arundel, fol. 223 v. Stereometric approach to the 
duplication of the cube 

Other pages testify to a strenuous effort to solve the problem of Delos according to a 
stereometric approach. Instead of doubling a cube Leonardo reverses the problem and tries 
to divide one cube into two smaller and equal ones. He starts with a cube that he divides 
into 27 small units – which is easy because it was “made from the cube root of 27”, equal 
to 3 – but 27 is an odd number whose units cannot be rearranged into two equal small 
cubes. So, Leonardo takes another cube made of 8 small cubic units and tries to work out 
how to arrange four of these units in a cubic form. In the meantime, he tries to find out if 
there is a direct proportional relationship between the surface and the volume of a solid. Is 
the envelope of a solid proportional to its volume? This eventuality could be a convenient 
solution to bring back the problem from three-dimensional geometry to two-dimensional, 
but he quickly understands that the idea is erroneous. The negative conclusion comes on 
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the back of the same folio, which contains the affirmation “…so don’t use this science of 
cubes according to their surfaces but according to their bodies, because a same quantity has 
different surfaces of infinite values… equal surfaces don’t always contain equal bodies…”

So going back to the 8-unit cube, Leonardo wonders: “ if I have a cube made of eight 
cubes, I made it from the cube root of eight… if the cube root of 27 is 3, which is the root 
of 8?”

Another arithmetic approach: Codex Atlanticus, folio 161r. Finding an approximate value 
for the cubic root of 8 would not have solved the problem of the duplication of the cube 
anyway, nor the reverse corollary, its division into two. Only the determination of an 
approximate value of the cubic root of 2 would have given an arithmetical solution to this 
mathematical problem (fig. 3).  

Fig. 3. Leonardo da Vinci,Codex Atlanticus, folio 161r. Arithmetical approximation: the value of 
cube root of 2 is close to 5/4 

In the published mathematics books of Leonardo’s times (Summa de aritmetica 
geometria proportioni e proportionalità by Luca Pacioli, etc…), whereas the value of  had 
long been considered almost equal to 22/7, and square root of 2 nearly equivalent to 7/5 
(or 14/10), the cubic roots, which are not equal to a round number, such as the cube root 
of 27 or 64, are not approximated by a fraction, but remain as “cubic root of x” and the 
authors do not give estimated values for them.  

Leonardo reached an acceptable approximation for the cube root of 2. Successive 
calculation attempts lead him to conclude that a cube of a 5-unit side has a volume close to 
twice that of a cube of a 4-unit side. 125/64 is accepted as a good approximation of 128/64 
= 2.  

5/4 can therefore be considered a close approximation of the cube root of 2, which can 
consequently be adopted from then on for the practical purposes of three-dimensional 
metrical geometry (fig. 4). 
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Fig. 4. Evidence of ancient approximation to the irrational value of cubic root of 2: 
the cubic Greek bricks of sides 4 and 5 (tetradouron and pentadouron) mentioned by 
Vitruvius in De Architectura, bk. II, chap. 3, drawn by Andrea Palladio for Daniele 

Barbaro’s Renaissance translation and commentary of Vitruvius (1556) 

A classical geometric approach: Codex Forster I, folio 32. In addition to looking for his 
own solutions to the duplication of the cube, Leonardo also studied the classical solutions 
of the ancient Greek mathematicians, probably guided by Luca Pacioli, who was a scholar 
of Euclid. Evidence of this can be seen in the carefully drawn interpretation of Apollonius’s 
method for the Delian problem (fig. 5).  

Fig. 5. Leonardo da Vinci, Codex Forster I, folio 32. A classical geometrical approach to the 
duplication of the cube, from Apollonius’ method 

Hippocrates of Chios had reduced the problem of the duplication of the cube to the 
problem of finding two mean proportionals between two straight lines representing two 
arithmetical magnitudes.  

