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Abstract: Liquid-filled photonic crystal fibers and optofluidic devices

require infiltration with a variety of liquids whose linear optical properties

are still not well known over a broad spectral range, particularly in the near

infrared. Hence, dispersion and absorption properties in the visible and

near-infrared wavelength region have been determined for distilled water,

heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon

disulfide, and nitrobenzene at a temperature of 20 °C. For the refractive

index measurement a standard Abbe refractometer in combination with a

white light laser and a technique to calculate correction terms to compensate

for the dispersion of the glass prism has been used. New refractive index

data and derived dispersion formulas between a wavelength of 500 nm and

1600 nm are presented in good agreement with sparsely existing reference

data in this wavelength range. The absorption coefficient has been deduced

from the difference of the losses of several identically prepared liquid filled

glass cells or tubes of different lengths. We present absorption data in the

wavelength region between 500 nm and 1750 nm.
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1. Introduction

Liquids offer striking possibilities for the field of optics. New optical devices have been devel-

oped which opened a new field: optofluidics, which combines liquids and photonics [1,2]. This

field has encountered an increased amount of interest in the recent past due to novel flexible

concepts.

Liquids are especially suited for generating supercontinua due to their relatively high nonlin-

ear refractive index n2 with respect to solids. Examples for applications are include selectively

liquid-filled photonic crystal fibers [3–6], and liquid-core optical fibers [7] whose dispersion

properties can be tailored accordingly for the formation of a supercontinuum. Liquid-filled

patterns in such fibers allow for the realization of directional couplers [8,9], all-optical switch-

ing [10] as well as discrete optofluidic spatial solitons in waveguide arrays [11]. Furthermore,

characteristics of stimulated Brillouin scattering [12] and self-phase modulation [13] can be

studied. Also pulse propagation in tapered fibers immersed in liquids can be tailored [14].

Moreover, the transparency in the visible and near-infrared range plays an important role for

unobstructed propagation of light in these structures.

There is an increasing need for rapid and easy measurements of linear optical properties of

nonlinear liquids over a broad wavelength range. The knowledge of the linear refractive index n

and the absorption coefficient α are important to control the optical properties and to determine

n2 [15].

Due to the fact that published papers [15–20] and reference books [21, 22] currently cannot
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cover a broad wavelength range in the visible and near-infrared and some data even seem to

not exist in published form, we take measurements in regions which have previously not been

investigated to our knowledge.

In this paper precise constants for Cauchy and Sellmeier dispersion equations of linear re-

fractive indices at a temperature of 20 °C are derived from measurement data between a wave-

length of 500 nm and 1600 nm for the following eight liquids: distilled water (H2O), heavy wa-

ter (D2O), chloroform (CHCl3), carbon tetrachloride (CCl4), toluene (C7H8), ethanol (C2H6O),

carbon disulfide (CS2), and nitrobenzene (C6H5NO2). A measurement method which is based

on an extension of a standard Abbe refractometer is used to determine n(λ ) [16]. The required

correction terms for the application in the near-infrared and the experimental realization are

described in detail.

Furthermore, the absorption coefficient α as a function of wavelength is given between

500 nm and 1750 nm for distilled water, heavy water, chloroform, toluene, ethanol, and car-

bon tetrachloride (up to a wavelength of 1500 nm). For the measurement of α thin glass cells

or long tubes filled with the liquids have been used, depending on the magnitude of absorp-

tion. Accurate alignments of the samples were required because α has been calculated from

the difference of the losses of several equally prepared specimens of different lengths [17]. The

description of the utilized methods and the experimental setups are also presented in this paper.

The structure of the paper is as follows: First the measurement techniques and the experimen-

tal setups for the determination of the linear refractive index and the absorption coefficients are

described. Second, in Section 3, the measurement results are presented, starting with the refrac-

tive index values and dispersion curves, followed by the absorption spectra of the investigated

liquids. The absorption coefficient values are given in the supplement as comma-separated value

text files.

2. Measurement techniques

2.1. Refractive index

2.1.1. Abbe refractometer

An easy and precise method to measure the linear refractive index n in the visible spectral

range is provided by an Abbe refractometer. Commonly, such instruments are designed for the

use at the wavelength of the sodium D line (589.3 nm). Correction tables enable the use of the

refractometer in the complete spectral range covered by the listed values therein. A different

description is given in the paper of J. Rheims et al. [16] which allows determination of the

refractive index over a wider wavelength regime. However, since the refractometer is an optical

measurement device which is read out by naked eye, the wavelength region is still limited to

the visible. Only by using infrared-cameras as replacement for the human eye, the method can

be extended to the infrared-region.

Regardless of the wavelength, the general working principle is based on the dependence

of the angle of total reflection from the refractive index of the investigated liquid. The Abbe

refractometer is composed of two orthogonal prisms as shown in Fig. 1.

To apply the principle of total reflection the refractive index of the investigated liquid nliq

has to be smaller than the refractive index of the measuring prism npr. The specimen is placed

between the two prisms and the incoming light is transmitted only in an angular range below

the angle of total reflection αT , generating a sharp separation line between the bright and the

dark range. This image can be observed with the eyepiece of the refractometer. Matching the

separation line with the point of intersection of a reticle allows for readout of the measured

refractive index n′liq from a scale.

However, the measured refractive index n′liq only corresponds to the actual refractive index
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Fig. 1. Beam path in the Abbe refractometer: in transmission mode (solid line) the incoming

light passes the illumination prism and is scattered in all directions at the rough surface.

However, the light is only transmitted into the measuring prism if the incident angle is

below the angle of total reflection αT . The image displays a sharp separation between the

bright and dark range. The image is observed with a telescope and the point of intersection

of the reticle has to be adjusted to this separation line. One can then read the measured

refractive index n′liq from a scale of the refractometer; in reflection mode (dotted line)

the measuring prism is directly illuminated and the incoming light is only reflected in the

angular range above the angle of total reflection. Hence, the bright and the dark range are

interchanged which does not affect the deflection angle β which has a fixed geometrical

relationship to the measured refractive index (see Eq. (5)). φ is the prism apex angle which

is 63 °in our case.

nliq of the liquid at the sodium D line at λD = 589.3 nm because of the used calibration from the

manufacturer Carl Zeiss. To deduce the refractive index nliq also at other wavelengths one has

to apply a correction term ∆nliq to n′liq to compensate for the dispersion of the glass prism. Cor-

rection tables are offered by the manufacturer of the refractometer where ∆nliq depends on the

illumination wavelength, the measured refractive index, and the used glass prism. However, the

correction data are only provided in the visible spectral range between 400 nm and 680 nm [23].

