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Let & and B represent the full algebras of linear operators
on the finite-dimensional unitary spaces 57 and .7, respec-
tively. The symbol .<7(%, B) will denote the complex space
of all linear maps from U to B. This paper concerns itself
with the study of the following two comes in &~(%, B):

(i) the cone & of all Tc < (¥, B) which send hermitian
operators in % to hermitian operators in B, and

(ii) the subcone =+ (of &) of all Te & (¥, B) which
send positive semidefinite operators in ¥ to positive semidefinite
operators in B.

In our main results, we characterize the transformations in the
cone %= (Theorem 2.1) and present a structure theorem concerning
the transformations in the cone &+ (Theorem 2.3). Identifying oper-
ators in the algebras 2 and B with appropriate square matrices, we
may summarize Theorem 2.1 by saying that any and every linear
transformation 7T which preserves hermitian matrices is of the form
T:A—-> a,X*A'X,, where each «; is a real scaler, and each X, is
a certain rectangular matrix depending on 7; X and A' represent
the conjugate transpose and the transpose of matrices X, and A,
respectively. Theorem 2.3 says that the cone of positive semidefinite-
preserving transformations &+ “generates” or spans all of (¥, B)
in the sense that any 7T in &2 (2, B) can be written

T= (K, - K, + K, K),

where 7* = —1, and each K; is an element of & *.

1. Preliminaries. L( %", 5#) denotes the space of linear trans-
formations from the Hilbert space .9~ to the Hilbert space 7.
We define:

1 (a). (x X y)—the dyad transformation, an element of L(.5%", 57),
is defined for fixed x € 5 and ye . % by: (z X y)(z) = (2, ¥)x for all
z€ . 9%, where (z,y) is the inner product of z with y. As it turns
out, (z, ¥) = tr (x X ¥)), the trace of (z X y). If AeW=(L(#, &)
and BeB(=L(9%", ")), then (A(x) x B(y)) = A(x X y)B*.

1 (b). P,—denotes the orthogonal projection onto the subspace
spanned by z, i.e., for (x,x) = 1, we have P, = (x X x).
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1 (¢). [A, B]—is the inner product defined on 2 (resp. B) by
setting [A, B] = tr (B*A) for all A, Be ¥ (resp. B) where B* is the
Hilbert space adjoint of B, and tr(.) is the trace functional on U
(resp. B). More generally, L(.5%, 5#°) becomes a Hilbert space once
we define the inner product [4, B] = tr (B*A4) for all 4, Be L(.57, S7).
Consequently, for w,, w,e 57, and u,, u,€ %", so that (w, X u,) and
(w, X u,) belong to L(25, 57), we have

[(w; X w,), (W, X U)] = tr ((w, X u)*(w; X %))
= tr ((u, X W) (W, X u,))
= tr ((wy, w)(Uy X u,))
= (Wq, W) (U, Uy) .

1 (d). (A][B)—the dyad transformation, an element of _.~(3B, ),
is defined for fixed transformations Acq and Be®B by (4][B)-C =
[C, B]A, for all C in B. As in 1(a)., [4, B] = tr ((A][B)), the trace
of (A][B).

1 (). AR B—the tensor product of algebras A and B, consists
of sums of elements of the form A& B, where Ac¥W and Be®B
[2, Chapter 16]. The symbol (A ® B)° will denote the element B A,
and can be linearly extended to any element of A& B.

1 (). [A,Q B, A, Q B,]—the inner product which gives the alge-
bra A ® B a Hilbert space structure, is defined by

[4: ® By, A, ® B.] = [Ay, A.]-[By, Bi]
for all A, 4,¢ ¥, and all B, B, B.

1 (g). _#(T)—the element of A QB which is defined for each
T in g2, B) by [Z(T), A*Q B] = [T(A), B], for all Ac¥U, BeDB,
This equation also defines .# as a linear transformation, sending the
space (U, B) to the algebra A K B.

1 (h). 57 —the space of all linear functionals on 5#°. For each
z e 27, we define the functional Z € 57 by Z(y) = (y, x) for all y € 57
Moreover, these are the only elements of 5. An inner product is
defined on 57 by setting (%,%) = (y,») for all %, yeSZ. Thus,
(%, ) = (v, ), the complex conjugate of (y, ).