The three most famous answers to the query are the work of three mathematicians of 
the Platonic era: Archytas, Eudoxus and Menaechmus. These solutions were followed by 
several others, including one attributed to Apollonius that is particularly simple both 
conceptually and graphically. Apollonius’s method is not among the two classic solutions 
that Vitruvius mentions in his treatise, and that Barbaro was to illustrate in his Renaissance 
commentary of Vitruvius, adding Nicomede’s proposal. This method is derived from 
Euclid, and more precisely from Book 2, last proposition: from a given rectangle, find an 
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equivalent square; or on the other way round: from a given square, find the equivalent 
rectangle having a given base (fig. 6). 

Fig. 6. Apollonius’s solution to the duplication of the cube. Drawing by the author 

The demonstration runs as follows: if the two initial straight lines (A and B) are 
assembled to form two adjacent sides of a rectangle, a ruler must be placed on the opposite 
vertex of that parallelogram, and swung around the pivot thus formed until it bisects two 
lines extending out from the initial sides of the rectangle at two points that are equidistant 
from the rectangle’s center. The equidistance is verified – and demonstrated – by drawing 
an arc traced with a compass whose needle is placed at the center of the rectangle: i.e., the 
intersection point of its diagonals. The values of the two intervals thus obtained (X and Y) 
between the sides of the rectangle and the intersection points will be the two sought-after 
mean proportionals (fig. 7). 

Fig. 7. Leonardo da Vinci, Codex Arundel, f. 223v. Leonardo’s copy of a classical two-dimensional 
graphic explaining Apollonius’s solution 

In accordance to the Greek tradition of mathematical sketches, the diagram drawn by 
Apollonius to illustrate his demonstration is extremely schematic and two-dimensional: it 
represents the partial orthogonal projection of volumes on a plane parallel to one of their 
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faces. It can be considered to be either a top view – ichnographia – or a front view – 
orthographia. The rectangle seen in the diagram is the face of a parallelepiped whose depth 
is equal to its width: a prism with a square base (invisible on the figure because of its 
perpendicularity to the drawing plane), and a given height. Apollonius’s demonstration can 
be understood with the help of the figure only if the reader of the image is able to interpret 
it correctly by substituting the missing information regarding the third dimension with a 
mental procedure that will complete the message. Leonardo, while studying and sketching, 
added the third dimension, transforming the figure in a perspective (axonometric?) drawing 
in order to ease comprehension (see fig. 5).  

Leonardo’s drawing shown in Codex Atlanticus fol. 588 r (fig. 8) illustrates the case in 
which the cylinder is a double cube, and makes a discovery when noticing (probably by 
chance) that BF is equal to BE. This implies that the geometric construction can be 
reduced to a very quick and easy manipulation of the single straightedge (with the very 
slight support of a compass), and represents an important step towards the simplification of 
the solving of this problem, which has inspired the most sophisticated inventions and 
construction of heavy mechanical drawing tools since antiquity. Leonardo’s method makes 
it possible to skip Apollonius’s mechanical test of the simultaneous line balancing on point 
A, and arc drawing with center in M, which Leonardo judged to be imprecise and dubious, 
with a result that can only be obtained through faticoso negozio, “tiring effort”.

Fig. 8. Leonardo da Vinci,Codex Atlanticus, folio 588 r. Leonardo’s addition to Apollonius’s solution 

Simplification means divulgation and popularization. The graphic representation of this 
unknown and incommensurable quantity of the cube root of 2 has become as easy as – for 
instance – the construction of a pentagon inscribed in a circle. But Leonardo admits to not 
being able to draw an explanatory theory from his own finding, and this is why we may 
suppose that he reached it in a totally empirical way. Scientific theoretical demonstration is 
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not Leonardo’s specialty. Investigation and experimentation tend to stop when a discovery 
is made, in hope and haste to make another. The caption next to the figure in Codex
Atlanticus shown in fig. 8 says: “If you will tell me for what reason the half diameter of the 
circle fits six times into its circumference and why the diagonal of the square is not 
commensurable to its side, I shall tell you why the straight line that goes from the upper 
vertex of one of the two joined squares to the center of the second square shows us the cube 
root of the two cubes reduced in a single one”. 

