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Abstract

Background: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-
related diseases. In mammals, levels of polyamines (PAs) decrease during the ageing process; PAs are known to decrease
systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs
levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis
LKM512 is known to increase intestinal luminal PA concentrations.

Methodology/Principal Findings: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11
months, while the controls received no supplementation. Survival rates were compared using Kaplan–Meier survival curves.
LKM512-treated mice survived significantly longer than controls (P,0.001); moreover, skin ulcers and tumors were more
common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using
HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene
expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty
acids, were significantly higher in LKM512-treated mice (P,0.05). Colonic mucosal function was also better in LKM512 mice,
with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were
evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of
ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice
resembled those in 10-month-old untreated (younger) mice.

Conclusion/Significance: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512,
possibly due to the suppression of chronic low-grade inflammation in the colon induced by higher PA levels. This indicates
that ingestion of specific probiotics may be an easy approach for improving intestinal health and increasing lifespan. Further
studies are required to clarify its effectiveness in humans.
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Introduction

More than 100 years have passed since Metchnikoff introduced

oral bacteriotherapy to prevent intestinal putrefaction and ageing

[1]. However, no study has reported an increase in longevity

following treatment with yogurt or probiotics.

Many mechanisms have been shown to contribute to the

process of senescence, such as telomere shortening in replicative

cells, cumulative damage to DNA leading to genomic instability,

oxidative damage to critical molecules by reactive oxygen species

(ROS), and so on [2]. These mechanisms also comprise chronic

low-grade inflammation, a major risk factor for ageing and age-

related diseases, such as Alzheimer’s disease and type II diabetes

[3,4]. Furthermore, the prevention of chronic low-grade inflam-

mation appears to be one of the most effective approaches for

increasing longevity [5].

At least 1,000 bacterial species have been found to inhabit the

human intestine, and 1014 individual bacterial cells of at least 160

different species inhabit each individual’s intestine [6], which is 10

times greater than the total number of somatic and germ cells in

the human body [7]. Intestinal microbiota plays a fundamentally

important role in health and disease [7]. In the healthy intestinal

tract, the microbiota and the gut-associated immune system are

assumed to share a fine and dynamic homeostatic equilibrium [8].
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The chronic low-grade inflammation process may undermine this

balance. Although there have been no studies demonstrating the

relationship between intestinal luminal environment, chronic low-

grade inflammation , and lifespan, we believe that lifespan can be

extended by the inhibition of chronic low-grade inflammation via

the control of intestinal microbiota for the following 4 reasons.

First, the lifespan of germ-free mice is longer than that of

conventional mice [9]; second, intestinal microbiota undergoes

alterations by ageing [10,11]; third, intestinal microbiota stimu-

lates host mucosal and systemic immunity [12]; and lastly, ageing-

associated deterioration in intestinal barrier functions may permit

increased systemic absorption of intestinal luminal antigens [13].

Polyamines (PAs), such as putrescine (PUT), spermidine (SPD),

and spermine (SPM), are organic cations required for cell growth,

cell differentiation, and for the synthesis of DNA, RNA, and

proteins [14]. PAs are known to possess anti-inflammatory activity

via the inhibition of inflammatory cytokine synthesis in macro-

phages [15] and the regulation of NFkB activation [16], and are

closely associated with the maintenance of the intestinal mucosal

barrier function [17]. Furthermore, PAs function as ROS

scavengers, acid tolerance factors, chemical chaperones, and

positive regulators for the expression of stress response genes [18];

PAs also have antimutagenic activity [19]. As exogenous PAs

derived from meals are absorbed before they reach the lower parts

of the intestine [20], it has been suggested that the greatest

amounts of the PAs in the lower parts of the intestine are

synthesized by intestinal microbiota [21]. In mammals, body PA

levels decrease during the ageing process [22]; intestinal PA

concentrations in the elderly are lower than those in healthy adults

[23], suggesting that these compounds may be linked to senescence

and longevity.

The probiotic strain Bifidobacterium animalis subsp. lactis LKM512

(hereafter referred to as LKM512) exhibits potent acid tolerance

and the ability to adhere to intestinal mucin, alters intestinal

microbiotic populations [24,25], and increases intestinal PA

concentrations in humans [24,26]. In fact, consumption of yogurt

containing LKM512 has been shown to result in increased

intestinal PA concentrations and decreased levels of acute

inflammation markers in hospitalized elderly patients [26].

On the basis of these data, we hypothesized that the use of

probiotics such as LKM512 would increase mammalian longevity

by suppressing chronic low-grade inflammation [27]. To test these

hypotheses, we examined middle-aged (10-month-old) mice that

were provided a standard diet supplemented by oral doses of

LKM512 or control. After 6 months of treatment (when the mice

were 16 month old), LKM512 mice showed increased longevity as

compared to the control mice.

Results

Effects of LKM512 treatments on survival
Mice treated with LKM512 lived significantly longer than

controls (P,0.001) (Fig. 1A). The survival curves of the 2 groups

began to diverge at 20 weeks (when the mice were 15 months old),

and remained apart until the end of the study. However, there was

no significant weight difference between the groups, or any

noticeable difference in weight fluctuation during the study period,

although mice in both treatment groups were given a standard

pellet chow diet ad libitum (Fig. 1B). It is important to note that the

longevity observed in the LKM512-treated mice was not related to

calorie restriction (CR), which has been shown to increase

longevity in a variety of species [28].