1 (i). A'—the transpose of the operator A, is the linear operator
on 57 defined by AY%)(x) = J(A(x)), for all Fe 57, and all ze
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[1, p. 103]. From this it follows that (x x y)' = (¥ x %). If A is
defined to be (A*), then (z X y) = (T x ¥) and AZF) = A(x). From
this we see that for all Ae, A* = A*. In fact, set A = (x x y) for
z,yeA. Then

=@y =@x) =FxD=Fxn=(@xy =4,

Hence, by linear extension, A* = A* for all Ae 2.

1 (j). L(s57, 5#)—is spanned by the dyads (x x %), where x ¢ 5#
and 7e¢ .9 . In this context, we identify the transformation A ® B
with the transformation C— ACB* for all Ce L(.% ", 5), where
AecW=L(F, 57)) and Be B(=L(27, 97°). Behind this identification
is the isomorphism ¢: 57 ® . % — L(.%", 57°) defined by ¢(x @ y) =
(xx ¥y for all xe 27, ye 2. If for each Ac U, BeB we define
the linear transformation O, ,: L(.9%, 57) — L(.9%, 7) by 0,,C) =
ACB! for all Cc L(.%7, &), then A® B corresponds to 0, in the
sense that ¢o(AQ B)egp™ = 0,,5. In fact, we have

(po(AQB)og(x X §) = $(AQ B(x Q@ y)) definition of ¢~
= ¢(A(x) @ B(y))  definition of AR B

= (A(z) X B(y)) definition of ¢
= (A(z) x B(¥)) from 1 (i).

= A(x x §)B* from 1 (a).
= A(x x §)B* since B* = B, see 1 (i).
= 04,5((% X ¥)) definition of O, .

For convenience, however, we shall treat A ® B as though it were
actually equal to the concrete linear transformation O, , = A(-)B".
In so doing, we have

(@ X Pl X v) = (@ X u) QF X )

for vectors z, y, u, v in (not necessarily the same) Hilbert space.
The linear transformation .7 (see 1(g).) will prove to be of funda-
mental importance. For this reason, we isolate some of its properties in

ProposiTiON 1.1. (1) _#(BJ[A) = A*® B for all Ac¥, BeB.

(2) _A~A(T)=23,;E*Q TE,) for any and every orthonormal basis
{E;} for 2.

(3) If T(A*) = T(A)* for all Ac ¥ (i.e., if Te %), then #(T) =
2 T*(F;) @ F* for any orthonormal basis {F;} for B.

(4) If T(A*) = T(A)* for all Ae ¥, then #(T*) = _#(T)".
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(5) ¥ is an isometric isomorphism from the Hilbert space
(U, B) onto the Hilbert algebra A & B.

Proof. From the definition 1(g). of _#, we have

[.#(Bl[4), C & D] = [(BI[A)(C™), DI

= [C*, A][B, D] from 1 (d).
= [A*, C]IB, D]
=[4*® B, CQ D] from 1 (f).

for all 4,Ce U and all B, DeB. This implies Part (1).

Now let {E;} be any orthonormal (o0.n.) basis for . If 7= (B][4)
for Ae and Be®B, then

S Er @ T(E) = 3 B @ (BIAVE)

=3, AlEF QB from 1 (d).

= Z [A*, EX|EX @ B

= ;l* X B which, from Part (1)
= _#(BJl4) .

The dyads (B][A), Ae¥U, BeB, span the space (U, B), so that
(using linearity of _#) for all Te < (U,B), #(T) = >, EXRQ T(E)),
which establishes Part (2).

Part (3) follows from (2) and (4) inasmuch as if #(T*) = _#(T)",
then 3\ TH(F),) Q@ Fi* = QL F* Q T*(Fy))' = #(T*) = #(T)

But Part (4) obtains, since for all Ae ¥, Be %,

[Z(T*), AR B] = [T*(4*), B] definition 1 (g). of _#
= [T(B)*, A]
= [T(B*), A] if and only if T(B*) = T(B)*

=[_A(T), B®Q A] definition 1(g). of 7~
=[A(T), AQ B] .

That is, #(T*) = _#(T)" and Part (4) is proven.
As for demonstrating Part (5), observe that for all A4,, A,¢ %, and
B, B,e,

[.7 (B[4, Z(B,][4)] = [4} Q B, A¥ ® B,] from Part (1)
= [AF, AF] tr ((B}[B.)) from 1 (d). and 1 (f).
= tr (B,][4)-(B.][4.)%)
= [(B:[A), (B:1[4.)] .
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By linear extension on each argument of the inner product, we have
that for all Ty, T,c ¥ (U, B),

[A(T), 7 (T)] = [Ty, Ty

so that _# is an isometry from (U, B) to AR B. From Part (1) it
is easy to see that _# is also an onto transformation as well, since the
algebra A R B is spanned by elements of the form A* ® B. This
completes the proof of Proposition 1.1.

