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 Introduction 

 Association analysis is the preferred approach for 
identifying genes influencing complex traits, as linkage 
disequilibrium between genotyped markers and causal 
loci can now be detected at very fine scales  [1] . Simple 
analyses can be performed in contingency tables  [2] , but 
genetic data have complicating features that have moti-
vated a large number of novel methods. An important 
class of methods uses family-based designs, in which gen-
otypes are measured on subjects of interest and also on 
their relatives, typically their parents or siblings  [3] . These 
methods are robust to confounding by population strati-
fication, as they consider the association within but not 
between families. This is potentially important because 
gene frequencies can vary randomly between sub-popu-
lations that have different trait distributions  [4] . Further-
more, family-based designs allow the identification of 
parent-of-origin and maternal-fetal interaction effects 
 [5] . These methods have been very popular in recent 
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 Abstract 

 Missing data occur in genetic association studies for several 
reasons including missing family members and uncertain 
haplotype phase. Maximum likelihood is a commonly used 
approach to accommodate missing data, but it can be diffi-
cult to apply to family-based association studies, because of 
possible loss of robustness to confounding by population 
stratification. Here a novel likelihood for nuclear families is 
proposed, in which distinct sets of association parameters 
are used to model the parental genotypes and the offspring 
genotypes. This approach is robust to population structure 
when the data are complete, and has only minor loss of ro-
bustness when there are missing data. It also allows a novel 
conditioning step that gives valid analysis for multiple off-
spring in the presence of linkage. Unrelated subjects are in-
cluded by regarding them as the children of two missing 
 parents. Simulations and theory indicate similar operating 
characteristics to TRANSMIT, but with no bias with missing 
data in the presence of linkage. In comparison with FBAT and 
PCPH, the proposed model is slightly less robust to popula-
tion structure but has greater power to detect strong effects. 
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years, but the realization that large samples are needed to 
detect small effects, and the development of methods to 
adjust for population stratification, have led to a growing 
preference for population-based studies of unrelated sub-
jects. In that case, standard epidemiological methods 
such as logistic and linear regression can be used with 
little modification  [6] .

  Missing data occur in genetic association studies for a 
number of reasons. In family-based designs, it is not al-
ways possible to recruit all the required family members: 
for example, in late-onset disease it is often difficult to 
obtain both parents of an affected case. Another problem 
arises in haplotype analysis, as genotype data is usually 
observed without phase, leading to ambiguity in the hap-
lotypes of multiple loci  [7, 8] . Also, sporadic genotype 
failures may occur, or there is uncertainty in the geno-
type call. Although it is possible to restrict analysis to the 
complete data only  [9] , such an approach is likely to lose 
power in comparison with approaches that accommodate 
missing, or ambiguous, data. A number of such approach-
es are available for unrelated subjects, based on maxi-
mum likelihood using the EM algorithm, and are re-
viewed elsewhere  [10, 11] .

  In applying maximum likelihood to family-based de-
signs, there is a problem that a model for the missing data 
may be mis-specified, in particular by failing to allow for 
unobserved population stratification. For example, a 
common approach is to assume Hardy-Weinberg equilib-
rium (HWE) in order to reduce the number of model pa-
rameters, but this may not hold in a stratified population. 
Although this problem applies also to studies of unre-
lated subjects, robustness to a population model is a mo-
tivating property of family-based designs. Two approach-
es to this problem are in common use. Clayton’s method, 
implemented in TRANSMIT  [12] , uses a weighted score 
function in which the weights are calculated from an es-
timated distribution of the missing data. Although not 
completely robust to population stratification, this ap-
proach has good operating characteristics  [13]  and reduc-
es to the transmission/disequilibrium test  [14]  when the 
data are complete. The second approach uses a working 
distribution for the missing data to construct a score 
function that has expectation zero under the null hy-
pothesis, whatever the true distribution  [15–17] . This 
semi-parametric approach has recently been improved to 
allow the locally most efficient analysis, with an improved 
computational algorithm implemented in the PCPH soft-
ware  [18] . This method is always robust to population 
stratification, and its only potential disadvantage is that 
its optimality properties only hold locally to the null hy-

pothesis. In addition to these approaches, some other 
methods have been implemented based on full-likeli-
hood models for nuclear families, including TDTPHASE 
 [16] , FAMHAP  [19] , LAMP  [20]  and WHAP  [21] . These 
methods are not robust to population stratification even 
when the data are complete, owing to the forms of their 
likelihood functions, and will not be considered further 
here.

  Another problem in family-based association is that 
transmissions to multiple siblings cannot be treated as 
independent observations in the presence of linkage  [22] . 
Both FBAT  [9]  and TRANSMIT  [12]  approach this prob-
lem by treating siblings as independent and then using a 
robust variance estimate that treats each family as a clus-
ter of observations. However in this case TRANSMIT has 
been shown to be biased when there are missing data  [23] . 
Some methods have been proposed to jointly estimate pa-
rameters for linkage and association, allowing valid as-
sociation analysis in the presence of linkage, but none are 
entirely satistfactory. The APL  [23]  and QTDT  [24]  meth-
ods are limited by a rapidly increasing number of iden-
tity-by-descent parameters, as the sibship size increases, 
whereas the PSEUDOMARKER  [25]  and LAMP  [26]  
methods do not address the issue of population stratifica-
tion. Furthermore, multilocus analysis across unlinked 
regions seems problematical.