To extend the application range of the refractometer one has to establish a relationship be-

tween the deflection angle β and the displayed refractive index n′liq from the scale of the refrac-

tometer. This geometrical relationship has to be determined only once because it is not affected

by changing the illumination wavelength [16].

2.1.2. Correction terms

The refractive index of a liquid is given by Snellius’ law as

nliq = npr sinαT . (1)

By geometrical thoughts and trigonometrical identities (see Fig. 1) and the fact that the change

in the refractive index with temperature is negligible for the glass prism [16] one obtains

nliq(λ ,T ) = sinφ
√

n2
pr(λ )− sin2 β(λ ,T )− cosφsinβ(λ ,T ). (2)

Thus, the refractive index of the liquid for a certain wavelength and temperature is a function

of the deflection angle β , the refractive index npr, and the apex angle φ of the glass prism.

In order to obtain the actual refractive index of the liquid nliq, the measured refractive index

n′liq has to be corrected by the term ∆nliq

nliq(λ ,T ) = n′liq(λ ,T )+∆nliq(λ ,n′liq). (3)
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As the Abbe refractometer is calibrated with respect to the sodium D line, ∆nliq(λD,n′liq) be-

comes zero and nliq is equal to n′liq for this wavelength (see Eq. (3)). Replacing nliq by n′liq in

Eq. (2) one obtains the desired fixed relationship between n′liq and β

n′liq(λD,T ) = sinφ
√

n2
pr(λD)− sin2 β(λD,T )− cosφsinβ(λD,T ). (4)

Solving Eq. (4) for β yields

sinβ(λ ,T ) = sinφ
√

n2
pr(λD)−n′2liq(λ ,T )−n′liq(λ ,T )cosφ. (5)

Hence, by inserting Eq. (5) into Eq. (2) the expression for the actual refractive index reads

nliq(λ ,T,n′liq) = sinφ[n2
pr(λ )− (sinφ

√

n2
pr(λD)−n′2liq(λ ,T )− (6)

n′liq(λ ,T )cosφ)2]1/2
−

cosφ(sinφ
√

n2
pr(λD)−n′2liq(λ ,T )−n′liq(λ ,T )cosφ).

This equation gives the actual refractive index at a certain wavelength in dependence of the

prism dispersion, the prism apex angle, and the measured index value n′liq.

In our experiment we use an Abbe refractometer Model A from Carl Zeiss with the serial

number 7 and device number 64305. The apex angle of the glass prism φ is given in the engi-

neering drawing as 63 ° in the present case [24]. The refractive index of the glass prism made

from Schott SF13 glass is given from the glass manufacturer at different wavelengths [25]. At

λD = 589.3 nm the refractive index of the prism is npr(λD) = 1.74054. For npr(λ ) the Cauchy

formula in Eq. (7) is used:

npr = 1.70708+
10943.47279

λ 2
+

2.54416×108

λ 4
+

3.46802×1013

λ 6
−2.93242×10−9λ 2. (7)

The Cauchy formula together with the given refractive indices of SF13 are plotted in Fig. 2.
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Fig. 2. Dispersion of refractive index of the measuring prism made of SF13. The data

points (diamonds) are listed in the datasheet from the glass manufacturer Schott [25]. The

calculated Cauchy dispersion formula (blue line) is given in Eq. (7).

For verification the calculated correction term ∆nliq is compared with data from a correction

table provided by Zeiss at two wavelengths of λ = 500 nm and λ = 680 nm [23]. The results

are plotted in Fig. 3. ∆nliq matches very well with the original data given by Zeiss and the

maximum deviation is less than 1× 10−4 at 500 nm. At a wavelength of 680 nm the deviation
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Fig. 3. The calculated correction term ∆nliq (blue line) for our Abbe refractometer from Eq.

(6) as a function of the measured refractive index n′liq at a wavelength of (a) 500 nm and (b)

680 nm in comparison with original data (dashed line) from a correction table provided by

Carl Zeiss AG [23].

is slightly more pronounced but always below 2×10−4 which allows the use of the described

method for calculating the correction terms in the complete wavelength region of interest.

In Fig. 4 absolute values of the calculated correction terms ∆nliq are shown for several wave-

lengths in the visible and near-infrared range, as used in our experiment. Below the wavelength

of 589.3 nm the corrections are positive, above λD they are negative.

1.30 1.40 1.50 1.60 1.70
0

0.010

0.020

0.030

Measured refractive index n‘liq

λ = 500 nm

λ = 600 nm

λ = 700 nm

λ = 800 nm

λ = 900 nm

λ = 1000 nm

λ = 1100 nm

λ = 1200 nm

λ = 1300 nm

λ = 1400 nm

λ = 1500 nm

λ = 1600 nm

C
o

rr
e

c
ti
o

n
 v

a
lu

e
 |

n
|

liq
∆

Fig. 4. Absolute values of the calculated correction terms ∆nliq for our Abbe refractometer

from Eq. (6) as a function of the measured refractive index n′liq for different wavelengths.

2.1.3. Refractometer setup

The experimental setup is shown in Fig. 5a. The Abbe refractometer (Carl Zeiss, model A, se-

rial number 7, device number 64305, see Fig. 5b) is connected to a cooling system to ensure
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a constant temperature of 20 °C which can be controlled by a thermometer at the illumination

prism. Due to the cooling mechanism the temperature varies in the range of ±0.5 °C. A super-

continuum generated by a tapered fiber with fiber diameters of 2.5 µm or 3.0 µm, respectively,

are used as light sources [26]. A modelocked Ti:Sapphire femtosecond laser at a central wave-

length of 800 nm for the 2.5 µm fiber and a modelocked PolarOnyx Uranus fiber laser with fs

pulse compressor at a central wavelength of 1035 nm for the 3.0 µm fiber serve as pump sources

to ensure a broad spectral range. White light spectra are shown in Fig. 6. Bandpass filters with

a bandwidth of ∆λ = 10 nm and a tolerance of the central filter wavelength of ±2nm [27] are

placed into the laser beam path to select certain wavelengths between 500 nm and 1600 nm.

bandpass filter

Abbe refractometer

infrared viewer or
infrared camera

white light laser
illumination prism

measuring prism

telescope

(b)(a)

Fig. 5. (a) Experimental setup for refractive index measurements with the Abbe refractome-

ter in the visible and near-infrared in transmission mode. In reflection mode one directly

illuminates the measuring prism. (b) Abbe refractometer model A from Carl Zeiss.

