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Abstract. Recent improvements in propositional satisfiability techniques (SAT) made it possible

to tackle successfully some hard real-world problems (e.g., model-checking, circuit testing,

propositional planning) by encoding into SAT. However, a purely Boolean representation is not

expressive enough for many other real-world applications, including the verification of timed and

hybrid systems, of proof obligations in software, and of circuit design at RTL level. These prob-

lems can be naturally modeled as satisfiability in linear arithmetic logic (LAL), that is, the Boolean

combination of propositional variables and linear constraints over numerical variables. In this

paper we present MATHSAT, a new, SAT-based decision procedure for LAL, based on the (known

approach) of integrating a state-of-the-art SAT solver with a dedicated mathematical solver for

LAL. We improve MATHSAT in two different directions. First, the top-level line procedure is

enhanced and now features a tighter integration between the Boolean search and the mathematical

solver. In particular, we allow for theory-driven backjumping and learning, and theory-driven

deduction; we use static learning in order to reduce the number of Boolean models that are math-

ematically inconsistent; we exploit problem clustering in order to partition mathematical reasoning;

and we define a stack-based interface that allows us to implement mathematical reasoning in an

incremental and backtrackable way. Second, the mathematical solver is based on layering; that is,

the consistency of (partial) assignments is checked in theories of increasing strength (equality and

uninterpreted functions, linear arithmetic over the reals, linear arithmetic over the integers). For

each of these layers, a dedicated (sub)solver is used. Cheaper solvers are called first, and detection

of inconsistency makes call of the subsequent solvers superfluous. We provide a through exper-

imental evaluation of our approach, by taking into account a large set of previously proposed

benchmarks. We first investigate the relative benefits and drawbacks of each proposed technique by
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comparison with respect to a reference option setting. We then demonstrate the global effec-

tiveness of our approach by a comparison with several state-of-the-art decision procedures. We

show that the behavior of MATHSAT is often superior to its competitors, both on LAL and in the

subclass of difference logic.

Key words: satisfiability module theory, integrated decision procedures, linear arithmetic logic,

propositional satisfiability.

1. Motivations and Goals

Many practical domains of reasoning require a degree of expressiveness beyond

propositonal logic. For instance, timed and hybrid systems have a discrete com-

ponent as well as a dynamic evolution of real variables; proof obligations arising

in software verification are often Boolean combinations of constraints over in-

teger variables; circuits described at the register transfer level, even though

expressible via Booleanization, might be easier to analyze at a higher level of

abstraction (see e.g., [12]). The verification problems arising in such domains can

often be modeled as satisfiability in Linear Arithmetic Logic (LAL), that is, the

Boolean combination of propositional variables and linear constraints over nu-

merical variables. Because of its practical relevance, LAL has attracted a lot of

interest, and several decision procedures (e.g., SVC [15], ICS [18, 23], CVCLITE

[7, 15], UCLID [35, 43], HDPLL [31]) are able to deal with it.

In this paper, we propose a new decision procedure for the satisfiability of LAL,

both for the real-valued and for the integer-valued case. We start from a well-

known approach, previously applied in MATHSAT [3, 27] and in several other

systems [2, 7, 15, 18, 20, 23, 42]: a propositional SAT procedure, modified to

enumerate propositional assignments for the propositional abstraction of the

problem, is integrated with dedicated theory deciders, used to check consistency

of propositional assignments with respects to the theory. We extend this approach

by improving (1) the top-level procedure, and (2) the mathematical reasoner.