  This paper describes a general-purpose model for as-
sociation that can be used with nuclear families, unre-
lated subjects and combinations of the two, and address-
es some of the limitations of current methods. The anal-
ysis is based on a retrospective likelihood that models the 
probability of all the genotypes in a nuclear family, given 
the traits of the children. By defining separate association 
parameters in the parental and offspring components 
of the likelihood, similar operating characteristics to 
TRANSMIT are achieved within an ordinary likelihood 
framework. Furthermore, this approach allows a proce-
dure, called conditioning on the inheritance vector, which 
maintains robustness to linkage when there are multiple 
offspring, even when there are missing data. Unlike exist-
ing methods, this procedure does not require estimation 
of linkage parameters, and easily accommodates multi-
locus analysis. Unrelated subjects are regarded as the 
children of two missing parents and are then readily in-
cluded in the same formulation. The methods are devel-
oped for binary and continuous traits and are implement-
ed in software, UNPHASED, which is available from the 
author (see Electronic-Database Information).
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  Methods 

 Binary Traits 
 In nuclear families the data are often ascertained through the 

trait values of one child (the proband) and perhaps its siblings. 
Often too, unrelated subjects are selected through their trait val-
ues: examples include the standard case/control design and ex-
treme sampling of continuous traits. For general purposes a ret-
rospective model is appropriate, in which the likelihood reflects 
the probability of the genotypes given the traits of all children. 
Furthermore, if there are additional covariates whose main ef-
fects are not of interest, it is convenient to further condition on 
the covariate values  [27] . As the ascertainment may not actually 
depend on the covariate values, this approach may not give effi-
cient estimation, and likelihoods that reflect the true mechanism, 
when known, are more appropriate  [28, 29] . Nevertheless, condi-
tioning on both trait and covariate values is convenient as a gen-
eral purpose strategy and often leads to estimation of genotype 
effects that is robust both to the ascertainment mechanism and to 
departures from the assumed trait distribution.

  Consider a nuclear family having  k  children, with paternal 
genotype  F , maternal genotype  M , child genotypes  C  = ( C  1 , ...,  C  k ), 
child traits  Y   D  {0, 1} k  and child covariates  Z . Genotypes may en-
compass multiple loci. The probability of genotypes, conditional 
on trait and covariate values, is
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( )
( ) ( )
( ) ( )

( )
( ) ( )

( )

, , ,

, , , , ,                                              

, , , , , , , ,
, ,

Pr F f M m C c |Y y Z z

Pr f m | y z Pr c | f m y z

Pr f m | z Pr y | f m z Pr c | f m z Pr y | f m c z
Pr y | z Pr y | f m z

= = = = =

=

= �
 (2)

  Assume that child traits are independent of parental geno-
types, so  Pr ( y   �   f ,  m ,  c ,  z ) =  Pr ( y   �   c ,  z ). Assume further that there 
is no transmission distortion and no linkage, so  Pr ( c   �   f ,  m ,  z ) is 
either zero or a constant. Then

( )
( ) ( )

( )

( ) ( )
( )

( )
( )

( )

,

, ,

,

, ,
, , ,

, , , ,

,
            

,

c S f m

f m c S f m

c S f m

Pr f m | z Pr y | c z
Pr f m c | y z

Pr f m | z Pr y | f m c z

Pr y | c z
Pr y | c z

=

�

*

* * * * *

*

*

* * * * *

*

(3)

  where  S (  f ,  m ) = { c :  Pr ( c   �   f ,  m ,  z )  1  0} is the set of child genotypes 
consistent with parents  f ,  m . The second term in (3) contributes to 
the conditional on parental genotypes likelihood  [30] , from which 
the transmission/disequilibrium test  [14]  and extensions are de-
rived. However it is unclear how to form that likelihood when the 
parental genotypes are missing. Here the full likelihood contribu-
tion (3) is used, with distinct sets of parameters used in each of 
the two terms. The parameters of interest are those in the second, 
conditional, term, with those in the first, parental, term regarded 
as nuisance parameters. 

 Following standard arguments for conditional logistic regres-
sion, the conditional term can be written
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  where  X  c  = ( X  c  1 , ...,  X  c k  ) and  X  c j   is a vector of numerical codes for 
genotype  c  j ,  X  c  ,  z  is similarly a matrix that codes for interactions 
between  c  and covariates  z , and  �  and  �  are vectors of fixed effects. 
The parameters  �  are the log odds ratios for the main genotype 
effects, whereas  �  are those for gene-covariate interactions. 

 In the parental term, the same form can be used to model 
 Pr ( y   �   c  * ,  z ). For  Pr (  f ,  m ,  �   z ), a multinomial logistic model is used 
since the parental mating type is a nominal categorical variable. 
This gives a parental term of the form
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  where  X  f  ,  m  ,  z  denotes a vector of codes for the mating type ( f ,  m ) 
including interactions with child covariates  z , and  � ,  �  ̃   and  �  ̃   are 
vectors of fixed effects. When  y  = 0, the total likelihood contribu-
tion is that for a multinomial logistic model with predictor  X  �  f  ,  m  ,  z  � , 
so that  �  should be regarded as a parameterization of the mating 
type distribution in the parents of unaffecteds. Similarly to the 
conditional term,  �  ̃   are the log odds ratios for the main genotype 
effects and  �  ̃   are those for gene-covariate interactions. 