In the mice in the control group, the incidence of visible tumors

(P,0.05) and skin ulcers (P = 0.155) was higher than that in the

LKM512 treatment group (Fig. 1C–E). Additionally, skin and hair

quality was better in LKM512 mice than in control mice,

indicating that this treatment allows mice to not only live longer,

but also be healthier as they age. These results were not influenced

by the stress of establishing and maintaining social rank, because

we observed no fighting amongst the female mice used in this

study.

Response of intestinal environment to LKM512
LKM512 administration inhibited constipation; however, the

large bowel contained many feces with low water content (50–

60%) in half of the control mice that survived until week 45 (21

months old). In contrast, the large bowel of LKM512-treated mice

contained feces with high water content (60–70%) (Fig. 2A). This

suggests that the control mice might have displayed symptoms of

constipation.

We used reverse transcription-quantitative PCR (RT-qPCR)to

quantify commensal gut bacteria by measuring their expression of

the 16S rRNA gene. In general, we found that the LKM512

treatments altered 16S rRNA gene expression of several

predominant bacterial groups by week 45 (Fig. 2B). Specifically,

the 16S rRNA gene expression of both B. animalis subsp. lactis

(LKM512) and Prevotella spp. were detected in all mice from the

LKM512 group and were higher than that in control mice

(P,0.01 and P,0.001, respectively). To the best of our

knowledge, this is the first demonstration that Prevotella counts

may be increased by the administration of probiotics. Further-

more, these values were higher at the end of the LKM512-

treatment period when the mice were 21 months old, than before

the treatment began when mice were 10 months old (younger

mice) (P,0.001). Following LKM512 treatment, 16S rRNA gene

expressions of Clostridium cluster XIVa (vs. younger mice, P,0.05)

were also altered. We also found evidence that LKM512

administration suppressed age-related changes in intestinal

microbiota: 16S rRNA gene expression of the Bacteroides fragilis

group (P,0.05) and Enterobacteriaceae species (P = 0.06) differed

between the control group and younger mice, but not between the

LKM512-treated and younger mice. Other bacterial genera

showed no alterations.

The fecal concentrations of PAs, particularly SPM, which is the

most bioactive PA, were significantly higher in the LKM512 mice

than in the control mice (P,0.05, Fig. 2C). The correlation

between fecal SPM concentration and 16S rRNA gene expression

of the predominant bacterial group is shown in Fig. S1. This may

have been due to the activity of B. animalis subsp. lactis (LKM512)

and/or Prevotella spp., caused by the administration of LKM512,

since the SPM concentration correlated better with the 16S rRNA

gene expression of these bacteria as compared to other bacterial

groups (Fig. S1). However, in this study, we could not specifically

identify the bacterial group that produces PAs. Moreover, the

complete genome sequence for B. animalis subsp. lactis indicates

that this species does not possess the pathways for SPM synthesis;

therefore, it was clear that LKM512 itself did not produce SPM.

LKM512 administration did not significantly change short chain

fatty acids (SCFA) concentrations (Fig. 2D). Fecal mutagenicity

was significantly lower in the LKM512 mice than in control mice

(P,0.05, Fig. 2E). PAs are known to have strong bioantimutagenic

activities [19], we considered that this might be due to the increase

in SPM concentration caused by LKM512 administration.

However, other factors may have been involved in decreasing

mutagenicity, e.g., binding of the mutagen to LKM512 cell walls

as well as those of other bifidobacterial strains [29] or a decrease in

mutagens caused by enzymes derived from the altered intestinal

microbiota, such as b-glucuronidase.

Probiotics Promote Longevity in Mice
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Effects of LKM512 on colonic barrier function
Mice that received LKM512 treatments had functional colonic

mucosal layers; for instance, goblet cells were observed along the

length of the crypt. On the other hand, there were clear signs of

degradation in mucosal function in control mice, in whom the

crypts were degraded and few goblet cells were observed in ,50%

of the control mice that survived until week 45 (21 months)

(Fig. 3A). At week 25, the urinary lactulose/rhamnose (L/R) ratio

of LKM512 mice was significantly lower than that in control mice

(P,0.05) (Fig. 3B). This indicated improved maintenance of the

intestinal barrier function by LKM512 treatment [30].

LKM512 treatment changed the gene expression of some

intestinal barrier associated proteins (Fig. 3C). Administration of

LKM512 tended to increase the expression of MUC2, a mucin

that is secreted by goblet cells to form the colonic mucus layer

(P = 0.07). Levels of MUC2 gene expression in the LKM512

group were equivalent to those observed in younger mice.

However, colonic gene expression of MUC3, a membrane-bound

mucin, was not altered by LKM512 administration. Colonic

gene expression of occludin, one of the tight junction-associated

proteins that help maintain intestinal barrier function, was

increased by LKM512 administration (P,0.05). However,

zonula occludens (ZO)-1 was not altered by LKM512 admin-

istration.

