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D
iffuse axonal injury, space-occupying hemor-
rhages, cerebral edema, or a combination of these 
features are manifestations of traumatic brain 

injury (TBI). However, the etiologies of TBI are diverse 
and heterogeneous. Therefore, robust predictive models 
are needed to stratify pertinent variables affecting clini-
cal outcomes. In this study we explore a number of es-
tablished scoring systems as well as introduce a novel 
machine-learning approach to predictive modeling in TBI. 

Classically, the Glasgow Coma Scale (GCS) score is used 
to categorize the severity of TBIs into one of three cat-
egories: mild, moderate, or severe. However, reproducible 
assessment of GCS and inter-rater reliability determin-
ing GCS is highly variable.2,7,11 One study determined the 
GCS score for severe TBIs in pediatrics should be < 5, 
however, confounding factors in assigning a GCS score, 
such as alcohol intoxication, suggest that GCS score can-
not be used as a sole predictor.9 Furthermore, evaluating 
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OBJECTIVE Modern surgical planning and prognostication requires the most accurate outcomes data to practice 
evidence-based medicine. For clinicians treating children following traumatic brain injury (TBI) these data are severely 
lacking. The first aim of this study was to assess published CT classification systems in the authors’ pediatric cohort. A 
pediatric-specific machine-learning algorithm called an artificial neural network (ANN) was then created that robustly 
outperformed traditional CT classification systems in predicting TBI outcomes in children.
METHODS The clinical records of children under the age of 18 who suffered a TBI and underwent head CT within 24 
hours after TBI (n = 565) were retrospectively reviewed.

RESULTS “Favorable” outcome (alive with Glasgow Outcome Scale [GOS] score ≥ 4 at 6 months postinjury, n = 533) 
and “unfavorable” outcome (death at 6 months or GOS score ≤ 3 at 6 months postinjury, n = 32) were used as the 
primary outcomes. The area under the receiver operating characteristic (ROC) curve (AUC) was used to delineate the 
strength of each CT grading system in predicting survival (Helsinki, 0.814; Rotterdam, 0.838; and Marshall, 0.781). The 
AUC for CT score in predicting GOS score ≤ 3, a measure of overall functionality, was similarly predictive (Helsinki, 
0.717; Rotterdam, 0.748; and Marshall, 0.663). An ANN was then constructed that was able to predict 6-month outcomes 
with profound accuracy (AUC = 0.9462 ± 0.0422).

CONCLUSIONS This study showed that machine-learning can be leveraged to more accurately predict TBI outcomes 
in children.
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response and verbal communication in young children is 
not feasible as their developmental stage does not facilitate 
accurate assessment. Thus, utilizing CT to identify objec-
tive structural deformities may provide a more accurate 
way to access severity of injury alongside clinical evalu-
ation. Therefore, we aimed to evaluate previously estab-
lished CT-based classification systems in the adult popula-
tion in predicting morbidity and mortality after TBI in a 
large cohort of children.

The Marshall scale was the first CT-based classifica-
tion system used to assess TBI.10 The Marshall score is 
composed of three variables: presence of mass lesion, 
midline shift, and status of the perimesencephalic cis-
terns. The Marshall score provides descriptive and pre-
dictive values, but the narrow scope of pathology that 
is incorporated into the scoring system limits its broad 
applicability to clinical practice. Subjective assessments 
and the accuracy of the measured lesions are also impor-
tant limitations to the Marshall scoring system. Next, the 
Rotterdam CT scoring system was created in response 
to the Marshall system’s limitations, thereby taking sub-
arachnoid hemorrhage (SAH) into account.8 One of the 
biggest limitations of the Rotterdam CT scoring system 
is that it does not differentiate between the type and size 
of the mass lesion. The Helsinki system uses a different 
calculation in comparison to the other CT scoring sys-
tems; the presence of an epidural hematoma (EDH) yields 
negative points, while the absence of an EDH under the 
Rotterdam system yields positive points.13 In adults, the 
Helsinki score is superior in predicting outcome in com-
parison to Rotterdam CT or Marshall CT scores when 
used as a standalone predictive method.13 However, these 
classification systems do not quantitatively rely on exist-
ing data. This study aims to provide a comparison of the 
three CT scoring systems—Marshall, Rotterdam, and 
Helsinki—and their ability to predict survival and func-
tional outcomes after TBI in children. Next, we propose 
a machine-learning algorithm-based model of outcomes 
in patients with TBI that vastly outperforms existing clas-
sification schema.