Depending on the absorption strength of the investigated liquid, the refractometer can also be

used in reflection mode to enhance the visibility of the dark-bright separation line. Therefore a

second illumination window is mounted at the front of the measuring prism. Thus the beam path

shown in Fig. 1 is somewhat modified which does not affect the formula of the correction term.

The compensator of the refractometer, which filters out the sodium D line and deflects other

wavelengths, is set during the whole measurement to the position 30 in which no wavelength

dependent beam deviation occurs. To match the reticle with the separation line an infrared

viewer of FJW Optical Systems (Find-R-Scope Model 84499A) is used in the wavelength range

between 500 nm and 1200 nm. Due to the reduced sensitivity of the infrared viewer above a

wavelength of 1200 nm, an infrared camera NIR-300FGE from Allied Vision Technologies is

used in the wavelength region between 900 nm and 1600 nm.

2.2. Absorption coefficient

2.2.1. Loss spectroscopy

According to the Lambert-Beer law the transmitted intensity through a sample declines expo-

nentially with increasing length L

I(L) = I(0)exp(−α L). (8)

I(0) is the intensity of the incident light and α the absorption coefficient of the investigated

liquid per unit length. To measure the absorption coefficient as a function of the wavelength,

the difference in the losses of two identically prepared samples of different lengths has to be

determined [17]. For the ratio of the transmitted intensities for two liquid filled tubes of lengths

L1 and L2 at the wavelength λ one obtains [17]

Iliq(L1,λ )

Iempty(L1,λ )

Iempty(L2,λ )

Iliq(L2,λ )
= exp(α (L2 −L1)). (9)

#170502 - $15.00 USD Received 12 Jun 2012; revised 26 Sep 2012; accepted 2 Oct 2012; published 15 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 2,  No. 11 / OPTICAL MATERIALS EXPRESS  1594



0.6 0.8 1.0 1.2

10
-9

10
-7

In
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

Ti:Sapphire laser

10
-5

Wavelength (µm)

(a)

0.9 1.1 1.3 1.5 1.7
10

-4

10
-3

10
-2

Wavelength (µm)

In
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

PolarOnyx laser
(b)

Fig. 6. White light spectra of (a) a Ti:Sapphire laser with a 2.5 µm thick tapered fiber and

(b) a PolarOnyx laser with a 3.0 µm thick tapered fiber with 80 mm waist length.

As a reference signal the corresponding transmitted intensity through the empty tube Iempty is

used. Rewriting the Eq. (9) one can calculate the absorption coefficient

α (λ ) =
ln

(

Iliq(L1,λ )

Iliq(L2,λ )
Iempty(L2,λ )
Iempty(L1,λ )

)

L2 −L1
. (10)

The effect of reflections at the end faces of the sample which also diminish the transmitted

intensity cancels out by division of the measured intensities since for identically prepared sam-

ples these losses are the same and do not depend on the length of the tube. Furthermore, one

can neglect multiple interferences according to the paper of K. C. Kao et al. [17].

2.2.2. Absorption setup

The experimental setup is shown in Fig. 7a. A Yokogawa AQ4305 white light source is used

as light source. Because of its broad wavelength range spanning from 400 nm to 1800 nm and

its very stable intensity spectrum, the light source is particularly suitable for the application of

wavelength dependent loss spectroscopy.

A 4x objective with a numerical aperture of 0.10 provides a suitable collimation of the beam.

The liquids are either filled into glass cells of Hellma Analytics or into quadratic stainless steel

tubes with 1 mm thick microscope slides from Menzel Gläser at their end faces, depending on

the absorption magnitude (see Fig. 7b). The glass cells provide shorter, the tubes longer sample

lengths. The glass cell lengths vary between 1 mm and 40 mm and the tube lengths between

25 mm and 1000 mm. The collimated beam of about 7 mm diameter travels through the tubes or

glass cells whose parallel end faces have to be precisely aligned perpendicular to the incoming

light to avoid beam displacement. Furthermore, it has to be considered that the samples with and

without the liquid are placed identically so that the reflection coefficients, which are dependent

on the incident angle, remain unchanged. A system of mirrors and a lens focus the beam directly
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spectrometer
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multimode
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Fig. 7. (a) Experimental setup for absorption measurements in the visible and near-infrared.

(b) Glass cells and stainless steel tubes enclosed with glass plates.

into the Ando AQ-6315E spectrometer with a spectral measuring range from 350 nm up to

1750 nm. With the last two mirrors one can compensate slight beam displacements to obtain a

maximum detection signal.

3. Experimental data and numerical dispersion results

3.1. Refractive indices

At each wavelength several measurements at a temperature of 20 °C are taken to calculate

the arithmetic average of n′liq(λ ). With this averaged value the actual refractive index of the

liquid nliq is then obtained by using Eq. (6) and Eq. (7) with npr(λD) = 1.74054 and φ = 63 °.

To calculate the uncertainties associated with the measurement, error propagation is used to

account for the uncertainties in the dispersion of the prism ∆npr and in the measured refractive

index ∆n′liq. The error for the dispersion of the prism can be obtained from the standard error of

the Cauchy formula (Eq. (7)) and is 1× 10−4. The uncertainty in n′liq is given by the standard

error of the single measurements. Hence, the absolute maximum error at each wavelength can

be calculated by

∆nliq =

∣

∣

∣

∣

∂nliq

∂npr

∣

∣

∣

∣

∆npr +

∣

∣

∣

∣

∣

∂nliq

∂n′liq

∣

∣

∣

∣

∣

∆n′liq. (11)

The corrected refractive indices with their uncertainties are listed in Table 1 and Table 2 for

the eight investigated liquids. The absolute maximum error ∆nliq(λ ) ranges between 1×10−4

and 6× 10−4 and arise from temperature variations, reading and adjustment errors of the re-

fractometer, the bandwidth of the filters, and errors in the dispersion of the prism. During

the measuring procedure filters in 50 nm steps in the wavelength region between 500 nm and

900 nm and in 100 nm steps from 900 nm up to 1600 nm are used. Furthermore, the measure-

ment series from the different white light sources match very well so that they can be combined

and used for a single dispersion formula that covers the whole spectral range in the visible and

near-infrared.