 When there are missing genotype or uncertain haplotype 
data, the likelihood contribution is the sum of the probabilities of 
each possible completion. That is, defining the set of possible 
completions as

  C = { f ,  m ,  c :  Pr ( F  =  f ,  M  =  m ,  C  =  c   �  observed  F ,  M ,  C )  1  0}    (6)

  the likelihood contribution becomes 
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 For a sample of  N  families indexed by  i , the total log-likelihood 
for the fixed effects is then
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  with the probability term given by (4, 5). 
 Note that for the true population parameters  �  ̃   =  �  and  �  ̃   =  � , 

if the mating type model is correct, but it need not hold for esti-
mates. For a test of  �  = 0 it is valid to set  �  ̃   = 0: it is shown in the 
Appendix that this gives the same score function as TRANSMIT 
 [12] . When there are no missing data, the likelihood factorizes 
completely into parental and conditional components, so that es-
timation of  �  is independent of the mating type model and infer-
ence is equivalent to that based on the conditional likelihood. 
This approach is therefore no less efficient than conditional infer-
ence, despite the additional nuisance parameters. When there are 
missing data, the mating type model is used to weight the possible 
conditional likelihoods, but without confounding the weights 
with the parameters of interest, which occurs when constraining 
the parameters by  �  ̃   =  � . (It can be shown that this constraint is 
equivalent to the unconditional likelihood model implemented in 
TDTPHASE  [16]  and FAMHAP  [19] .) Because the mating type 
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model affects inference on � only through a weighting role, this 
approach is expected to be robust to moderate mis-specification 
of the mating type model.

  In the presence of linkage,  Pr ( c   �   f ,  m ,  z ) is not constant for  c   D  
 S (  f ,  m ), as assumed in (3), since it depends upon the allele-sharing 
probabilities induced by the traits and the genetic model. In order 
to maintain a similar form to (3), a novel conditioning step is now 
introduced. A sufficient statistic for linkage is the inheritance 
vector, which specifies the grandparental origin of each allele 
transmitted to each sibling. Because nuclear families do not in-
clude the grandparents, there are two inheritance vectors for 
each parent that are consistent with the observed transmissions, 
and these form an equivalence class  [31] . Conversely, for each 
parent there are two sets of possible child haplotypes consistent 
with the true inheritance vector, being the transmitted haplo-
types themselves, and the set of untransmitted haplotypes ( fig. 1 ). 
Replacing  S (  f ,  m ) by the combination of these haplotypes corre-
sponds to conditioning on the equivalence class of the inheri-
tance vector, in other words conditioning on the sufficient statis-
tic for linkage.

  More precisely, for child  j  with genotype  c  j , define three  vir-
tual genotypes  as follows:

   u  m  j  : haplotype transmitted by father/haplotype not trans-
mitted by mother

   u   f  j  : haplotype not transmitted by father/haplotype transmitted 
by mother

   u  f  j    m    : haplotype not transmitted by father/haplotype not trans-
mitted by mother.

  Then the virtual genotype vectors  u  m ,  u   f  and  u 
f  m  have the same 

inheritance vector as the observed child genotypes  c , up to an 
equivalence class. Then, still assuming no transmission distor-
tion,  Pr ( c  *   �   f ,  m ,  z ) is constant for  c  *   D  { c ,  u 

f   ,  u  m ,  u 
f  m }. Denoting 

the equivalence class by E, the likelihood contribution is now
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  This step has the effect of treating the whole family as a single 
sampling unit, whereas the unconditional form (4, 5) includes in-
dependent terms from siblings. Importantly, this is only possible 
after distinguishing the parameters ( �  ̃  ,      �  ̃      ) in the parental term 
from ( � ,  � ) in the conditional term. If ( �  ̃          ,  �  ̃      ) is set equal to ( � ,  � ), 
then cancellation of terms means that the inheritance vector is not 
identifiable. Furthermore, if (      �  ̃       ,  �  ̃  ) is set to 0 then the inheritance 
vector cannot be identified in the parental term, leading to mis-
specification of the mating type distribution. Following argu-
ments given in the Appendix, this suggests a reason for an ob-
served bias in Clayton’s method  [23]  when there are missing par-
ents and multiple siblings.

  Continuous Traits 
 The same approach is applied to continuous traits, except in 

the specification of the trait distribution  Pr ( y   �   c ,  z ). Assume that 
child traits are distributed as multivariate normal with variance-
covariance matrix  �  2  I . This assumes no covariance between sib-
lings, but the retrospective model gives some robustness to this 
assumption as well as to non-normality. Conditional on the child 
genotypes and covariates, the mean vector is specified by

   �  c  ,  z  =  �  +  X �   c   �  +  X �   c   ,  z  �  (10)

a b

c d

  Fig. 1.   a  Transmissions from one parent to 
four siblings. Parental genotype is un-
phased but siblings are ordered.  b  Alterna-
tive transmissions from the same class of 
inheritance vector as  a .  c, d  A second ex-
ample of two inheritance vectors from the 
same equivalence class.   
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  where  �  is a fixed intercept vector and  X  c  and  X  c  ,  z  are as before. 
The association parameters  �  specify additive effects on the mean, 
relative to a baseline parameter. The likelihood contribution is 
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 with a similar modification to condition on the inheritance vector 
in the presence of linkage. 