The squaring of the circle  

Leonardo also spent a lot of time trying to solve a second classical problem: the squaring 
of the circle. One day he even claims to have reached a solution: on Codex Madrid II, folio 
112r we read, “the night of St Andrew, I finally found the quadrature of the circle; and as 
the light of the candle and the night and the paper on which I wrote were coming to an 
end, it was completed; at the end of the hour.” But the solution is not there…  

Fig. 9. Leonardo da Vinci, Codex Atlanticus, folio 471. Squaring the circle, graphic research 

Leonardo’s approach to the attempt of squaring the circle is obviously inspired by that 
of Archimedes, even if it is not clear whether it is by direct reading or only by second-hand 
knowledge. In any case, he remained unsatisfied with the approximate ratio between the 
circumference and the diameter as 22/7. Therefore he tries to take this approximation 
beyond the 96-sided polygon, in an attempt to bring the difference of areas between circle 
and polygon to be as small as the “mathematical point”, which has no quantity. This 
research generates an enormous quantity of sketches that show an infinite variety of 
decorative shapes (Codex Atlanticus, fol. 471, fig. 9). Scientific research turns into a never-
ending, playful,l graphic game. Leonardo intended to write and publish a treatise in order 
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to make public his discovery, and its title would have been De Ludo Geometrico. This 
methodology does not lead to a satisfactory solution, or even to any progress towards a 
result, but the value of his effort lies in this attempt at extension ad infinitum.  

Leonardo’s contribution to mathematic research  

It is in the realm of three-dimensional geometry that Leonardo achieved his greatest 
result: the determination of the location of the center of gravity of a pyramid.  

A mechanical approach: codex Arundel, folio 218 v. The elevation from two- to three-
dimensional geometry starts with the study of Archimedes’ book, On the equilibrium of 
planes. Leonardo must have felt at ease with Archimedes’ experimental method, where the 
planes are considered to have a weight and are hung at the end of levers and ropes in order 
to determine the exact position of their center of gravity. Archimedes deals with planes, 
especially triangles, while Leonardo extends the experiment to solids, and first of all to the 
regular tetrahedron. Knowing from previous studies the position of the centers of gravity of 
the faces of the solid, he finds out that “the center of gravity of the body of four triangular 
bases is located at the intersection of its axes and it will be in the 1/4 part of their length” 
(fig. 10).  

Fig. 10. Leonardo da Vinci, Codex Arundel, fol. 218v. The centre of gravity of a pyramid 

The generalization of this discovery leads to the statement that “the center of gravity of 
any pyramid – round, triangular, square, or of any number of sides – is in the fourth part of 
its axis near the base.” 

On Codex Arundel folio 123v there is an additional theorem concerning the 
tetrahedron:

the pyramid with triangular base has the center of its natural gravity in the 
segment which extends from the middle of the base [that is the midpoint of 
one edge] to the middle of the side [that is, edge] opposite the base; and it is 
located on the segment equally distant of the line joining the base with the 
aforesaid side.
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Conclusion

From this brief study of the works of Leonardo in the area of theoretical mathematics it 
appears that stereometry and solid geometry were the fields that best suited his inventive 
skills, and this is probably due to his skill in three-dimensional representation, which 
allowed him to obtain an exact visualization of the objects of his studies. All the folios of 
the various codices are full of perspective sketches that are not drawn in compliance to the 
recently established costruzione legittima, but rather following a spontaneous gift for 
representation that often generates some kind of pre-axonometric drawings rather than 
perspective ones.  

On a more general level, we may conclude that Leonardo contributed to mathematical 
and scientific research in the Renaissance period by demonstrating the power of the tool of 
three-dimensional representation as a research device as well as a persuasive instrument. 
The well-known series of drawings of the Platonic – and non – solids that he made as 
illustrations for the book of his friend Luca Pacioli is simply one of the many examples of 
this.
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