From the various refractive indices at different wavelengths one can calculate a dispersion

equation by nonlinear curve fitting using the least square method. Among the various dispersion

equations the Sellmeier and the Cauchy formula are the most common. The ansatz of Sellmeier

can be used in the whole spectral region and is up to the second order given by

n2(λ ) = 1+
A1λ 2

λ 2 −B1
+

A2λ 2

λ 2 −B2
, (12)

with A1/2 being material parameters and
√

B1/2 the wavelengths of corresponding absorption

bands.
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Table 1. Experimental values of the refractive index of distilled water, heavy water, ethanol,

and toluene at a temperature of 20 °C.

λ (µm) nwater nheavy water nethanol ntoluene

0.50 1.3372±0.0002 1.3315±0.0002 1.3653±0.0004 1.5059±0.0002

0.55 1.3345±0.0002 1.3294±0.0002 1.3625±0.0002 1.4998±0.0003

0.60 1.3328±0.0002 1.3278±0.0002 1.3612±0.0003 1.4958±0.0003

0.65 1.3314±0.0003 1.3264±0.0002 1.3596±0.0002 1.4926±0.0003

0.70 1.3301±0.0002 1.3258±0.0002 1.3589±0.0003 1.4901±0.0003

0.75 1.3291±0.0003 1.3248±0.0002 1.3579±0.0003 1.4879±0.0003

0.80 1.3282±0.0001 1.3240±0.0002 1.3573±0.0003 1.4865±0.0002

0.85 1.3273±0.0002 1.3235±0.0002 1.3569±0.0003 -

0.90 1.3263±0.0003 1.3228±0.0002 1.3565±0.0003 1.4837±0.0003

1.00 1.3249±0.0002 1.3217±0.0004 1.3551±0.0004 1.4823±0.0003

1.10 1.3235±0.0003 1.3209±0.0004 1.3542±0.0003 1.4809±0.0003

1.20 1.3218±0.0004 1.3198±0.0003 1.3539±0.0003 1.4800±0.0003

1.30 1.3201±0.0002 1.3191±0.0002 1.3532±0.0003 1.4792±0.0003

1.40 1.3183±0.0003 1.3183±0.0003 1.3528±0.0003 1.4783±0.0003

1.50 1.3167±0.0004 1.3173±0.0004 1.3522±0.0003 1.4779±0.0003

1.60 1.3141±0.0004 1.3167±0.0005 1.3518±0.0004 1.4773±0.0004

Table 2. Experimental values of the refractive index of carbon disulfide, carbon tetrachlo-

ride, chloroform, and nitrobenzene at a temperature of 20 °C.

λ (µm) ncarbon disulfide ncarbon tetrachloride nchloroform nnitrobenzene

0.50 1.6473±0.0003 1.4652±0.0002 1.4495±0.0003 1.5671±0.0002

0.55 1.6348±0.0006 1.4616±0.0002 1.4461±0.0002 1.5574±0.0003

0.60 1.6266±0.0004 1.4595±0.0002 1.4434±0.0002 1.5505±0.0005

0.65 1.6186±0.0005 1.4570±0.0003 1.4418±0.0002 1.5456±0.0003

0.70 1.6136±0.0005 1.4558±0.0002 1.4402±0.0004 1.5420±0.0003

0.75 1.6091±0.0003 1.4547±0.0002 1.4391±0.0002 1.5390±0.0002

0.80 1.6058±0.0004 1.4536±0.0002 1.4383±0.0003 1.5367±0.0004

0.85 1.6032±0.0005 1.4523±0.0002 1.4374±0.0003 1.5346±0.0004

0.90 1.6008±0.0005 1.4519±0.0002 1.4369±0.0005 1.5333±0.0002

1.00 1.5976±0.0004 1.4512±0.0003 1.4357±0.0004 1.5307±0.0003

1.10 1.5947±0.0004 1.4504±0.0003 1.4351±0.0004 1.5290±0.0003

1.20 1.5929±0.0003 1.4497±0.0004 1.4346±0.0003 1.5273±0.0002

1.30 1.5909±0.0005 1.4491±0.0004 1.4342±0.0003 1.5264±0.0003

1.40 1.5900±0.0004 1.4488±0.0004 1.4340±0.0003 1.5256±0.0003

1.50 1.5888±0.0003 1.4484±0.0003 1.4335±0.0003 1.5247±0.0003

1.60 1.5880±0.0004 1.4479±0.0003 1.4332±0.0003 1.5240±0.0003

Far away from any resonance one can use the simpler Cauchy equation. Therefore the first

order Sellmeier equation can be expanded into a power series. Up to the second order one

obtains

n2(λ ) = 1+
A1λ 2

λ 2 −B1
≈ 1+A1(1+

B1

λ 2
+

B2
1

λ 4
) = C0 +

C1

λ 2
+

C2

λ 4
. (13)

An improvement in fitting the refractive index of liquids in the visible to near-infrared region

can be expected if a term C3λ 2 in Eq. (13) is added due to infrared vibrational absorption

#170502 - $15.00 USD Received 12 Jun 2012; revised 26 Sep 2012; accepted 2 Oct 2012; published 15 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 2,  No. 11 / OPTICAL MATERIALS EXPRESS  1597



bands [15] which leads to

n2(λ ) = C0 +
C1

λ 2
+

C2

λ 4
+C3λ 2. (14)

For each liquid the constants of the Sellmeier and the Cauchy formulas are calculated. To

choose the number of terms, the standard error of the constants, the summed squares of residuals

(SSE), the adjusted R-square, and the fit standard error (Root Mean Squared Error, RMSE) are

taken into account.

By careful comparison of the fitting results it turns out that one or two terms in the Sellmeier

formula (Eq. (12)) deliver satisfying results. However, the additional term in Eq. (14) offers

indeed better fitting results than Eq. (13) for the Cauchy formula.