Our next result establishes a necessary and sufficient condition
for a transformation in <~(U, B) to be in the cone & .

ProprosITION 1.2. A transformation Te &~ (U, B) is in & if and
only if _#(T) is hermitian.

Proof. Recall that .7 maps &~ (, B) (isometrically) onto A R B,
which has been identified as the algebra of linear operators on the

Hilbert space L(.5%7, 57) (see 1(j)). Now for all Ac?, BeB,
(a) [A(T), AQ B] =|.7(T), A" ® B”|

(b) = |T(4), B*| definition 1(g) of _#
(c) = [T(4)*, B]

where (a) and (¢) follow from the properties of the inner product,

viz., |Y, Z| = |Y*, Z*] for all operators Y and Z. Now,
[T(A)Y*, B] = [T(A*), B] for all AeA, Be®B,

if and only if T(A)* = T(A4*) for all Ae?. Finally, [T(A*), B] is
equal to [_#(T), AR B], so that for all Ac %, BeB,

[A(T) — A(T), AQB] =0
if and only if T(A*) = T(A)*. This completes the proof.

REMARK. We have just shown that Te <~ (%U, B) preserves her-
mitian operators (T'e ) if and only if _#(T) is hermitian. It is
not unreasonable to suspect that T preserves positive semidefinite
(psd) operators (Te & *) if and only if _#(T) is psd. However, this
conjecture is false, for if A = L(57, 57), and if B = L(5, %),
then for any multiplicative transformation T e <~ (U, B) (T(AB) =
T(A)T(B)), we have Te z*; but _~#(T) will always have some nega-
tive eigenvalues. For a specific example choose A = B = L(SF, 57),
the algebra of operators on 522, Let Te <~ (U, B) be the identity
transformation T(A) = A for all AeU. Surely Te z*. Now choose
the o.n. basis {e, e, ---, ¢,} for 57°; then {(e; X ¢;):4,7 =1,2, -++, n}
is an o.n. basis for 2 so that from Proposition 1.1 Part (2), we have
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F(T) =2 (e X ;)" Q(e: X e;) =3, (e; X €;)Q(e; X e;) .
The situation may be represented by the following diagram:

A = L(&7, 5F) T = identity A= L(7, 57)

(e; X e)) (e; X ¢;)
L(SZ, 57) _#(T) = transpose  L(SF, 5F)
(ep X e_q) (eq X é},) .

From 1(i) and 1(j) we conclude that _#(T)((e, X €,)) = (¢, X €,) for
(e, X €),p,q=1,2,-++,m, in the space L(57, 5#). That is, if T
is the identity operator on the Hilbert algebra L(5#, 57), then _#(T)
is the transpose operator on the Hilbert space L(S57, 5#). It is easy

to see that vectors of the form (e, x &,) — (¢, X €,) in L(57, 57) are
eigenvectors for _#(T) corresponding to the eigenvalue —1. _#(T)
(which is hermitian due to Proposition 1.2), is therefore not a psd

operator on the Hilbert space L(S7, 57).

2. The main results. We present a structure theorem which
characterizes elements of the cone &,

THEOREM 2.1. Suppose that Tez < <R, B). _2(T) is self-
adjoint by Proposition 1.2, with spectral resolution >, a; P (X)),
where «; 1s real, P (X;) = (X[ X,) is the orthogonal one-dimensional

projection on the unit vector X, e L(.57, 57°), and the X!s form anm
o.n. basis for L(9, 57). Let Ac: then

T(A) = X a,XrAX, .

Proof. For any xe 57 and ye 9%,
(1) [T(P,), P,] = [.#(T), P,Q P,]

(2) = S XX, @ x )@@ x )] from 1(b)
(3) = SaXNX), @ x Plie x D] from 1()
(4) = Satr(@ x glle x 9-(X][X)  from 1(0)
(5) = S alX, @ x Pl x 9, X

(6) = 211 a; tr (¥ x 2)X;) tr (X*(@ X ¥))

(7) = %] a; tr (€ x X*@)) tr (X*(x X 7))  since

@ X 2)X; =y X X*(x); see 1(a)
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(8) = Z a (¥, XF@)XF (@), ¥) from 1(a)
Now for w,, w,e€ &~ and u,, u,€ .9, we have that

(U, W) (W1, Wy) = [(wy X W), (W, X Uy)] (see 1 ().,

80 (8) becomes
(9) = 2 af{(Xi (@) X XF@), (7 x 9]
(10) =3[ XHx x )X, (P)] .