 A difficulty with this form is that when there are no genetic or 
covariate effects, so that  �  =  � , then  �  cancels from the likelihood 
and cannot be identified. When this is the null hypothesis of in-
terest, this leads to problems with asymptotic theory as the inter-
cepts are nuisance parameters that are present only under the al-
ternative. Furthermore, when the effects are small the intercepts 
are technically identifiable but are difficult to estimate numeri-
cally. For these reasons, a practical solution is to subtract  �  from 
 y , so the mean vector is  �  c  ,  z  =  X �   c   �  +  X �   c   ,  z  � . Now introduce new pa-
rameters  �  c  to replace  �  �  c  ,  z / �  2 . The likelihood contribution then 
becomes
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  This approach introduces more nuisance parameters into the 
model, so there is a cost in power. However it ensures that the pa-
rameters are identifiable under all hypotheses about  � ; further-
more it also represents a model for transmission distortion, which 
can be useful if subjects have been selected on the basis of a bi-
nary trait  [32] . A disadvantage is that population stratification 
may result in  �  c  being random rather than fixed: in this case, es-
timation of genetic effects will not be accurate, although testing 
of  �  = 0 remains valid.

  The variance  �  2  is assumed known. Although may be estima-
ble, the problem remains that it cannot be identified when  �  = 0. 
If no external estimate of the variance is available, the likelihood 
could be profiled over a range of values to give an indication of a 
realistic plug-in estimate.

  Some simplification is possible by assuming that the genetic 
and covariate effects are sufficiently small that  �   �   �   ;  0. This gives 
the likelihood contribution
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  This is closely related to previous approaches  [32, 33]  which 
used multinomial logistic regression models to test association to 
a quantitative trait. Here these approaches have been extended to 
allow for multiple siblings and missing data. The advantage of the 
multinomial models is that they are more robust to non-normal-
ity than the retrospective normal likelihood, and can allow more 
rapid computation via factorization of the denominator in (13). 
However there is no simple interpretation of the association pa-
rameters, and there may be considerable loss of power to detect 
effects on normally distributed traits.

  Unrelated Subjects 
 A distinction should be made between nuclear families with 

one child and two missing parents, and unrelated subjects ascer-
tained as such. The former could occur sporadically in a sample 
of families, and can be treated with the nuclear family models de-
scribed above. In the latter case, it is more desirable to apply a 
model designed specifically for unrelated subjects. This can be 
obtained from the nuclear family model by equating the associa-
tion parameters in the parental and conditional terms, so that 
( �  ̃      ,  �  ̃      ) = ( � ,  � ). Let  g  be the genotype of a singleton subject and let 
 u  denote the genotype composed of the two haplotypes not trans-
mitted by its parents. Assuming Hardy-Weinberg equilibrium in 
the parents, the mating type model may be written

   X  f  ,  m  ,  z  =  X  g  ,  z  +  X  u  ,  z                                                                         (14)

  giving for binary traits, from (4, 5) 

( )
( )
( )

, , ,

, , ,
,

exp
,

exp

u z g z g g z
u

u z g z g g z
u

X X y X X
Pr g | y z

X X y X X

+ + +
=

+ + +

*
*

* * * *
* g*

( )
( )

, ,

, ,

exp

exp

g z g g z

g z g g z
g

X y X X

X y X X

+ +
=

+ +* * *
*

               (15)

 When  y  = 0, the likelihood only depends on  X  �  g   ,  z  � , so that  �  
should be regarded as a model for the genotype frequency in con-
trols. This is equivalent to the models for case/control data pro-
posed by Epstein and Satten  [34]  and Kwee et al.  [27] . Following 
arguments of those authors,  �  can be regarded as log odds ratios 
when the rare disease assumption applies. 
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 For continuous traits, the likelihood contribution is
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  When the sample consists only of unrelated subjects, the param-
eters � are absorbed into the frequency predictor  X  �  g   ,  z  � , so they 
may be omitted, but this predictor is not now a direct model for 
the genotype frequency. The multinomial logistic approximation 
for small effects is 
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 In a combined sample of nuclear families and unrelated sub-
jects, it is possible to form a total likelihood with shared param-
eters between the two samples. Such an approach should be treat-
ed with care, since the true parameter values may differ between 
samples. If the genotype frequencies differ, but common frequen-
cies are assumed, then population stratification is effectively in-
troduced into the sample. The model for unrelateds has no protec-
tion against stratification, and any type of population structure 
may bias the analysis. However, frequency differences between 
families and unrelateds may be accommodated by introducing a 
covariate into the frequency model indicating whether a subject 
is a singleton. This covariate may be tested to infer whether a fre-
quency difference exists.

  Heterogeneity of effects may exist between families and unre-
lateds, and indeed is likely since the family-based effects are con-
ditional on shared environmental and genetic factors. This is not 
necessarily a problem for detecting an effect, as testing the pooled 
effect may have good power, but assuming a common effect is 
clearly inaccurate for estimation. Again, separate effects may be 
accommodated by introducing an indicator covariate into the as-
sociation model. Epstein et al.  [35]  have noted that unmodelled 
heterogeneity in genotype frequencies can result in heterogeneous 
estimated effects, and suggested testing homogeneity of effects to 
assess whether samples can be combined. However, this approach 
would detect genuine heterogeneity of effects even when frequen-
cies are homogeneous, and in that case it might still be useful to 
test a pooled effect. Using an indicator covariate in the frequency 
model may be more accurate for assessing whether samples can be 
combined, and when appropriate this indicator can be used in the 
association model to allow for effect heterogeneity.

  Chromosome X 
 The proposed model may be applied to X-linked loci with mi-

nor modification. As fathers carry one copy of X, there are only 
two possible children of given parents, so when conditioning on 
the inheritance vector only one set of virtual genotypes should be 
considered, say  u  m . If males and females are combined in the same 
analysis, there is a problem of how to model the genetic effect. 
Males often function as homozygous for the deleterious allele, but 
if this is not known in advance, the design vector is not easily 
specified. In general it is probably better to conduct separate anal-
yses of males and females; when they occur in the same sample, 
this can be achieved through use of an indicator covariate. Note 

that by conditioning on the trait values, there is no need to ac-
count for differing prevalence or trait mean between males and 
females.