In Table 3 and Table 4 the constants of Sellmeier and Cauchy formula and their statistics are

given for each liquid. The values of the standard deviation indicate good quality of the fits. The

error for n2
liq is in the best case about 3.0×10−4 for chloroform and still below 6.2×10−4 for

carbon tetrachloride in the worst case.

Sellmeier and Cauchy formulas shown in the following Figs. 8, 9, 10, 11, 12, 13, 14, 15 are

based on data between wavelengths of 500 nm and 1600 nm. For reasons of clarity no absolute

error bars associated with each measured refractive index value are plotted. In general, the re-

fractive index in the wavelength range of the visible to the near-infrared is caused by electronic

absorption in the ultraviolet and the vibrational absorption in the infrared. In the following

previously published data are shown in comparison, being in very good agreement with our

measurements.

3.1.1. Refractive index of distilled water

In Fig. 8 the measured values for the refractive index of distilled water are shown which are

listed in Table 1. We plotted there as well the Sellmeier formula given in Table 3 together with

reference values from Refs. [16, 18, 21]. For distilled water many reference data have been

published; only three are shown in Fig. 8. The dispersion curve from Ref. [18] is plotted in the

wavelength range between 405 nm and 1129 nm. From a wavelength of 800 nm upwards the
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Fig. 8. Dispersion of the linear refractive index of liquid water at a temperature of 20 °C.

Diamonds represent the experimental data listed in Table 1; the solid red curve is the cal-

culated Sellmeier dispersion formula given in Table 3; for comparison we also plotted the

reference data as squares and the corresponding dispersion curve (dashed black line) from

Ref. [18]. Circles are published data extracted from Refs. [16, 21].
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Table 3. Constants of Sellmeier and Cauchy formula of distilled water, heavy water, chlo-

roform, and carbon tetrachloride at a temperature of 20 °C.

Sellmeier formula Cauchy formula

Parameter y = n2(A1,B1,A2,B2) Parameter y = n2(C0,C1,C2,C3)

WATER

A1 0.75831±0.00082 C0 1.76880±0.00134

B1 (µm−2) 0.01007±0.00027 C1 (µm2) 0.00237±0.00093

A2 0.08495±0.01912 C2 (µm4) 0.00087±0.00017

B2 (µm−2) 8.91377±1.35076 C3 (µm−2) −0.01651±0.00048

SSE (10−6) 1.57 SSE (10−6) 1.92

Adj. R-Square 0.99957 Adj. R-Square 0.99948

RMSE (10−4) 3.62 RMSE (10−4) 4.00

HEAVY WATER

A1 −0.30637±0.76766 C0 1.74679±0.00108

B1 (µm−2) −47.26686±126.47658 C1 (µm2) 0.00633±0.00075

A2 0.74659±0.00104 C2 (µm4) 0.00014±0.00014

B2 (µm−2) 0.00893±0.00031 C3 (µm−2) −0.00623±0.00038

SSE (10−6) 1.26 SSE (10−6) 1.24

Adj. R-Square 0.99922 Adj. R-Square 0.99922

RMSE (10−4) 3.24 RMSE (10−4) 3.22

CHLOROFORM

A1 1.04647±0.00921 C0 2.05159±0.00100

B1 (µm−2) 0.01048±0.00130 C1 (µm2) 0.01005±0.00069

A2 0.00345±0.00941 C2 (µm4) 0.00059±0.00013

B2 (µm−2) 0.15207±0.09540 C3 (µm−2) −0.00052±0.00035

SSE (10−6) 1.13 SSE (10−6) 1.06

Adj. R-Square 0.99951 Adj. R-Square 0.99954

RMSE (10−4) 3.07 RMSE (10−4) 2.98

CARBON TETRACHLORIDE

A1 1.09215±0.00027 C0 2.09503±0.00208

B1 (µm−2) 0.01187±0.00012 C1 (µm2) 0.01102±0.00144

C2 (µm4) 0.00050±0.00026

C3 (µm−2) −0.00102±0.00074

SSE (10−6) 5.35 SSE (10−6) 4.61

Adj. R-Square 0.99826 Adj. R-Square 0.99826

RMSE (10−4) 6.18 RMSE (10−4) 6.20
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Table 4. Constants of Sellmeier and Cauchy formula of toluene, ethanol, carbon disulfide,

and nitrobenzene at a temperature of 20 °C.

Sellmeier formula Cauchy formula

Parameter y = n2(A1,B1,A2,B2) Parameter y = n2(C0,C1,C2,C3)

TOLUENE

A1 1.17477±0.00022 C0 2.17873±0.00138

B1 (µm−2) 0.01825±0.00009 C1 (µm2) 0.01886±0.00095

C2 (µm4) 0.00086±0.00017

C3 (µm−2) −0.00145±0.00049

SSE (10−6) 3.20 SSE (10−6) 1.82

Adj. R-Square 0.99964 Adj. R-Square 0.99976

RMSE (10−4) 4.96 RMSE (10−4) 4.07

ETHANOL

A1 0.83189±0.00196 C0 1.83347±0.00199

B1 (µm−2) 0.00930±0.00052 C1 (µm2) 0.00648±0.00138

A2 −0.15582±1.59085 C2 (µm4) 0.00031±0.00025

B2 (µm−2) −49.45200±537.47222 C3 (µm−2) −0.00352±0.00071

SSE (10−6) 4.53 SSE (10−6) 4.23

Adj. R-Square 0.99667 Adj. R-Square 0.99689

RMSE (10−4) 6.15 RMSE (10−4) 5.94

CARBON DISULFIDE

A1 1.50387±0.00027 C0 2.50984±0.00161

B1 (µm−2) 0.03049±0.00008 C1 (µm2) 0.04101±0.00112

C2 (µm4) 0.00252±0.00021

C3 (µm−2) −0.00183±0.00057

SSE (10−6) 5.84 SSE (10−6) 2.77

Adj. R-Square 0.99987 Adj. R-Square 0.99993

RMSE (10−4) 6.46 RMSE (10−4) 4.81

NITROBENZENE

A1 1.30628±0.00449 C0 2.31952±0.00125

B1 (µm−2) 0.02268±0.00079 C1 (µm2) 0.02355±0.00087

A2 0.00502±0.00474 C2 (µm4) 0.00266±0.00016

B2 (µm−2) 0.18487±0.02830 C3 (µm−2) −0.00259±0.00044

SSE (10−6) 2.57 SSE (10−6) 1.67

Adj. R-Square 0.99986 Adj. R-Square 0.99991

RMSE (10−4) 4.63 RMSE (10−4) 3.73
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red solid and dashed black lines run nearly parallel to each other with a maximum deviation

of 6× 10−4. Also, the values given in the Refs. [16] and [21] match very well with our data.