Creation of a mathematical model that can accurately 
predict long-term outcomes post-TBI can assist clinicians 
involved in all aspects of the child’s care. Compared to tra-
ditional regression models, machine-learning algorithms, 
such as artificial neural networks (ANNs), can provide 
very strong predictive data despite a relatively low number 
of poor outcomes.12,16,19 Compared to limitations of degrees 
of freedom in multivariate analysis models, ANNs can ro-
bustly predict binary outcomes given a sufficient number 
of total data presented to the algorithm. ANN models can 
be trained and refined, randomly assigning relative weight 
to each input variable to construct the most robust pre-
diction.3,5,6 Although ANNs are considered “black-box” 
computational models, their value in clinical medicine has 
enormous potential to engage in evidence-based medical 
practice because they can be trained on new patient infor-
mation. ANN models also benefit from internal validation 
and testing and tend to have much stronger predictive abili-
ty of binary outcomes compared to multivariate regression 
modeling. Thus, ANNs have been designed to use patient 
factors and disease characteristics (such as histopathologi-

cal features from a tumor biopsy or demographic infor-
mation) to predict outcomes in various clinical models, 
including TBI, postsurgical outcomes, and complications 
from surgery.4,6,14,17,18 Previous traditional statistical mod-
els have failed in their inflexibility and inability to change 
based on the data that is presented. Therefore, we aimed to 
create a model that can predict outcomes using binary and 
continuous variables allowing for real-time clinical utili-
zation, resulting in greater accuracy and higher predictive 
value in children sustaining TBI.

Methods
Data Collection

Using ICD-9 and ICD-10 codes, electronic medical re-
cords of 565 patients (0–18 years of age) treated for mild 
to severe TBI between 2006 and 2013 at Monroe Carell 
Jr. Children’s Hospital at Vanderbilt University were re-
viewed. Patients who did not receive a CT scan within the 
first 24 hours of admissions were excluded from the study. 
Patients who suffered fatal injuries on arrival were exclud-
ed from analysis. Upon admission, a GCS score was col-
lected by an emergency medicine physician or neurosur-
geon. Alternatively, a postgraduate year-4 neurosurgery 
resident (D.J.V.) retrospectively calculated the GCS score 
based on the documented physical examination findings if 
the admitting GCS score was unavailable. The Glasgow 
Outcome Scale (GOS) score was calculated based on doc-
umentation by any medical provider 6 months after TBI. 
Patients who were lost to follow up before the 6-month as-
sessment but discharged in stable condition following ini-
tial injury were assumed to be alive at 6 months after trau-
ma with a GOS score of 5. Admitting blood glucose levels 
and hemoglobin results were obtained by retrospective 
chart review. A board-certified radiologist interpreted all 
CT scans used in this study and hemorrhage (intraventric-
ular, intracerebral, and subarachnoid), presence of midline 
shift above 5 mm, cistern integrity, hematoma (epidural 
and subdural), and mass lesions > 25 mm3 was document-
ed. CT classification systems—Marshall, Helsinki, and 
Rotterdam—were applied as previously described.13

Statistical Analysis

Descriptive statistics were used to evaluate our nor-
mally distributed cohort. Multivariable logistic regression 
was used to assess the association between Helsinki, Rot-
terdam, and Marshall CT grading scores and survival at 6 
months posttrauma with the adjustment of age. The area 
under the receiver operating characteristic (ROC) curve 
(AUC) was used to evaluate the ability to discriminate the 
6-month posttrauma survival status of patients. Statistical 
analysis was conducted using R statistical program (ver-
sion 3.3.1) and statistical significance was set a priori at 
p < 0.05.