Since the transpose is a self-adjoint operator, equation (10) becomes

11) = 2 a(X P X)), P,] .

Thus, for every z e 27 and every y €. %,
t

[T(Px) — (z aiXi*Pin) P,,] ~0.

But then,
TP, =G aXiPX)

for all P,c . Since the transpose operator squared is the identity,
we may apply it to both sides of the last equation to obtain

(12) T(P,) = 3 a;X;iP.X,

for all P,e . This result extends from the set of one dimensional
orthogonal projections P, to hermitian operators; this, in turn, extends
to arbitrary operators of 2. Thus, the theorem is proved.

REMARK. Suppose the dimension of 2% = n and the dimension
of 9% = m, where 57 and 9 are the underlying Hilbert spaces
for the operator algebras 20 and B, respectively. Relative to certain
ordered bases for 5 and .9, each operator of 2 and B is identified
with a certain square matrix. The o.n. basis vectors X; of L(.%, 5¥)
are then realized as certain m x m matrices; the operator X is
identified with the m x n conjugate transpose matrix of X,. Thus,
Theorem 2.1 may be interpreted as saying that any linear transform-
ation 7, sending the full matrix algebra 2 to the full matrix algebra
B is of the form

T(4) = (z aiXi*AX,->t

for certain real scalars «; and certain n x m matrices X, if and only
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if T preserves hermitian matrices. Equivalently,

t
T(A) = <z aiXi*AXi>
= 3 A XIA(XP)

for certain real scalars «; and certain # x m matrices Y, depending
on T, characterizes those transformations T: % — B which preserve
hermitian matrices.

COROLLARY 2.2, Let Te Z(U,B) where _#(T) is psd in AR B.
Then Te &+ cC <Y, B).

Proof. Since _#(T) is psd in A QR B, . _#(T) has spectral resolu-
tion 3 a,”(X;) where the scalars «; are nonnegative, Z2(X;) is the
orthogonal one-dimensional projection onto X;e L(9%, &) and the
Xs form an o.n. basis for L(.% ", 5#). Since _#(T) is psd, it is,
a fortiort, self-adjoint, so that 7T is at least an element of the cone
& (Proposition 1.2). But this gives us sufficient leverage to employ
the representation of Theorem 2.1, Hence, T'(-)' = 3, o, X*(+)X; where
the a,’s are nonnegative scalars. In order to show that T sends psd
operators to psd operators (i.e., T € &%), it is (necessary and) sufficient
to show that T sends one-dimensional orthogonal projections P, to psd
operators; to do this, it is (necessary and) sufficient to show that the
operator T'(-)' sends these projections P, to psd operators. But

T(P,)' = > a(XFP.X))

from Theorem 2.1. Observe that each term X*P.X; = (P,X,)*(P,X))
is psd, and hence, so is >}; @, X;*P,X;, the sum of nonnegative multiples
of these psd terms. The proof is done.

We come to our final theorem which tells us that the cone &+
“generates” the space &~ (2, B) in much the same way that the cone
of psd operators (in A, say) “generates” 2.

THEOREM 2.3. Suppose Te (U, B). Then for some K, K,, K,,
K ez,
T = (K, — K,) + i(K; — K,)

where ¥ = —1

Proof. _#(T), an element of the algebra A Q B can be decomposed
as follows:
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(%) A(T) = U, —-U,) +uUs,— U, ,

where each of the U;’s is psd in AR WBW. Proposition 1.1, Part (5),
tells us that _7: &<, B) —» AR B is an isometry. Since the (vector
space) dimensions of <~ (2, B) and A R B agree, _~ is, in fact, one-
to-one and onto; thus, .# ' exists as a well-defined linear operator.
Applying ._#Z to (x) yields

T=[77(U) — 7 U)] + 7 (Uy) — ~(U))] .
Now let K, = _#7'(U;),1 =1,2,3,4. Corollary 2.2 forces us to conclude
that K; e &* since _#(K;) = U; is psd. Thus, for any T e <~ (U, B)
T= (K — K, + 1(K; — K))

where each K;c &+ C ~(2U, B).
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