Moreover, a Cauchy formula from Ref. [16] in the range between 486 nm and 943 nm and the

values of Ref. [22] fit quite well our own measured values but are not shown in Fig. 8 for

reasons of clarity.

In general, the trend of dispersion of water differs from that of the other investigated liquids

due to the huge vibrational overtone absorption band at a wavelength of around 1400 nm (see

Fig. 16).

3.1.2. Refractive index of heavy water

In Fig. 9 the measured values for the refractive index of heavy water are shown which are

also listed in Table 1. Presented there as well are the Sellmeier data given in Table 3 together

with reference values from Ref. [21]. The corresponding dispersion curve is plotted in the wave-

length range between 405 nm and 768 nm. In this regime the solid red and the dashed black lines

show good agreement and deviate between 1.5× 10−4 and 4.5× 10−4. The deviations of the

extended Cauchy formula derived in Ref. [21] from our own Sellmeier formula increase with

increasing wavelength which indicates the limited usability of dispersion curves beyond their

measuring range. Furthermore, we observe a weaker influence of the first overtone vibration

on the dispersion curve compared to H2O since the absorption band is shifted to higher wave-

lengths (around 2.1 µm). This effect results from the heavier deuterium nucleus (see Fig. 17).
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Fig. 9. Dispersion of the linear refractive index of liquid heavy water at a temperature

of 20 °C. Diamonds represent the experimental data listed in Table 1; the solid red curve

represents the calculated Sellmeier dispersion formula given in Table 3; for comparison we

also plotted the reference data as squares and the corresponding dispersion curve (dashed

black line) from Ref. [21].

3.1.3. Refractive index of chloroform

In Fig. 10 the measured values for the refractive index of chloroform are shown which are

listed in Table 2. Presented there as well are the Sellmeier data from Table 3 together with

reference values from Ref. [22]. The single data points from Ref. [22] match very good with

the solid red curve and the deviations lie always below 4×10−4. We observe a deviation of at
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maximum 20×10−4 in comparison to Ref. [15]. In this reference the data points are located in

the wavelength range between 265 nm and 2480 nm, however, with a lack of measured values

between 656 nm and 2130 nm which is the reason for this huge deviation. Dispersion effects

due to the absorption bands displayed in Fig. 18 have not been found since the vibrational

overtones are too weak in the infrared range.
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Fig. 10. Dispersion of the linear refractive index of liquid chloroform at a temperature of

20 °C. Diamonds represent the experimental data listed in Table 2; the solid red curve is the

calculated Sellmeier dispersion formula given in Table 3; also shown is for comparison the

reference data from Ref. [22] as squares.

3.1.4. Refractive index of carbon tetrachloride

In Fig. 11 the measured values for the refractive index of carbon tetrachloride are plotted as

listed in Table 2. Presented as well is our Cauchy fit from Table 3 together with reference
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Fig. 11. Dispersion of the linear refractive index of liquid carbon tetrachloride at a tem-

perature of 20 °C. Diamonds represent the experimental data listed in Table 2; the solid

red curve is the calculated Cauchy dispersion formula given in Table 3; for comparison we

show the reference data from Refs. [16, 21, 22] as squares.
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values from Refs. [16, 21, 22]. The three single reference data points lie slightly above the

red solid curve, but differ not more than 4× 10−4. Due to the consistently small absorption

coefficient (see Fig. 19) no influences on the dispersion trend are noticeable.

3.1.5. Refractive index of toluene

In Fig. 12 we plot the measured values for the refractive index of toluene which are listed in

Table 1. Presented there as well are the Cauchy data given in Table 4 together with reference

values from Refs. [16, 22]. The dispersion curve from Ref. [15] is plotted in the wavelength

range between 405 nm and 830 nm. The solid red and dashed black curve match very well, and

the largest deviation above a wavelength of 600 nm is less than 2× 10−4. Also the measured

reference value of Ref. [16] derived with the Abbe refractometer at a wavelength of λ = 830 nm

differs less than 1×10−4. The steep decline of the refractive index of toluene is not affected by

the observed resonances shown in Fig. 20.
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Fig. 12. Dispersion of the linear refractive index of liquid toluene at a temperature of 20 °C.

Diamonds represent the experimental data listed in Table 1; the solid red curve is the cal-

culated Cauchy dispersion formula given in Table 4; for comparison we also plotted the

reference data from Refs. [16, 22] as squares as well as the dispersion curve (dashed black

line) from Ref. [15].

3.1.6. Refractive index of ethanol

In Fig. 13 the measured values for the refractive index of ethanol are shown as given in Table 1.

Presented there are also the Sellmeier data given in Table 4 together with reference values

from Refs. [16, 21, 22]. The dispersion curve from Ref. [16] is plotted in the wavelength range

between 476 nm and 633 nm. The solid red and dashed black curve agree very well and do

not differ more than 2× 10−4. The reference data point from Ref. [16] at a wavelength of

λ = 830 nm varies not more than 1×10−4 from our own Sellmeier equation, whereas the other

points from Refs. [21,22] a more scattered. The bend of the solid red curve is slightly influenced

by the strong absorption bands at a wavelength of around 1500 nm shown in Fig. 21.
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Fig. 13. Dispersion of the linear refractive index of liquid ethanol at a temperature of 20 °C.

Diamonds represent the experimental data listed in Table 1; the solid red curve is the cal-

culated Sellmeier dispersion formula given in Table 4; for comparison we also plotted the

reference data as squares from Refs. [16, 21, 22] and the dispersion curve (dashed black

line) from Ref. [16].