Colonic microarray analysis
We examined gene expression patterns in the middle colons of

mice in each of the 3 groups, i.e., LKM512 mice, control, and

younger (pretreatment) mice (Fig. 4A). Using 4-fold change as a

cutoff, we detected 11,164 differentially expressed genes. Although

expression patterns in LKM512 mice were similar to those in

younger mice, these patterns contrasted with that of control mice.

This suggests that senescence-associated colonic gene expression

was suppressed by LKM512 administration. By combining the

functional annotations for these genes, we were able to assign

multiple biological functions to certain genes and classify them into

9 putative functional categories. This allowed us to determine that,

in most of these categories, a greater number of genes were

upregulated than downregulated during the ageing process

(Fig. 4B).

When the mice aged or were administered LKM512 treat-

ments, 55 of 93 gene pathways were altered significantly (Z-score

.1.98), while the gene expression for 78 of these 93 gene pathways

was similar between younger mice and mice receiving LKM512

(Fig. 4C, Fig. S2). Pathways that were downregulated by ageing

were upregulated by LKM512 administration and vice versa. In

other words, LKM512 administration suppressed ageing-associat-

ed change in gene pathways.

Inflammatory and oxidative stress responses
We used urine haptoglobin levels to estimate intestinal

inflammation [31]. At 25 weeks, haptoglobin levels were lower

in LKM512 mice than in control mice (P,0.05) (Fig. 5A).

Additionally, at 45 weeks, serum TNF-a concentrations tended to

be lower in LKM512 mice than in control mice (Fig. 5B), as were

gene expression levels of colonic traf6 and Tnf (Fig. 5C) (P,0.05).

These results indicate that LKM512 administration suppressed

systemic and colonic inflammation caused by ageing. The anti-

inflammatory effects of LKM512 administration were also

revealed by a DNA microarray. Expression levels of genes in the

TNF-NFkB, IL-1, IL-2, and IL-6 pathways were higher in the

control group than in LKM512 and younger mice; additionally,

gene expression levels in LKM512 mice were similar to those in

younger mice (Fig. 5D and Fig. S3).

Figure 1. Impact of LKM512 on lifespan, weight, and appearance. (A) Kaplan–Meier survival curves. (B) Weight differences between
treatment groups during the study period. (C) Typical appearance of 20-month-old mice. LKM512 mice appeared healthy (left), but many control
mice had skin ulcers (middle) and tumors (right). Incidence of visible tumors (D) and skin ulcer (E) in the different treatment groups.
doi:10.1371/journal.pone.0023652.g001

Probiotics Promote Longevity in Mice
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At 25 weeks, 8-OHdG concentrations, which indicate oxidative

DNA damage [32], tended to be lower in LKM512 mice than in

control mice (P = 0.09) (Fig. S4A). Furthermore, pathway analysis

using a DNA microarray indicated that the oxidative stress

pathway was more active in the control mice than in LKM512

mice (Fig. S4B).

Discussion

In the present study, we have shown that the lifespan of

mammals can be increased by probiotic treatment; furthermore,

we have proposed that the mechanism by which this longevity was

achieved is the suppression of chronic low-grade inflammation

resulting from improvements in the intestinal luminal environment

and the maintenance of colon tissue.

It is generally believed that intestinal bacterial components are

recognized by Toll-like receptors under normal steady-state

conditions, and this interaction plays a crucial role in host

immunity [33]. Therefore, there is a possibility that this anti-

chronic low-grade inflammation effect depends on the immuno-

stimulation of intestinal microbiota altered by LKM512 treatment.

However, our previous study demonstrated that the anti-

inflammatory benefits of LKM512 are influenced by intestinal

bacterial metabolites more directly than by immunostimulation

due to bacterial cell components derived from certain strains

within an altered colonic microbiota [34,35]. There is also a

possibility that orally administrated LKM512 cells directly

stimulate lymphocytes in the Peyer’s patches when they pass

through the small intestine, similar to the effect of Lactobacillus casei

strain Shirota [36], irrespective of the colonic luminal environ-

ment. Although this may be one of the mechanisms by which

chronic low-grade inflammation was suppressed by LKM512

treatment, it cannot explain the inhibition of colonic inflammatory

gene expression or the maintenance of colonic barrier function.

Figure 2. Influence of LKM512 administration on intestinal environment. (A) Appearance of large intestine obtained from LKM512 (upper)
and control (bottom) mice at week 45. (B) 16S rRNA gene expression in the predominant intestinal bacterial group at week 45. 16S rRNA gene
expression in the bacterial group was normalized to total bacterial 16S rRNA expression. Expression in control and younger mice is shown relative to
the expression in the LKM512 mice. (C) Fecal SPD (right) and SPM (left) concentrations in each group. (D) The concentration of SCFA in each group.
(E) Fecal mutagenicity stimulated with S-9 mix and without S-9 mix in each group. In (B) – (E), data are represented as mean 6 SEM. *P,0.05,
**P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0023652.g002
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We focused upon the fact that intestinal microbiota produce

metabolites that have been shown to influence inflammation; for

example, levels of PAs, which possess anti-inflammatory activity

[15,16] and the ability to maintain intestinal mucosal barrier

functions [17,37], were increased by LKM512 treatment.