Artificial Neural Network
We utilized the MATLAB Neural Network Toolbox to 

construct an ANN that classified patients into two groups, 
either “favorable 6-month outcomes” or “unfavorable 
6-month outcomes,” where unfavorable outcome was de-
fined as death or GOS score ≤ 3. This ANN is a two-layer 
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feed-forward network, with 10 sigmoid hidden and soft-
max output neurons. The network was trained with scaled 
conjugate gradient method backpropagation. Seventy per-
cent of the data set was allocated for training, 15% for val-
idation, and 15% for testing. Our approach was performed 
according to previous reports.1,6,12,14

This network was trained 100 times using different, 
random weights and data partitions. That is, we initialized 
the ANN with the data architecture, except that upon each 
run new randomized weights were calculated for each 
connection in the network. Next, the complete data set 
was partitioned randomly where each initialization of the 
model received a new, random partition. The model was 
then trained, and ROC curves and AUC was computed 
by the trapezoid method. Thus, we collected 100 ROCs 
and 100 corresponding AUCs. Using these, we computed 
the mean and standard deviation AUC for model training. 
All mathematical and graphical analysis was done using 
offline MATLAB R2016b (version 9.1.0.441655) with an 
academic license on a 64-bit MacBook Pro running ver-
sion 10.11.6.

Results
In a 7-year time period, 565 children sustained a TBI 

and met inclusion criteria for this study. The charts of 565 

patients were retrospectively reviewed and represented 
here. Five hundred thirty-three patients were determined 
to have a favorable outcome (alive with GOS score ≥ 4) 
and 32 patients had an unfavorable outcome (death at 6 
months or GOS score ≤ 3). Baseline patient characteristics 
are shown in Table 1. The average patient age was 6.81 
± 5.57 years, and there was no significant difference in 
age between patients with unfavorable and favorable out-
comes (p = 0.63). Patients with unfavorable outcomes had 
significantly higher blood glucose levels at presentation 
(210 ± 140.6 mg/dl) compared to patients with favorable 
outcomes (134.9 ± 53.9 mg/dl; p < 0.001). There was also 
a significant difference in hemoglobin levels at admission 
between patients with favorable versus unfavorable out-
comes (p = 0.03). As a positive control, GCS was evalu-
ated based on clinical documentation at the time of admis-
sion. Patients with favorable outcomes were found to have 
an average GCS score of 13.34 ± 3.37, while patients with 
unfavorable outcomes were found to have a score of 5.78 
± 4.62 (p < 0.001). Patients with a favorable outcome were 
found to have a higher pupillary response, motor response, 
and verbal response in comparison to patients with unfa-
vorable outcome (p < 0.001).

Patient CT characteristics are shown in Table 2. Pre-
dictably, subdural hemorrhage (SDH), intracranial hem-
orrhage (ICH), intraventricular hemorrhage (IVH), trau-

TABLE 1. Baseline patient characteristics

Variable All Patients (n = 565) Favorable Outcome (n = 533) Unfavorable Outcome (n = 32) p Value