3.1.7. Refractive index of carbon disulfide

In Fig. 14 the measured values for the refractive index of carbon disulfide are displayed as listed

in Table 2. We also plot the Cauchy fit as given in Table 4 together with the dispersion curve

from Ref. [15] plotted in the wavelength range between 340 nm and 2430 nm. The trend of the

solid red and dashed black curve match very well. Due to the very steep decline of the refractive

index the maximal deviation is around 8×10−4.
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Fig. 14. Dispersion of the linear refractive index of liquid carbon disulfide at a temperature

of 20 °C. Diamonds represent the experimental data listed in Table 2; the solid red curve is

the calculated Cauchy dispersion formula given in Table 4; for comparison we also plotted

the dispersion curve (dashed black line) from Ref. [15].
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3.1.8. Refractive index of nitrobenzene

In Fig. 15 the measured values for the refractive index of nitrobenzene are shown which are

listed in Table 2. Presented there as well is the Cauchy formula given in Table 4 together with

reference values from Ref. [22]. The difference between the solid red curve and the reference

data points lies between 7× 10−4 and 9× 10−4. There also exist published data in Ref. [21]

which differ between 4×10−4 and 26×10−4 from our own Cauchy equation. The considerable

variations in the deviations result from the multitude of different reference sources mentioned

in the Handbook of Nikogosyan [21].
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Fig. 15. Dispersion of the linear refractive index of liquid nitrobenzene at a temperature of

20 °C. Diamonds represent the experimental data listed in Table 2; the solid red curve is the

calculated Cauchy dispersion formula given in Table 4; for comparison we also plotted the

reference data from Ref. [22] as squares.

3.2. Absorption coefficients

At each tube length several measurements at a room temperature of 20 °C are taken to mini-

mize the effect of unequal coupling into the spectrometer. From the transmission spectra for

each tube length with and without liquid filling one can calculate the wavelength dependent

absorption coefficient by Eq. (10). An average absorption coefficient can be calculated from

several possible combinations of the different sample lengths. On the one hand, at wavelengths

with strong absorption, only the short glass cells provide meaningful results because they can

best follow the steep rise and decline at the resonance positions. More light can be collected

by the spectrometer with the short cells. On the other hand at weak absorption regimes the

long tube lengths deliver more precise results since they can resolve the reduced effect of the

absorption by an increased propagation length (see Eq. (8)). All values of the absorption co-

efficient of the six investigated liquids and their standard error are given in the appendix as

comma-separated value text files. The uncertainty at each wavelength is calculated by the stan-

dard deviation of the average value. Generally, the absolute standard error is quite small, but

for low values of the absorption coefficient the relative deviation can become large as can also

be seen in the comparison with reference values in the water measurement in Section 3.2.1.
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3.2.1. Absorption of distilled water

In Fig. 16 the measured absorption coefficient of distilled water together with the reference

values of Ref. [22] are shown. The trend of the solid red and dashed black curve match well

apart from the height of the resonance peak at a wavelength of around 1450 nm. In Ref. [19] an

absorption coefficient of about 24cm−1 at the 1450 nm resonance peak is given. The deviation

of the peak heights at resonance positions can be related to the limited response and sensitivity

of the spectrometer. In our measurements cells not thinner than 1 mm and 2 mm are available

to increase the transmitted intensities.
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Fig. 16. Measured absorption coefficient of liquid distilled water at a temperature of 20 °C

on (a) linear and (b) logarithmic scale as a function of wavelength. For comparison to our

measured values (solid red line) we also plotted linearised reference data (dashed black

line) from Ref. [22] (Media 1).

A first larger absorption band occurs at a wavelength of 980 nm followed by another band at

around 1200 nm. The huge absorption band at a wavelength of around 1450 nm results from the

first overtone stretch vibration of the water molecule. The other two bands result from higher

overtones or combination vibrations. Our own measured resonance positions fit excellent to the

resonances mentioned in Ref. [19].

Upon comparison with the values of Refs. [19, 22], the used measurement method can be

successfully verified. Above a wavelength of 600 nm the relative deviation between the solid

red and dashed black curve is at its maximum 17 % but mostly clearly below except at the

steep rise at the wavelength of around 1365 nm where the difference is around 26 %. In the
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range between 500 nm to 600 nm in which the absorption coefficient falls below 1×10−3 cm−1,

the relative deviation can become large. However, the average relative deviation over the full

measurement range is only 8.5 %.

Possible error sources arise from the different incoupling into the spectrometer entrance, the

temporal instability of the white light source, dust on the end faces or in the liquid, temperature

variations, the measurement inaccuracy of the spectrometer, and slightly different reflection

coefficients at the interfaces. The main error from the slight difference in beam incoupling can

be minimized by several measurements searching each time for the highest detection signal

by fine adjustments of the mirrors. All together, these errors can serve as explanation for the

standard deviation as well as for the differences between our measurements and the references

for distilled water. However, these effects will cause uncertainties in further measurements and

have to be minimized.

3.2.2. Absorption of heavy water

In Fig. 17 the measured absorption coefficient of heavy water is shown. In contrast to H2O the

absorption bands are considerably weaker and shifted to higher wavelengths due to the heavier

deuterium nucleus. Resonance positions occur at a wavelength of around 1000 nm, 1330 nm,

and 1600 nm. Because only the shorter glass cells are applied for measuring the absorption

coefficient below a wavelength of 1200 nm, the measurement is noisy. Some reference data
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Fig. 17. Measured absorption coefficient of liquid heavy water at a temperature of 20 °C on

(a) linear and (b) logarithmic scale as a function of wavelength (Media 2).
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have been published in Ref. [22] for the wavelength range between 400 nm and 790 nm. In this

reference the values for the absorption coefficient are clearly smaller and lie between 0.3×
10−3 cm−1 and 1.0×10−3 cm−1. The deviation results from the application of the shorter glass

cells instead of the longer tubes in this wavelength region with very low absorption. We did not

use the longer tubes for the absorption measurement in the visible due to the high cost of heavy

water.

3.2.3. Absorption of chloroform

In Fig. 18 the measured absorption coefficient of chloroform is shown. The absorption bands

of chloroform are relatively narrow when compared with water. They arise from overtones of

the CH-group stretch mode and from combination vibrations. Additionally to the sharp peaks

at a wavelength of around 1150 nm, 1420 nm, and 1680 nm, numerous smaller peaks below an

absorption coefficient of 0.2cm−1 can be observed. The large peak at a wavelength of 1680 nm

could only be measured exactly when using the thinnest glass cells of 1 mm and 2 mm length,

whereas the smaller peaks are only visible with the longest tubes.