  Estimation and Testing 
 Because the proposed model is an ordinary likelihood, stan-

dard methods can be used for parameter estimation and testing 
 [36] . For any design specified in the linear predictors, the likeli-
hood can be maximized to give estimates of the model parame-
ters. Recalling the form of the total log-likelihood (8)

( ) ( )
1 , ,
log , , ,  

i

N

i i
i f m c

Pr f m c | y z
=

=
C

                                    (18)

  where  	  is the vector of all fixed effects, write the contribution 
for family  i  as

( )
, ,

log , , ,  
i

i i i
f m c

Pr f m c | y z=
C

                                              (19)

  The score vector for family  i  is

,i
iU =

  whose form is given in the Appendix. The variance-covariance 
matrix of the maximum likelihood parameter estimates can be 
approximated by the outer product, or empirical, estimator 
{ 
  U  i U �  i } –1 . This can be used to construct confidence intervals for 
the parameters, based on its diagonal elements. Likelihood ratio 
tests can be used to test nested hypotheses about the model pa-
rameters, and Wald tests are also possible for linear contrasts. 

 The most common test is an omnibus test that detects asso-
ciation to at least one genotype. At the null hypothesis,  �  = 0 
whereas the alternative allows the elements of  �  to vary freely. The 
maximum likelihood estimate   �  ̂      gives the genetic effects relative 
to one baseline parameter.

  An alternative is a test of individual effects. Here a genetic ef-
fect could be compared to the baseline effect, or to a pooled esti-
mate of the other genetic effects. The baseline comparison can be 
easily performed by a Wald test using the maximum likelihood 
estimates, as indicated above. For a comparison to other pooled 
effects, one approach is to define the null hypothesis as  �  = 0, and 
the alternative as all  �  j  = 0 except for the effect of interest, which 
is freely estimated. However, this would require separate estima-
tion for each tested effect. A more efficient approach is a score test 
based on the first derivatives of the log-likelihood at  �  = 0  [37] . 
Write the nuisance parameter vector as  � , the score vector for the 
effects of interest as  U   �   and its variance-covariance matrix as  V   �  . 
Standard theory gives  V   �   =  V   �  �   –  V  � � V       ��

–1
   V   �  �  , where  V  ij  are the 

appropriate submatrices of var( U ), which can be estimated by 
 
  U  i U �  i  evaluated at the maximum likelihood estimate for  �  at 
 �  = 0. Individual score statistics are  U  2   �     i   / U     �  ii       , which are asymp-
totically  �  2  with one degree of freedom. Because the score test is 
based on the partial derivatives at  �  = 0, the same scores and vari-
ances can be used for all individual tests and need only be com-
puted once, in contrast to the likelihood-ratio or Wald tests.

  Implementation 
 Implementation of the proposed model requires specification 

of the design vectors  X  f  ,  m  ,  z ,  X  c ,  X  c  ,  z . Saturated models allow a pa-
rameter for every mating type and genotype, for each combina-
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tion of covariate levels, but these are generally too high-dimen-
sional to be useful. More practical are haplotype coding schemes, 
which define the genotype design vector as the sum of two haplo-
type designs, and locus coding schemes, which define multilocus 
designs as the sum of single-locus designs  [38] . Under haplotype 
coding, the likelihood contributions can be factorized into inde-
pendent contributions from haplotypes, so that the model as-
sumes HWE. Similarly, locus coding assumes linkage equilibri-
um. In general it is convenient to adopt a haplotype coding scheme 
for the mating type design, since HWE is often a realistic assump-
tion but linkage equilibrium is not, and the nuclear family model 
is expected to be robust to moderate deviations from HWE. The 
association model may be specified by haplotype or locus coding, 
or combinations of the two, depending on the desired inference 
 [39] . The haplotype coding scheme is the default in the UN-
PHASED software and is used for the simulations reported below, 
although UNPHASED also allows a genotype coding scheme.

  It is common to use the EM algorithm to maximize a missing-
data likelihood. This is useful when maximum likelihood esti-
mates are easily obtained from complete data, and particularly 
when they exist in closed form. However the likelihood developed 
here does not have a standard form: it has a hierarchical structure 
and allows for combinations of different types of data. Even when 
the data are complete, iterative numerical algorithms are needed 
to obtain maximum likelihood estimates, and it is not clear 
whether the EM algorithm is more efficient than direct maximi-
zation of the missing-data likelihood. The current implementa-
tion uses a quasi-Newton algorithm  [40]  based on the score func-
tion of the full missing-data likelihood, given in the Appendix, 
together with the outer product variance estimator.

  Results 

 This section compares the main features of the pro-
posed model to related work, using illustrative simula-
tions. UNPHASED is used both with free estimation of   �  ̃   , 
which is the most complete model, and with    �  ̃           = 0, which 
gives valid tests of  �  = 0, is quicker to compute and is ex-
pected to perform similarly to TRANSMIT. The other 
methods compared are robust to population stratification 
when the data are complete, and allow for mi-
ssing data or uncertain haplotype phase. They include 
TRANSMIT  [12] , FBAT  [17] , PCPH  [18]  and APL  [23] , 
whose relative advantages were briefly summarized in the 
Introduction. In addition, an implementation of multiple 
imputation is included,MITDT  [41] , which applies condi-
tional logistic regression to a small number of randomly 
imputed data sets. With complete data, this approach is 
equivalent to the transmission/disequilibrium test, where-
as when data are incomplete, it is similar to the present 
method in that the conditional analysis is separated from 
the missing data model. A disadvantage is that the impu-
tation distribution is estimated under the assumption of 
association, which can lead to an increase in type-1 error 

 [41] . In contrast, the other methods all have the correct 
type-1 error under their respective assumptions.