Mean GCS score ± SD 12.90 ± 3.88 13.34 ± 3.37 5.78 ± 4.62 <0.001

Mean motor score ± SD* 5.46 ± 1.34 5.62 ± 1.09 2.87 ± 2.19 <0.001

Eye opening, n (%) <0.001

 Spontaneously 418 (74) 410 (77) 9 (28) —

 To speech 51 (9) 48 (9) 0 (0) —

 To pain 17 (3) 16 (3) 1 (3) —

 No response 79 (14) 59 (11) 22 (69) —

Mean verbal response ± SD* 4.21 ± 1.49 4.35 ± 1.36 1.93 ± 1.66 <0.001

Pupillary light reaction, n (%) <0.001

 Both eyes 525 (93) 506 (95) 20 (63) —

 1 reacts 34 (6) 27 (5) 11 (34) —

 None reacts 6 (1) 0 (0) 1 (3) —

Mean glucose level ± SD, mg/dl 140.3 ± 67.2 134.9 ± 53.4 210.0 ± 140.6 <0.001

Mean hemoglobin level ± SD, g/dl 12.04 ± 4.76 12.15 ± 4.83 10.50 ± 3.35 0.03

Mass lesions, n (%) —

 SDH 185 (33) 168 (32) 17 (53) 0.015

 EDH 74 (13) 69 (13) 5 (16) 0.698

 ICH 68 (12) 60 (11) 5 (16) 0.024

 IVH 15 (3) 10 (2) 5 (16) 0.001

tSAH, n (%) 124 (22) 16 (3) 10 (31) 0.001

Cisterns, n (%) 0.001

 Normal 541 (96) 514 (96) 27 (84) —

 Compressed 6 (1) 4 (1) 2 (6) —

 Obliterated 7 (1) 4 (1) 3 (9) —

Midline shift >5 mm, n (%) 11 (2) 8 (2) 3 (9) 0.002

* n = 529.
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matic SAH (tSAH), integrity of the cisterns, and presence 
of midline shift were all significantly associated with un-
favorable outcomes. However, EDH was not predictive of 
unfavorable outcome (p = 0.698). Among the total cohort, 
patients were classified most frequently as diffuse injury 
(DI) II using the Marshall CT classification (p < 0.001, 
Table 2). Patients with an unfavorable outcome were found 
to have a significantly higher Rotterdam CT score and 
Helsinki score (2.63 ± 1.58 and 4.09 ± 2.63, respectively) 
in comparison to patients with favorable outcomes (1.61 ± 
0.77 and 2.51 ± 1.68, respectively; p < 0.001; Table 2).

Marshall, Rotterdam, and Helsinki scores were indi-
vidually associated with unfavorable outcomes (Table 2). 
Comparison of the predictive value using AUC for each 
CT classification system in predicting 6-month unfavor-
able outcome and 6-month mortality is shown in Table 3. 
GCS showed the highest predictive ability (AUCunfavorable 
= 0.855, AUCmortality = 0.92), followed by Rotterdam CT 
(AUCunfavorable = 0.748, AUCmortality = 0.838), Helsinki 
(AUCunfavorable = 0.717, AUCmortality = 0.814), and then Mar-
shall CT (AUCunfavorable = 0.663, AUCmortality = 0.781). These 
data suggest that CT classification systems can be applied 
to pediatric patients, but do not mirror results seen in the 
adult population.

Univariate logistic regression analysis was used to 
identify clinical variables (GCS score, pupillary light re-
action, glucose, and hemoglobin) and features seen on CT 
(SDH, ICH, IVH, cistern integrity, and midline shift) that 
were statistically significant for predicting unfavorable 
outcomes (deceased or have a GOS score ≤ 3) at 6 months 
postinjury (Table 1). Using these 9 variables as inputs, we 
constructed an ANN that can predict whether a patient 
will have a favorable or unfavorable outcome at 6 months 
postinjury. A graphical, simplified representation of this 
neural network is given in Fig. 1.

The network was trained using the algorithm (out-
lined in Fig. 1) 100 times with different, randomly gener-
ated initial weights and partitions for each input variable. 
ANNs work by randomly assigning weights to each given 
input (in this case, the variables listed in Fig. 1), and are 
used to generate the most accurate predictive model with 

the data that is provided during training. Over these 100 
trainings and testing runs of the model, the mean (± 95% 
confidence interval) AUC for the “All ROC” curve was 
0.9462 ± 0.0422 (maximum AUC = 0.9774 over 100 train-
ings; Fig. 2). Therefore, the average training of the model 
provided an AUC of 0.9462, with some small variation 
depending upon the initial random weights and the data 
chosen in each partition. Of the 100 final models gener-
ated, the highest AUC was 0.9774.

Discussion
In this study we evaluated the use of the Marshall, Rot-

terdam, and Helsinki CT classification systems as clinical 
predictors of survival and outcome in pediatric patients 
with TBI. Next, we constructed a machine-learning algo-
rithm (ANN) that was able to outperform these traditional 
classification systems through both inclusion of clini-
cal and radiographic data as well as implementation of a 
novel statistical tool. Numerous studies have explored the 
utilization of CT classification systems and GCS scores 
in evaluating outcomes following TBI in adults. However, 
this is the first study detailing CT-based grading systems 
for evaluation of TBI in the pediatric population. In our 
cohort, all three CT-based grading systems (Marshall, 
Helsinki, and Rotterdam) had stronger predictive value for 
6-month morbidity and mortality compared to reported 
results in adults. Contrary to results in adults, the Rot-
terdam scoring system was the most robust model in our 
study population (Table 3).