By focusing on PAs as principal bioactive substances, we

proposed the hypothesis that increased intestinal levels of PAs

would increase longevity by improving intestinal health and

inhibiting systemic chronic low-grade inflammation (details in

Fig. 6). Improved long-term survival has been demonstrated for

SPD-treated cells and organisms [38], while PA-rich foods are

known to decrease age-associated pathology and mortality in aged

mice [39]. However, the oral administration of SPM did not

improve longevity to the same extent as did the dose-intrinsic PAs

supplied by colonic microbiota altered by LKM512 administration

(P = 0.121) (Fig. S5A). This may be related to the quantity of PAs

supplied: PAs delivered orally are transient, but PAs produced by

colonic microbiota that have been enhanced by LKM512

treatment are continuously replaced. This allows for a much

larger ‘‘dose’’ that is suitable for increasing longevity. This theory

is supported by the differences in colonic SPM concentrations

between LKM512 mice and SPM mice, wherein the SPM levels in

SPM mice were as low as those in control mice (Fig. S5B), as well

as by the differences in gene expression patterns (Fig. S5C). It is

possible that other probiotic strains that have the ability to

influence the intestinal environment, such as B. bifidum

PRL2010—which metabolizes mucin derived from the host [40],

and Lactobacillus acidophilus NCFM [41]—which increases intestinal

PA levels following oral administration, may promote longevity.

By using gnotobiotic mice singly associated with Escherichia coli

O157, Fukuda et al. [42] demonstrated the protective abilities of

Bifidobacterium logum JCM 1217T against enteropathogenic infec-

tions through the production of acetate. However, acetate

concentrations were not altered by LKM512 administration

(Fig. 2D), suggesting that the promotion of longevity by

LKM512 is not related to the protection against pathogenic

bacterial infections by the acetate produced by LKM512 or other

bacteria.

This study proposes a new finding concerning the relationship

between the colon and antiaging. Cumulatively, treatment with

LKM512 inhibited morphological disruption of the intestinal

barrier during the ageing process [13], suggesting that mainte-

nance of intestinal barrier function was one of the major factors in

the promotion of longevity in this trial. Furthermore, LKM512

Figure 3. Influences of LKM512 administration on colonic barrier function. (A) Histology of proximal colon samples from mice treated with
LKM512 (left) or PBS (control; right). The samples shown in the upper panels are stained with HE, while those in the bottom panels are stained with
PAS. [Scale bars, 500 mm (HE), 100 mm (PAS).] (B) Colon permeability at week 25, as indicated by the urinary lactulose/rhamnose ratio. (C) Colonic
gene expression of Muc2, Muc3, Occludin, and ZO-1 in all treatment groups and in younger mice. Data are represented as mean 6 SEM. *P,0.05.
doi:10.1371/journal.pone.0023652.g003

Probiotics Promote Longevity in Mice
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administration suppressed senescence of the colon by downregu-

lating ageing-associated gene expression, rather than by upregu-

lating rejuvenation-associated gene expression (Fig 4B). A report

has associated modulation in gene expression through ageing with

compromised intestinal function and propensity for colon cancer

in the rat colon. We compared the changes in colonic gene

expression in rats in that report [43] with our data (Table S1). In

this study, we noted that almost all the genes upregulated by

ageing in rats were similarly upregulated by ageing in mice;

furthermore, these were downregulated by LKM512 treatment. It

is interesting to note that the pathways (Fig. 4C; upper panel) that

were upregulated by LKM512 administration and downregulated

by ageing were G-protein-coupled receptor (GPCR)-related

pathways. Currently, there is little information available regarding

the relationship between GPCRs, intestinal microbiota, longevity,

and/or PAs, although it is known that SCFA and GPCR interact

to affect the inflammatory response [44]. Clearly, further studies

are required to clarify these relationships. To the best of our

knowledge, this is the first demonstration of anti-ageing in the

colon by probiotics using global gene expression profiling. CR is

known as one of the factors capable of increasing the lifespan in a

variety of species [28]. CR-induced metabolic reprogramming

may be a key event in the mechanism of lifespan extension [45].

Studies in yeast, worms, flies, and mice point to its influence on

nutrient-responsive signaling molecules, including SIRT1, the

mammalian target of rapamycin (mTOR), and proliferator-

activated receptor-c coactivator 1a (PGC-1a) [46]. On the other

hand, lifespan extension has been demonstrated to be induced by

Figure 4. Microarray analysis of middle colon samples from LKM512-treated mice. (A) Hierarchical clustering showing patterns of
expression relationships among LKM512-treated, control, and younger mice. Red and green indicate up- and downregulation of gene expression,
respectively. (B) The number of genes up- and downregulated during the ageing process in each of the putative functional categories on microarray
analysis. (C) Comparison of pathways that were significantly upregulated (red) and downregulated (blue) by LKM512 administration and ageing.
doi:10.1371/journal.pone.0023652.g004