  Haplotype Analysis 
 Methods were compared for haplotype analysis under 

similar conditions to Horvath et al.  [17] . Three biallelic 
markers were simulated with haplotype frequencies (as 
%) 35, 20, 20, 10, 5, 5, 4, 1. The common haplotype had 
multiplicative odds ratio 1.35 and the sample size was 
fixed at 600 families. Two family structures were consid-
ered: case parent trios, and families with one affected and 
one unaffected sibling and one parent genotyped (called 
AU1 by Horvath et al.). The power was estimated from 
1000 samples.  Table 1  shows that all methods had similar 
power in trio families. In AU1 families, UNPHASED, 
TRANSMIT and APL had similar power, which was 
somewhat greater than that of FBAT. This occurs because 
FBAT includes additional conditioning steps to ensure 
complete robustness to population stratification. APL 
was less powerful for a specific test of the risk haplotype. 
Furthermore, the  �  2  statistics from UNPHASED and 
TRANSMIT were strongly correlated (   �  ̃       = 0,  r   1  0.99; free 
  �  ̃     ,  r   1  0.98), confirming the close relationship between 
their methods. The estimation of additional nuisance pa-
rameters by UNPHASED had very minor effects on pow-
er. PCPH and MITDT are currently unable to analyze 
families with more than one child.

  The same family structures were then used to estimate 
type-1 error in a stratified population. All haplotypes 
now had odds ratio 1 and in half the families, the haplo-
types with frequencies 35 and 10% were switched, again 

Table 1. Power to detect effect of a three-marker haplotype with 
odds ratio 1.35 in 600 families

Test Design

Trio AU1

haplotype global haplotype global

UNPHASED free   �  ̃      93.4 73.8 86.5 60.0
UNPHASED   �  ̃      = 0 93.3 73.6 87.1 60.4
TRANSMIT 93.3 73.6 86.8 58.4
PCPH 93.4 74.1 n/a n/a
APL 93.5 74.1 76.5 62.8
MITDT 92.2 70.8 n/a n/a
FBAT 93.3 72.6 74.3 42.5

Power (%) is shown for haplotype-specific and global tests, 
estimated from 1000 simulated samples. 95% confidence interval 
is approximately 81.6% at 93%, 83% at 60%.
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following Horvath et al.   Type-1 error rates were close to 
the nominal level in trios, but were slightly inflated in 
AU1 families for both UNPHASED and TRANSMIT ( ta-
ble 2 ). Again, the two programs were strongly correlated 
(   �  ̃       = 0,  r   1  0.99; free   �  ̃         ,  r   1  0.97). The type-1 error was 
further inflated for APL. FBAT had the correct error rate 
as expected.

  The power was compared in this stratified population, 
using the same disease model as above. Absolute power 
was slightly lower than in  table 1 , which was expected as 
the marginal frequency of the risk haplotype was re-
duced, but differences between methods were similar 
(data not shown).

  Strong Effect 
 The previous simulation concerned a weak effect 

(OR = 1.35 in one haplotype). To illustrate a stronger ef-
fect, a single SNP was simulated with risk allele frequen-
cy 0.3 and odds ratio 1.8 in 200 trios. Parental genotypes 
were missing at random with probability 0.4.  Table 3  
shows that all methods had similar power, except FBAT 
and PCPH whose power was considerably reduced. This 
shows that although PCPH is the locally efficient robust 
method, this property has a cost in power against non-
 local alternatives when there is a high proportion of miss-
ing data. As seen in the haplotype analysis results, there 
are smaller differences between methods when the effect 
is weak. Also, as the proportion of missing data is re-
duced, all methods approach the original TDT, so that 
the differences again are reduced. 

 Association in the Presence of Linkage 
 Following Martin et al.  [23] , data were simulated con-

sisting of 250 families with two affected siblings (called 
AA) and 250 families with two affected and one unaf-
fected siblings (called AAU). All parental genotypes were 
missing. Their MultA model was used, consisting of a 
SNP with risk allele frequency 0.15 and genotypic pene-
trances 0.004, 0.011 and 0.030. A marker SNP was simu-
lated, also with minor frequency 0.15, that was complete-
ly linked to, but not associated with, the disease SNP. 
Type-1 error was estimated for TRANSMIT and APL, 
and for UNPHASED conditioning on the inheritance 
vector with   �  ̃      = 0 and with free estimation of   �  ̃      ( table 4 ). 
Similar to results of Martin et al., APL had the correct er-
ror rate but TRANSMIT had an inflated error rate. UN-
PHASED with   �  ̃      = 0 also had an inflated error rate, and 
again was strongly correlated to TRANSMIT ( r   1  0.99). 
However, UNPHASED with free estimation of   �  ̃      did have 

Table 2. Type-1 error in the presence of population stratification

Test Design

Trio AU1

haplotype global haplotype global

UNPHASED free   �  ̃     4.8 6.0 7.8 7.9
UNPHASED   �  ̃      = 0 4.8 6.0 8.0 8.6
TRANSMIT 4.8 5.6 7.9 9.4
PCPH 4.4 5.8 n/a n/a
APL 4.6 5.8 8.1 10.1
MITDT 5.6 5.7 n/a n/a
FBAT 4.0 5.2 4.0 3.5

Two sub-populations are simulated with different 3-marker 
haplotype frequencies (see text). Error (%) is shown for haplotype-
specific and global tests, estimated from 1000 simulated samples. 
95% confidence interval is 3.65–6.35%.