Next, we present the first description of an ANN in 
predicting outcomes post-TBI in a pediatric population. 
Our data confirm the potential clinical utility of ANNs 
and provide a rationale for their adoption in medical prac-
tice. We constructed an ANN incorporating the presence 
of injurious findings on CT as well as clinical parameters 
that were associated with worse clinical outcomes (mor-
tality and GCS score ≤ 3) based on univariate analyses. 
The power in this study is simplifying clinical prognosti-
cation based on a wide array of clinical findings that have 

TABLE 2. Baseline pediatric CT classification system scores

CT Classification 
System

All  

Patients

Favorable 

Outcome

Unfavorable 

Outcome

p  

Value

Marshall score, 

n (%)

<0.001

  DI I (1) 198 192 (97) 6 (3) —

  DI II (2) 351 331 (94) 20 (6) —

  DI III (3) 6 2 (33)  4 (67) —

  DI IV (4) 6 5 1 —

  EML/NEML 1 0 1 —

Mean Rotterdam 

score ± SD

1.67 ± 0.87 1.61 ± 0.77 2.63 ± 1.58 <0.001

Mean Helsinki 

score ± SD

2.60 ± 1.78 2.51 ± 1.68 4.09 ± 2.63 <0.001

EML = evacuated mass lesion; NEML = nonevacuated mass lesion.

TABLE 3. Adult versus pediatric CT-based classification of 
6-month outcomes after TBI

Outcome Variable

AUC

Adult  

(Raj et al., 2014)

Pediatric  

(current study)

6-month unfavorable outcome 

(GOS score ≤3)
  Marshall CT 0.632 0.663

  Rotterdam CT 0.682 0.748

  Helsinki CT 0.750 0.717

  GCS score Not reported 0.855

6-month mortality

 Marshall CT 0.635 0.781

 Rotterdam CT 0.699 0.838

 Helsinki CT 0.744 0.814

 GCS score Not reported 0.920
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been validated in our cohort. The basic principle of an 
ANN is its construct of multiple analytical layers made 
up of interconnected nodes with output (outcome) and in-
put nodes given relative correlates (i.e., clinical factors).12 
ANNs have been used extensively in the mathematical 
literature, however, their use in and translation to clinical 
medicine has been a relatively new idea.13–15 Widespread 
adoption of ANNs has been limited by the complex 
computational methods needed to construct a model de 
novo. However, we argue that incorporating ANNs into 
an online calculator, similar to calculating atherosclerotic 
cardiovascular disease risk score in predicting the likeli-
hood of experiencing an adverse cardiac event, can usher 
in scientifically rigorous and complex mathematical al-
gorithms, while simultaneously making these models 
practical for every physician to learn and use. Most im-
portantly, accurate outcome prediction tools can provide 
real-time, data-driven information to families at the time 
of injury.

The use of ANNs in the TBI literature has been pre-
sented previously by Penny and Frost.12 Interestingly, 
their cohort was extremely large (16,956 patients), corre-
lating with an AUC of 0.896. However, our model better 
predicted poor outcomes with many fewer patients (565) 
and with greater accuracy (AUC = 0.9462 ± 0.0422). We 
note here that while our maximum AUC was quite good 
(maximum AUC = 0.9774), our model’s ability to discrim-
inate did vary slightly based on the random initialization 
of the weights and data selected for each partition (95% 
CI 0.0422). This incomplete robustness to randomiza-
tion indicates that with a larger data set we may be able 

FIG. 2. ROC curves from a training of the neural network, which was 
very predictive. The blue line corresponds to the model’s true positive 
versus false positive rate for predicting an unfavorable outcome. The 
brown line is analogous for favorable outcomes. The AUC for this repre-
sentative training was 0.9774 for the “All ROC” curve.