Wavelength ( m)μ

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

5

10

15

20

Wavelength (nm)

A
b

s
o

rp
ti
o

n
 c

o
e

ff
ic

ie
n

t 
(1

/c
m

)

Measurement

Linear scale

0.6 0.8 1.0 1.2 1.4 1.6

0.01

0.1

1

10

A
b

s
o

rp
ti
o

n
 c

o
e

ff
ic

ie
n

t 
(1

/c
m

)

Measurement

Logarithmic scale

CHLOROFORM (CHCl )3

Fig. 18. Measured absorption coefficient of liquid chloroform at a temperature of 20 °C on

(a) linear and (b) logarithmic scale as a function of wavelength (Media 3).

3.2.4. Absorption of carbon tetrachloride

In Fig. 19 the measured absorption coefficient of carbon tetrachloride is shown. Due to the con-

sistently small absorption coefficient α , which never exceeds 6× 10−3 cm−1, only the longest
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tubes of 250 mm, 500 mm, 750 mm, and 1000 mm length are used to determine the value of α .

The wavelength range only spans from 500 nm up to 1500 nm as the glass cell measurements

above 1500 nm are dominated by noise.
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CARBON TETRACHLORIDE (CCl )4

Fig. 19. Measured absorption coefficient of liquid carbon tetrachloride at a temperature of

20 °C on (a) linear and (b) logarithmic scale as a function of wavelength (Media 4).

3.2.5. Absorption of toluene

In Fig. 20 the measured absorption coefficient of toluene is shown. The same shapes of the

three absorption bands at a wavelength of around 730 nm, 900 nm, and 1150 nm with decreas-

ing intensities indicate higher vibrational overtones. The pronounced peak at a wavelength of

around 1700 nm could not be fully resolved due to the decreasing intensity of the white light

source at this wavelength range. Toluene consists of a benzene ring with an additional CH3-

group. Amongst others, the absorption bands result from stretching overtones of the CH- and

CH3-group.

3.2.6. Absorption of ethanol

In Fig. 21 the measured absorption coefficient of ethanol is shown. The spectra are dominated

by vibrational overtones from the groups CH2, CH3 and CH2OH. The shapes of the absorption

bands at wavelengths of around 630 nm, 730 nm, 930 nm, and 1200 nm are very similar. Also

the peak at a wavelength of around 1700 nm could be not fully assessed.

#170502 - $15.00 USD Received 12 Jun 2012; revised 26 Sep 2012; accepted 2 Oct 2012; published 15 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 2,  No. 11 / OPTICAL MATERIALS EXPRESS  1609

http://www.opticsinfobase.org/ome/viewmedia.cfm?uri=ome-2-11-1588&seq=4


TOLUENE (C H )7 8

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

4

8

12

Wavelength (nm)

A
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t 
(1

/c
m

)

Measurement

Linear scale

0.6 0.8 1.0 1.2 1.4 1.6

0.01

0.1

1

10

Wavelength ( m)μ

A
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t 
(1

/c
m

)

Measurement

0

Logarithmic scale

Fig. 20. Measured absorption coefficient of liquid toluene at a temperature of 20 °C on (a)

linear and (b) logarithmic scale as a function of wavelength (Media 5).

4. Conclusion

The dispersion and absorption properties of several frequently used nonlinear liquids in the

visible and near-infrared have been measured at a temperature of 20 °C. The refractive index

measurement requires the calculation of correction terms in order to use a standard Abbe refrac-

tometer in a wider wavelength region beyond the visible. Comparisons with original corrections

from Zeiss confirm the used method. All modifications which are needed to extend the applica-

tion range are described and given in detail. Accurate measurement data between a wavelength

range from 500 nm up to 1600 nm together with their fitting constants of Cauchy and Sellmeier

equations are given for the first time over this broad wavelength region and were successfully

compared with sparsely existing published data.

The described technique can easily be applied and extended to longer wavelengths above

1600 nm with suitable cameras and more powerful and broadband white light sources. A lim-

iting factor due to the transmittance of lenses, prism, and their coatings according to Ref. [16]

could not be observed in our spectral range. Strongly absorbing liquids such as water or ethanol

have to be investigated in reflection mode and may cause problems at higher wavelengths due

to a reduction of the image contrast. Moreover, the refraction index measurement with the Abbe

refractometer can be easily transferred to further liquids. An improvement in accuracy could be

achieved by a more stable cooling system.

The absorption coefficient α can be determined from the transmitted intensity through cells

or tubes of different lengths. Due to the fact that each value α is calculated by using two
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Fig. 21. Measured absorption coefficient of liquid ethanol at a temperature of 20 °C on (a)

linear and (b) logarithmic scale as a function of wavelength (Media 6).

different length combinations, identical positioning and preparation of the samples have to be

taken into account. Also the suitable choice of cells or tubes depending on the magnitude of

absorption have to be considered. For small values of the absorption coefficient the longer tubes

are ideal, whereas at absorption resonances the thinner glass cells provide meaningful results.

The measurement technique could be successfully verified by comparison with reference data

for distilled water. Measurements in a wavelength region between 500 nm and 1750 nm (for

CCl4 only up to a wavelength of 1500 nm) were taken.

The used technique can also easily be extended to other liquids and different wavelengths.

However, for strongly absorbing liquids the application range is restricted because of the avail-

able thicknesses of the glass cells below 1 mm. The transmitted intensity could be increased

by a more powerful white light laser, however possibly at the expense of spectral stability and

therefore also leading to reduced accuracy.

In general, the presented methods provide an easy and accurate way to determine the refrac-

tive index and the absorption coefficient of liquids. If the desired liquid is not included in the

collection presented in this paper, all necessary information are provided here to transfer these

techniques and apply them to the liquid of interest.

Acknowledgments

This work was supported financially by DFG, BMBF, GIF, BW-Stiftung, and Alexander von

Humboldt Stiftung. We acknowledge support from the German Research Foundation (DFG)

within the funding program Open Access Publishing.

#170502 - $15.00 USD Received 12 Jun 2012; revised 26 Sep 2012; accepted 2 Oct 2012; published 15 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 2,  No. 11 / OPTICAL MATERIALS EXPRESS  1611

http://www.opticsinfobase.org/ome/viewmedia.cfm?uri=ome-2-11-1588&seq=6