Probiotics Promote Longevity in Mice
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the control of these signaling molecules even in the absence of CR,

i.e., by the oral administration of rapamycin [47] and resveratrol

[48]. Rapamycin reduces the expression of function of mTOR,

which is a central regulator of many biological processes [49]. It is

known that the genetic inhibition of TOR extends the lifespan in

short-lived model organisms and mice [47]. In our present study,

the mTOR pathway was not listed in the GenMAPP pathway

analysis; however, since rapamycin suppresses the mTORC1

complex in the mTOR pathway, we analyzed genes downstream

of mTORC1 (Table S2). Although 6 out of 10 genes were

upregulated by ageing, 4 out of the 6 genes thus upregulated were

downregulated by LKM512 treatment, indicating that one of the

mechanisms of lifespan extension by LKM512 treatment may

involve the suppression of the mTOR pathway, similar to the

effect of rapamycin. Further research is warranted in order to

confirm the phosphorylation levels of at least 2 substrates, i.e.,

P70-S6 kinase that phosphorylates S6 ribosomal protein and 4E

binding protein 1, which is a key translational repressor protein.

Resveratrol, a pharmacological activator of SIRT1, can

improve the lifespan and health of mice on a typical high-calorie

diet [48]. Its effects lead to a decrease in the levels of insulin-like

growth factor-1 (IGF-1), while AMP-activated protein kinase

(AMPK) and peroxisome proliferator-activated receptor-c coacti-

vator 1a (PGC-1a) activity is increased [48]. However, in our

present study, while LKM512 treatment caused only slight

changes in IGF-1 gene expression, AMPK-related and PGC-1a
gene expression were considerably decreased (Table S2), indicat-

ing that the mechanism underlying improved longevity by

LKM512 treatment differed from resveratrol’s mechanism.

Recently, autophagy—the cellular process of cytoplasmic degra-

dation and recycling—has been proposed to promote longevity

[38]. Interestingly, all the above mentioned longevity-promoting

regimens—including CR and inhibition of TOR with rapamycin,

resveratrol, or PAs—have been associated with autophagy; in

some cases, they have been reported to require autophagy for their

effects [50]. In fact, colonic autophagy appeared to be promoted in

LKM512 mice as compared to the controls, as revealed by LC3

conversion (Fig. S6).

At less than 36 weeks of treatment, the median survival of the

control group was less than 19 months, which was considerably

short in comparison to those reported in other longevity studies

conducted in mice. For example, recent studies in C57BL/6 mice

show control median lifespan of more than 850 d (28 months) [51],

while longevity studies in the 4-way genetically heterogeneous

mice show median lifespan of almost 900 d (30 months) [47].

Although there is a longevity study in which Crj:CD-1 mice show

Figure 5. Influences of LKM512 and SPM administration on inflammation and oxidative stress. (A and B) Concentrations of urinary
haptoglobin (A) and serum TNF-a (B). (C) Colonic gene expression of Traf6 and Tnf. Data are expressed as the mean relative amount to mRNA of b-
actin 6 SEM. * P,0.05. (D) Microarray data scatter plots of the genes in the TNF-NFkB pathway. All genes (n = 25,631) are represented on scatter
plots. The values for all the TNF-NFkB pathway genes represented on the array are highlighted in black. Younger (pretreatment) vs. control (left),
LKM512 vs. control (middle), and LKM512 vs. younger mice (right).
doi:10.1371/journal.pone.0023652.g005

Probiotics Promote Longevity in Mice
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Figure 6. The hypothetical mechanism behind the increased lifespan of LKM512-treated mice (this is a modification of a part of a
previous hypothesis [27]). After LKM512 is orally administered, it colonizes the colon and alters the intestinal microbiota, which then produces
PAs. The alteration in intestinal microbiota by LKM512 facilitates the activity of Prevotella spp. but suppresses the Bact. fragilis group,
Enterobacteriaceae species, and Enterococcus spp. The produced PAs induces maintenance and/or recovery of intestinal barrier function by
upregulating mucous secretion; additionally, because of its antioxidative properties, it helps prevent colonic barrier disruption. Maintenance of the
intestinal barrier reduces the intestinal inflammatory activity of factors derived from food and bacteria. Moreover, increased levels of PAs in the
intestinal lumen lead to increased PA concentration in the blood. This circulating PA suppresses the induction and/or production of systemic
inflammatory cytokines. At the same time, PAs possess bioantimutagenic and antioxidative activities that prevent DNA damage. Thus, the effects of
PAs suppresschronic low-grade inflammation , thereby promoting longevity. Furthermore, although data is insufficient in this study, there is a
possibility that autophagy induced by PAs also promotes longevity.
doi:10.1371/journal.pone.0023652.g006

Probiotics Promote Longevity in Mice
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a control median survival of less than 18 months [39], further

research is warranted to confirm this finding in at least 1 other

strain of mice.

In the 1970s, it was reported that increases in PAs were related

to neoplastic growth [52]. Since then, many researchers have

regarded PAs as carcinogens. However, most of these historical

studies were performed to test the effects of PAs on existing tumors

or on the growth of tumors after the initiation of neoplastic growth

[53,54]. We have found no evidence that increased intake of PAs

promotes oncogenic transformation in normal cells and animals.