Table 3. Power to detect SNP with odds ratio 1.8 in 200 families

Power

UNPHASED free   �  ̃     90.0
UNPHASED   �  ̃      = 0 89.8
TRANSMIT 89.8
PCPH 66.4
APL 89.8
MITDT 88.6
FBAT 66.9

Risk allele has frequency 0.3 and parental genotypes are miss-
ing at random with probability 0.4. Power (%) is estimated from 
1000 simulated samples. 95% confidence interval is 81.9% at 
90%.

Table 4. Type-1 error when testing association in the presence of 
linkage

Design

0.5AA+0.5AAU AAAA

UNPHASED free   �  ̃     5.0 6.0
UNPHASED   �  ̃      = 0 9.2 6.2
TRANSMIT 10.3 6.5
APL 5.8 n/a

Marker locus is completely linked to a disease locus with mul-
tiplicative relative risk 2.74. Error (%) is estimated from 1000 sim-
ulated samples. 95% confidence interval is 3.65–6.35%.
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the correct error rate, with much weaker correlation to 
TRANSMIT ( r  = 0.73).

  This model was then simulated on 500 families with 
four affected siblings (AAAA) and each parent having 
probability 0.5 of being genotyped. These families cannot 
currently be analysed by APL.  Table 4  shows that UN-
PHASED again had the correct error rate with free esti-
mation of   �  ̃     , whereas TRANSMIT and UNPHASED with 
  �  ̃      = 0 both had slightly increased error rates.

  The power of UNPHASED was compared to that of 
APL, this time for the MultD model of Martin et al.  [23] , 
which has genotypic penetrances 0.004, 0.006 and 0.009. 
For 250 AA families and 250 AAU families, the power of 
APL was 79.5% and that of UNPHASED 79.3%. The two 
methods give highly correlated, but not identical results 
( r  = 0.94).

  Combining Families with Unrelated Subjects 
 Heterogeneity in genotype frequencies between fam-

ily and singleton samples may lead to incorrect inference 
on the odds ratio. Let  �  (  t  )  and  �  (  u  )  denote the log odds ra-
tios in families and singletons respectively. To test wheth-
er the samples could be combined, Epstein et al.  [35]  pro-
posed first testing   �  ̃          (  t  )  =  �  (  t  ) , and if this is not rejected then 
testing  �  (  t  )  =  �  (  u  ) . Their motivation was to avoid the as-
sumption of HWE in the population. If that assumption 
is made, however, a more direct approach is to test for 
homogeneity of frequencies between samples, using an 
indicator covariate in the frequency model. To illustrate 
this, one SNP was simulated with minor allele frequency 
0.3 in 200 trios and frequency 0.4 in 100 cases and 100 
controls. The SNP had no association with disease. In 
1000 random samples, the power for the approach of Ep-
stein et al. was 63.2%, whereas the power for testing ho-
mogeneity of frequencies was 85%. Furthermore, the in-
dicator covariate can be used to test for a pooled effect in 
a combined sample with heterogeneous frequencies. Un-
der these simulation conditions the estimated type-1 er-
ror for this test was 5.6%, within expectation. 

 Discussion 

 The proposed likelihood model is sufficiently flexible 
for general purpose usage. It accommodates nuclear 
families of any size, unrelated singletons and combina-
tions of the two. As special cases it reduces to the condi-
tional on parental genotypes model  [30, 39]  in nuclear 
families with complete data, and to retrospective likeli-
hood analysis of unrelated subjects  [34] . It allows for 

missing data and uncertain haplotype phase using 
 standard likelihood methods. It has similar operating 
 characteristics to TRANSMIT  [12] , owing to the relation 
 between their score functions given in the Appendix, but 
does so within an ordinary likelihood framework.

  The main innovations are separation of association pa-
rameters in the parental and conditional terms in the like-
lihood, and conditioning on the inheritance vector. The 
former has been implicitly done by previous authors  [5, 33, 
35]  who fit a saturated model to the parental mating type. 
Here, a distinction is made between genotype frequencies 
and association effects in the parents, which allows more 
parsimonious models to be fit, including haplotype cod-
ing under the HWE assumption. When the mating type 
model is saturated, all families are the same size and all 
sibships have the same trait vector, then the association 
effects cannot be identified in the parental terms and the 
present model is equivalent to previous work. A related 
approach is the decomposition of total assocation into be-
tween- and within-family components  [20, 21, 24] . In a 
prospective design, the within-family association is a val-
id estimate in the presence of population stratification 
 [24] . However in the retrospective design used here, the 
frequency model does not factor out of the likelihood 
when the data are complete, and so must be correctly spec-
ified. This approach is therefore never valid under popula-
tion stratification, unlike the present model.