FIG. 1. Representation showing how we created an ANN using 9 variables: 1) GCS score; 2) pupillary light reaction; 3) glucose at 
presentation; 4) hemoglobin at presentation; 5) SDH; 6) ICH; 7) IVH; 8) integrity of the cisterns; and 9) presence of midline shift. 
The aforementioned 9 variables were all found to be statistically associated with poor outcomes at 6 months using univariate 
analysis (Table 1), providing the rationale to include them in the model. Outcome was determined to be favorable if the patient had 
a GOS score of 4 or 5. Unfavorable outcome was defined as death or GOS score ≤ 3.
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to further improve predictability with this methodology. 
We attribute the differences between our model and the 
aforementioned study to more rigorous selection of input 
variables, combining objective findings on CT as well 
as clinical assessment with both discrete and continuous 
variables in the input nodes. Furthermore, these authors 
only included patients who underwent surgery for treat-
ment of TBI, whereas our cohort was a more accurate 
epidemiological cohort of children presenting to the emer-
gency department with a wide spectrum of injuries. Shi et 
al. constructed an ANN to predict outcomes post-TBI us-
ing inpatient data only.15 Again, our model outperformed 
their predictive indexes and included data from patients in 
the emergency department, before the decision to admit or 
transfer to the intensive care unit. ANNs have also been 
used to predict outcomes in other neurosurgical condi-
tions. Thus, our group and others have validated the supe-
riority of ANNs to logistic regression models in multiple 
disease states.

With this model in hand, a clinician could utilize sim-
ple peri-injury data to predict the outcome and prognosis 
for patients presenting with TBI. The clinician could now 
more accurately plan follow-up management and early 
intervention therapy based on these data. Thus, adoption 
of this predictive model has the power to improve patient 
outcomes by providing the clinician with more accurate 
outcomes data at the time of injury. Thus, it could be imag-
ined that this tool could be used to identify patients most 
at risk for adverse outcomes and triage them appropriate-
ly. The power of the ANN we presented here is the large 
number of variables the model is able to handle computa-
tionally, allowing for greater discrimination and resolution 
of outcome predictions.

However, our analysis is not without limitations. Our 
study was retrospective and performed at a single tertiary 
care center. Thus, a future aim is to conduct a prospec-
tive trial on utilization of this model and its influence on 
clinical-decision making and potentially induce early in-
terventions to improve outcomes in these children. We 
imagine this to include analysis of prospectively collected 
data as well as allowing physicians to have access to this 
algorithm in real-time. We could then track outcomes of 
patients treated by providers who had the knowledge of 
the outcomes prediction generated from the ANN versus 
those who did not. Furthermore, ANNs are relatively new 
in the clinical outcomes literature, and the mathematics 
behind the analysis is conceptually difficult for the lay-
man to abstract. For this reason, ANNs are often viewed 
as a “black box,” where the average user provides input 
data and receives a prediction, often without understand-
ing how the prediction is being generated. This is casually 
compared to conventional statistics in which, for example, 
a list of odds ratios and multivariate analysis can provide 
even nonstatisticians with an understanding of where the 
basis of a prediction lies. Sometimes, because the compu-
tational sophistication of a neural network is harder to in-
tuit than a statistical measure, this is viewed as a weakness 
of neural networks. However, when the goal is to provide 
the most accurate prediction, a perfect understanding of 
the mechanism by which the prediction is being generated 
is often considered a reasonable sacrifice.

Conclusions
In this study we create a powerful model using an ANN 

that can readily predict outcomes of children with TBI. We 
believe that adoption of this model can greatly improve 
outcome predictions in evaluation of these injuries. As 
computer and smart phone access increases globally and 
electronic medical records become more sophisticated, 
evidence-based prediction software, akin to the data pre-
sented here, are poised to become ubiquitous in the mod-
ern healthcare landscape. This is first clinical prediction 
tool using an ANN that predicts 6-month post-TBI out-
comes in children, and we demonstrate this tool’s superior 
accuracy.
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