Furthermore, there are many reports that PAs are indispensable

for normal functioning in a diverse group of organisms ranging

from cells and bacteria to plants and mammals [55,56]. We hope

that the results presented here encourage more researchers to

investigate the diverse and important bioactivities of PA.

Materials and Methods

Mice
A closed colony of female 8-month-old Crj:CD-1 (ICR) retired

mice (previously used solely as breeders) were obtained from

Charles River Laboratories Japan Inc. (Kanagawa, Japan). Male

retire mice could not be used because they are known to have

violent tempers and to continuously fight with each other when kept

in the same cage, which might have led to stress and its associated

effects. Five mice were housed per cage in plastic cages

(22563386140 mm; Clea Japan, Inc., Tokyo, Japan) containing

hardwood bedding. Mice were kept on a 12-h light/dark cycle at

2561uC in conventional conditions. Mice were given a standard

pellet chow diet ad libitum and gavaged with a 10 mM PBS solution

containing B. animalis subsp. lactis LKM512 (n = 20), SPM (n = 20),

or nothing (control treatment; n = 19). Treatment solutions were

gavaged at 10 mL/g of body weight; LKM512 and SPM were

administered at 109 cfu?kg21?dose21 and 3 mg?kg21?dose21,

respectively. This SPM content (mg?kg21?dose21 = approximately

0.15 mg?mice21?dose21) was calculated on the premise that half of

the chow was comprised of soybeans, which are known to contain

high levels of PAs. The standard pellet chow diet contained

approximately 0.03 mg/g of SPM. LKM512 cells incubated on

blood liver (BL) agar (Nissui Pharmaceutical, Tokyo, Japan) were

harvested by swabbing and then suspended in PBS. The solution

was administered 3 times a week, starting when the mice were aged

10 months. The experimental schedule is shown in Fig. 7. Weights

were recorded for each mouse once every month throughout the

study. Mice were examined at least daily for signs of ill health, and

were euthanized if necessary. This experiment was performed in

accordance with the protocols approved by the Kyodo Milk Animal

Use Committee (Permit Number: 2005-03) and were in accordance

with the Guide for the Care and Use of Laboratory Animals,

published by the National Academies Press.

Determination of fecal PA concentration
Fecal extracts were prepared as described in our previous report

[24]. Fecal PA, PUT, SPD, and SPM levels were determined from

fecal extracts with an Alliance 2695 HPLC system, using

previously described methods [26]. Data analysis was performed

using Empower 2 (Waters, Milford, MA).

Determination of fecal water content
Fecal water content was calculated as the wet weight minus the

dry weight of feces. The drying of feces was performed at 100uC
for 3 h using a drying oven (ISIZU, Tokyo, Japan).

Intestinal microbiota analysis by rRNA-targeted reverse
transcription-quantitative PCR (RT-qPCR)

For RNA stabilization, frozen fecal samples were added to 10

volumes of RNA later-ICE (Applied Biosystems, Foster City, CA,

USA) for at least 24 h. Total RNA was prepared by TaKaRa

FastPure RNA Kit (Takara Bio Inc., Shiga, Japan) with on-column

DNase treatment, following a modified version of the manufac-

turer’s protocols. Each fecal mass was washed 3 times by

suspension in 1.0 mL of PBS. Fecal pellets were resuspended in

500 mL of Lysis Buffer, and 200 mg of glass beads (diameter,

0.1 mm) were added. The mixture was treated at 70uC for 10 min

in a water bath and vortexed vigorously for 60 s with a Micro

Smash MS-100 (Tomy Digital Biology Co., Ltd., Tokyo, Japan) at

4,000 rpm. After centrifugation (14,000 g65 min), 400 mL of

supernatant was collected as a crude total RNA solution and

purified following the manufacturer’s protocols. Quantity and

purity were confirmed by spectrophotometry (ratio = A260/A280).

cDNA for each sample was synthesized using 250 ng of total RNA

and a PrimeScript RT reagent kit (Takara), according to the

manufacturer’s instructions.

Real-time PCR for quantification of intestinal bacterial 16S

rRNA gene expression was performed using the StepOne Real-

time PCR system (Applied Biosystems) as described in our

previous report [25] (Table S3). PCR reaction mixtures were

composed of 100-fold diluted template cDNA. Fifty-fold, 500-

fold, 5,000-fold, and 50,000-fold diluted fecal cDNA from the

LKM512 group were used as the real-time PCR standard for

all bacterial genera and groups. The 16S rRNA gene

expression of each bacterial genera and group was normalized

with the total bacterial value using a comparative delta Ct

method; the expression in SPM, control, and younger mice was

calculated relative to the expression in the LKM512-treated

group.

Determination of fecal SCFA concentration
Frozen fecal samples were diluted 10-fold with 2% perchloric

acid, and soluble substances were extracted at 4uC for 18 h. After

extraction, the precipitate was removed by centrifugation

(10,000 g610 min at 4uC) and the supernatant was filtered

(0.45 mm) for use. SCFA levels were determined using a post-

column HPLC setup, consisting of an Alliance 2695 HPLC

System (Waters), a Shodex KC-811 with a guard column (Showa

Denko, Tokyo, Japan), and a post-column color reaction with

bromothymol blue reagent. Data analysis was performed using

Empower 2.