  Conditioning on the inheritance vector was previous-
ly proposed in the context of conditioning on sufficient 
statistics for missing genotype data  [9] . Those authors 
found a noticable loss of power, owing to a large number 
of uninformative families, and preferred to use a cluster 
variance estimate in a test without conditioning. Here, 
the conditioning has been set into a missing data likeli-
hood framework, in which all families are informative for 
association. Comparison with the APL program, which 
estimates the haplotype-sharing probabilities without 
conditioning on linkage, indicate that the cost in power 
from the additional conditioning is very small. Further 
simulations (data not shown) compared power with and 
without conditioning, when no linkage was assumed, 
and again found the loss in power to be small.

  For combining family samples with unrelated sub-
jects, the proposed approach is similar to that of Epstein 
et al.  [35] . The main difference is that here, HWE is as-
sumed in the singletons, which allows a simple adjust-
ment for population heterogeneity, and reduction to a 
standard retrospective analysis when there are only sin-
gletons. The rationale is that HWE is a common working 
assumption for unrelated subjects, being somewhat en-
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sured by standard quality control measures, and hetero-
geneity is quite likely between samples ascertained under 
different criteria. Adjustment for heterogeneous geno-
type frequencies is done through an indicator covariate, 
and this approach can also be used to combine samples 
of the same type coming from multiple populations.

  In the simulations reported here, the UNPHASED im-
plementation performed as well as the best available 
methods over a range of situations. In families with a sin-
gle affected child, the operating characteristics were very 
similar to those of TRANSMIT. Indeed, when the paren-
tal association parameters are set to zero, the results of 
UNPHASED and TRANSMIT are nearly perfectly cor-
related, for reasons suggested in the Appendix. When the 
parameters are freely estimated, the correlation is weaker 
but the type-1 error and power are still similar. Estima-
tion of the parental parameters is desirable for testing hy-
potheses in which some effects are nonzero, for estimat-
ing effect sizes and allowing for prior linkage in sibships. 
The additional estimation incurs a small cost in power.

  The power of UNPHASED is generally higher than 
FBAT, at a cost of a small increase in type-1 error when 
there are missing genotypes and population stratifica-
tion. The APL program had similar power to UN-
PHASED, but higher type-1 error under population strat-
ification. PCPH and MITDT had similar power to UN-
PHASED in trios but cannot currently handle larger 
sibships.

  PCPH is the locally optimal test among those making 
no assumption on the missing data, but when there is a 
strong effect and a high proportion of missing data, it los-
es power in comparison with UNPHASED. Its main ad-
vantage is that it is always robust to population stratifica-
tion, but the compromise approach adopted here appears 
to incur only small increases in type-1 error. Of course, 
situations may be constructed in which the increase is 
much more severe, but in practice careful ascertainment 
and quality control measures such as HWE testing should 
ensure that undetected population stratification has only 
a minor effect on the proposed approach.

  The methods may be adapted to categorical, time-to-
onset and other traits, through appropriate specification 
of the trait distribution. The generalized linear model is 
a convenient representation for many distributions  [37] , 
although the retrospective formulation may lead to iden-
tifiability issues needing special treatment, as in the pro-
posed model for normal traits. In general the multino-
mial regression approximation gives a valid test of  �  = 0, 
although it may not be powerful against strong effects 
and is less appropriate for testing other hypotheses.

  In general pedigrees, a simple approach is to extract 
nuclear families and treat them as independent sampling 
units. This may ignore correlations between nuclear fam-
ilies in the presence of linkage, although the effect is like-
ly to be small. It is possible to condition on the entire link-
age information in a pedigree  [42] , although the impact 
of this conditioning may be more severe than in the case 
of sib pairs considered here. Likelihood models for asso-
ciation in general pedigrees remain an interesting subject 
for further work. A special case is a sample of sibships 
without parents. If more than one trait value is present, 
then the methods described here can be applied, but the 
analysis may be time-consuming. An alternative is to in-
corporate conditioning on the sufficient statistic for the 
missing parental genotypes  [42]  into a likelihood for the 
sibships only. This approach has not been pursued here, 
but offers potential for extending this work to situations 
in which it is currently not computationally efficient.
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  Appendix: Score Function 

 Assume a sample of nuclear families measured for a binary 
trait; the development is readily extended to unrelated subjects 
and continuous traits using the arguments in Methods. The log-
likelihood contribution for family  i  is (8)
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 where  	  = ( � ,  � ,   �  ̃       ,  �   ̃   ,  � ). Recall (4, 5) 
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 Then the score contribution is given by 
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 and  D   �  ,  D  �̃     are defined similarly. 
 To see the relation with TRANSMIT, note that it uses a score 

function of the form 
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( ) ( ) ( )
( )

( )
( ), ,

log , , log ,
, , ,

, ,

i

i

f ,m,c

i

f m c

Pr c | f m y Pr f m | y
Pr f m c | y

U

Pr f m c | y

=

C

C

 with   �  ̃              =  �  throughout. From (24),

( )log , ,Pr c | f m y
D=                                                         (28)

  The difference from the present score function (23) is only in 
the specification of  Pr (  f ,  m ,  c   �   y ), which here serves as a weight, 
and the use of ( D     �  ̃                   ,  D   �  ) in place of  F  log  Pr (  f ,  m   �   y )/ F  � . The score 
terms for � are identical for each possible ( f ,  m ,  c ). If the mating 
type model is correct and the effects are small, it is expected 
that ˆ

   �  ̃                ;   �  and the results for tests of  �  = 0 should be similar. If 
     �  ̃                     is set to zero, then furthermore

( )log ,Pr f m | y
D=                                                      (29)

  and the two score functions are equal when evaluated at  �  = 0. 
The differences between UNPHASED and TRANSMIT in this 
case arise only from the specification of the variance estimators. 
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