Lactulose/rhamnose intestinal permeability test
The L/R intestinal permeability test was performed as

described in Koltun et al. [30], with some modifications. Mice

were fasted overnight prior to being gavaged with a solution

containing lactulose (1.5 g?kg21) and rhamnose (0.3 g?kg21) in

distilled water. Urine was collected for at least 6 h in receptacles

containing 200 mL of chlorohexidine (Sigma, St. Louis, MO, USA)

as a preservative. Pretreatment was performed using a Sep-Pak

Cartridge (Waters). Lactulose and rhamnose levels were deter-

mined using an Alliance 2695 HPLC system and a 2414

Refractive Index Detector (Waters). We used an ULTRON PS-

80N (30068.0 mm ID) column connected to an ULTRON PS-

80NG (5068.0 mm ID) guard column (Waters). The chromato-

gram analysis software used was Empower 2. Test results for the

sugars were expressed as (peak area of lactulose)/(peak area of

rhamnose).
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Determination of urinary haptoglobin concentrations
Haptoglobin was measured with mouse haptoglobin ELISA test

kits (Life Diagnostics, Inc., West Chester, PA, USA) using 10-fold

diluted urine. Haptoglobin was converted into the quantity of

creatinine required for measurement by the QuantiChromTM

Creatinine Assay Kit (BioAssay Systems, Hayward, CA, USA).

Determination of urinary 8-OHdG concentrations
Urinary 8-OHdG was measured with 8-OHdG Check ELISA Kits

(JaICA, Fukuroi, Japan) using 10-fold diluted urine. 8-OHdG was

converted into the quantity of creatinine required for measurement

with a QuantiChromTM Creatinine Assay Kit (BioAssay Systems).

Determination of fecal mutagenicity
Fecal mutagenicity was determined with umu-tests conducted

with commercial UMU-LAC kits (Jimro, Takasaki, Japan). As a

standard in the fecal mutagenicity tests, we used 2-aminoanthracene

(0.37–30 mg/mL) with S-9 mix. S-9 mix was used to test

mutagenicity in the presence of metabolic activation. The

mutagenicity level of each fecal extract was expressed as 2-

aminoanthracene concentrations. The umu-test is based on the

ability of genotoxins to induce expression of the umuC gene, one of

the SOS genes responsible for error-prone repair; this gene is more

involved in mutagenesis than the other known SOS genes in

bacteria. The tester strain (S. typhimurium TA1535/pSK1002) carries

a fused umuC–lacZ gene, allowing the monitoring of umuC expression

by measuring b-galactosidase activity in a colorimetric assay. The

umu-test can detect many types of DNA-damaging agents and can

be used for the screening of amino acid- and nutrient-containing

samples such as urine, serum, and food compounds [57].

RNA preparation and quantitative real-time PCR of
colonic tissues

Frozen middle colonic tissues were processed for total RNA

preparation with TaKaRa FastPure RNA Kits (Takara) with on-

column DNase treatment following the manufacturer’s protocol.

Quantity, purity, and integrity were confirmed initially by

spectrophotometry and electrophoresis using an Agilent Bioana-

lyzer 2100 (Agilent Technologies, Palo Alto, CA, USA).

Quantitative real-time PCR of colonic gene expression
cDNA for each sample was synthesized using 200 ng total RNA

and PrimeScript RT reagent Kits, according to the manufacturer’s

instructions (Takara). Real-time PCR was performed with a

StepOne Real-Time PCR System (Applied Biosystems) with

TaqMan Fast Universal PCR Master Mix (Applied Biosystems)

using TaqMan probes (Tnf: Mm99999068_m1, Traf6:

Mm00493836_m1, Muc2: Mm00458299_m1, and b-actin:

Mm02619580_g1) purchased as TaqMan Gene Expression Assays

(Applied Biosystems). For occludin and ZO-1, real-time PCR was

performed with a StepOne Real-Time PCR System with SYBR

Green PCR Master Mix (Applied Biosystems). The sense and

antisense primers for occludin were 59-ATCCTGGGCAT-

CATGGTGTTT-39 and 59-GGGCCGTCGGGTTCACT-39,

and those for ZO-1 were 59-CCAGGCATCATCCCAAATAA-

GAA-39 and 59-CCACCCGCTGTCTTTGGA-39. Amplifications

were performed using the following temperature profiles: 1 cycle at

95uC for 30 s, 40 cycles of denaturation at 95uC for 15 s, annealing

at the optimal temperature (occludin, 65uC; ZO-1, 64uC) for 30 s,

and elongation at 72uC for 30 s. Melting curves were obtained by

heating samples from optimal temperature to 95uC in increments of

0.1uC per s, with continuous fluorescence collection. The

comparative delta Ct method was used for normalizations with

the housekeeping gene b-actin.

Microarray analysis of gene expression
RNA was extracted from the middle colon of 3 mice per group.

DNA microarray was performed by using the hybridized RNA

from each group. Changes in gene expression levels were

evaluated using the NimbleGen mouse DNA microarray (25,631

different mouse genes including 3 probes consisting of 60-mer

synthetic oligonucleotides for each gene). All hybridizations,

staining, and processing were performed by personnel at Roche

NimbleGen, Inc. (Madison, WI, USA).

Expression data were normalized using GeneSpring version GX

(Agilent Technologies, Inc., Santa Clara, CA, USA). Gene

annotation information was obtained from NCBI (http://www.

ncbi.nlm.nih.gov/) and Mouse Genome Informatics (MGI)

(http://www.informatics.jax.org/). To identify what biological

activities were modulated by the LKM512 treatment, we

performed gene clustering using the L2L Microarray Analysis

Tool (http://depts.washington.edu/l2l/about.html). Gene path-

way information was obtained from GenMAPP (http://www.

genmapp.org/). The pathway set was tested for Gene set

enrichment using Parametric analysis of Gene set enrichment

(PAGE) [58]. The raw data has been deposited in a MIAME

compliant database, CIBEX (Center for Information Biology

Figure 7. Experimental schedule. Female Crj:CD-1 (ICR) retired mice were obtained when they were 8 months old.
doi:10.1371/journal.pone.0023652.g007
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Gene Expression database: http://cibex.nig.ac.jp/index.jsp) (ac-

cession number: CBX171).

Histological analysis
Proximal colon samples used for histological analysis were fixed

with 15% neutral formalin, embedded in paraffin, sectioned at

3 mm, and stained with hematoxylin 3G and eosin (Sakura Finetek

Japan, Tokyo, Japan) for HE staining and with Schiff’s Reagent

(Sigma-Aldrich, Inc., St. Louis, MO, USA) for periodic acid-Schiff

(PAS) staining.

Statistical analysis
Survival curves were drawn using the Kaplan–Meier method

and the survival rate was compared with the Log-rank test. The

markers for each experimental mouse group were compared using

Mann-Whitney U tests. The incidence of skin ulcers and visible

tumors was assayed by Fisher’s exact tests. StatMate IV (ATMS

Co. Ltd., Tokyo, Japan) was used to conduct all statistical analyses.

Supporting Information

Figure S1 Correlation between fecal spermine concen-
tration and 16S rRNA gene expression for the predom-
inant intestinal bacterial group.
(PPT)

Figure S2 Comparison of pathways up- (red) and
downregulated (blue) by LKM512 administration and
ageing (All pathways). |Z-score| more than 1.98 was

considered significant.

(PPT)

Figure S3 Microarray data scatter plots of the genes
involved in the inflammatory cytokines pathway. All

genes (n = 25,631) are displayed on scatter plots. The values for all

the genes of the IL-1 (upper), IL-2 (middle), and IL-6 pathways

(bottom) represented on the array are highlighted in black.

Younger (pretreatment) vs. control (left), LKM512 vs. control

(middle), and LKM512 vs. younger mice (right).

(PPT)

Figure S4 Effects of LKM512 on oxidative stress.
(A) Urinary 8-OHdG concentrations in the 3 treatment groups.

(B) Microarray data scatter plots of genes involved in the oxidative

stress pathway. All genes (n = 25,631) are represented on scatter

plots. The values for all the oxidative stress pathway genes

represented on the array are highlighted in black. Younger vs.

control (left), LKM512 vs. control (middle), and LKM512 vs.

younger mice (right).

(PPT)

Figure S5 Effects of oral SPM administration on mice.
(A) Kaplan–Meier survival curves for mice in the SPM groups.

Mice treated with SPM also tended to live longer than controls

(P = 0.096), but this difference was not significant. Additionally,

LKM512-treated mice tended to live longer than SPM-treated

mice (P = 0.121). (B) Fecal SPM concentrations in SPM-treated

mice compared to those in other groups. Fecal SPM concentra-

tions in SPM mice were lower than those in control mice,

supporting previous observations that exogenous PAs derived from

meals are absorbed before reaching the lower parts of the intestine.

(C) Hierarchical clustering showing the relationship between the

patterns of expression among SPM-treated and other mice. Red

and green indicate up- and downregulation of gene expression,

respectively. Expression patterns in LKM512 mice were similar to

those in younger mice, and expression patterns of SPM-treated

mice were similar to those in control mice; however, the patterns

of these 2 pairs of groups contrasted with each other. (D) Incidence

of skin ulcers and visible tumors in the SPM-treated mice and

other groups. Among mice in the SPM-treated group, the

incidence of skin ulcers and visible tumors was lower than that

in the control group (P,0.05).

(PPT)

Figure S6 Colonic autophagy was noted to be induced
by LKM512 treatment. Lysates of colonic tissue derived from

21-month-old LKM512 mice and control mice were subjected to

immunoblot analysis with an anti-LC3 antibody. The positions of

b-actin as a positive control, LC3-I, and LC3-II are indicated

here. The LC3-I/LC3-II ratio in the LKM512-treated mice was

lower than that in control mice.

(PPT)

Table S1 Changes in colonic gene expression in the
ageing of rats, ageing of mice, and mice treated with
LKM512.

(DOC)

Table S2 Comparison of the genes downstream of the
mTOR pathway and IGF-1, AMPK, and PGC-1a gene
expression in the colon among LKM512, control, and
younger mice.

(DOC)

Table S3 Primer sets used for real-time PCR.

(DOC)
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