The top-level procedure features a tighter integration between the Boolean

search and the mathematical solver. First, we allow for theory conflict-driven

backjumping (i.e., sets of inconsistent constraints identified in the mathematical

solver are used to drive backjumping and learning at the Boolean level) and

theory deduction (i.e., when possible, assignments for unassigned theory atoms

are automatically inferred from the current partial assignment). Both theory con-

flicts and theory deductions are learned as clauses codifying the relationships

between mathematical atoms at the Boolean level; subsequent search will thus

avoid the generation of Boolean assignments that are not mathematically con-

sistent. Second, we suggest a systematic use of static learning, that is, the a
priori encoding of some basic mathematical facts at the Boolean level before the

Boolean search. This will stop many inconsistent assignments from ever being

enumerated. A moderate increase in the size of the problem is often compensated

by significant speedups in performance. In this way MATHSAT settles in the
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middle ground between the Beager^ approach, where mathematical facts are dis-

covered during the search, and the Blazy approaches^ approach (e.g., [39, 43]),

where a very large number of facts may be required in order to lift mathematical

reasoning to Boolean reasoning. Third, we define a stack-based interface between

the Boolean level and the mathematical level, which enables the top level to add

constraints, set points of backtracking, and backjump, in order to exploit the fact

that increasingly larger sets of constraints are analyzed while extending a Bool-

ean model. As a result, the mathematical reasoner can be incremental and back-

trackable and can exploit previously derived information rather than restarting

from scratch at each call. Finally, we consider that mathematical reasoning is, in

many practical cases, performed on the disjoint union of several subtheories (or

clusters). Therefore, rather than solving the problem with a single, monolithic

mathematical solver, we use a separate instance of the mathematical solver for

each independent cluster.

The main idea underlying the mathematical solver for linear arithmetic is that

it is layered, that is, implemented as a hierarchy of solvers for theories of

increasing strength. The consistency of (partial) assignments is checked first in

the logic of equality and uninterpreted function (EUF), then in difference logics,

then in linear arithmetic over the reals, and then in linear arithmetic over the

integers (if needed by the problem). The rationale is that cheaper, more abstract

solvers are called first. If unsatisfiability at a more abstract level is detected, this

is sufficient to prune the search.

We provide a thorough experimental evaluation of our approach, based on

a large set of benchmarks previously proposed in the literature. We first show

the respective merits of each of the proposed optimizations, comparing

different configurations of MATHSAT with respect to a Bgolden setting^, and

we show to which extent each of the improvements impacts performance. Then

we compare MATHSAT against the state-of-the-art systems (ICS, CVCLITE, and

UCLID) on general LAL problems. We show that our approach is able to deal

efficiently with a wide class of problems, with performance comparable with and

often superior to the other systems. We also compare MATHSAT against the spe-

cialized decision procedures DLSAT and TSAT++ on the subclass of difference

logics.

This paper is structured as follows. In Section 2 we define linear arithmetic

logic. In Section 3 we describe the basic MATHSAT approach, and in Section 4

we present the enhanced algorithm. In Section 5 we describe the ideas underlying

the mathematical solver. In Section 6 we described the implementation of the

MATHSAT system. In Section 7 we present the result of the experimental eval-

uation. In Section 8 we discuss some related work; and in Section 9 we draw

some conclusions and outline the directions for future work.

This paper updates and extends the content and results presented in a much

shorter conference paper [11].
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2. Background: Linear Arithmetic Logic

Let B :¼ ?;>f g be the domain of Boolean values. Let R and Z be the domains

of real and integer numbers, respectively, and let D denote either of them. By

math-terms over D we denote the linear mathematical expressions built on

constants, variables, and arithmetical operators over D. Examples of math-terms

are constants ci 2 D, variables vi over D, possibly with coefficients (i.e., civj), and

applications of the arithmetic operators + and j to math-terms. Boolean atoms
are proposition Ai, from B: Mathematical atoms are formed by the application of

the arithmetic relations =, m, >, <, Q, e to math-terms. Unspecified atoms can be

either Boolean or mathematical. By math-formulas we denote atoms and their

combinations through the standard Boolean connectives $, K, ¦, Y, 6. For

instance, A1 $((v1 + 5) e 2v3) is a math-formula on either R or Z . A literal is

either an atom (a positive literal) or its negation (a negative literal). Examples of

literals are A1, KA2, (v1 + 5v2 e 2v3 j 2), K(2v1 j v2 = 5). If l is a negative literal

K=, then by BKl^ we denote = rather than KK=. We denote the set of all atoms in

� by Atoms (�), and the subset of mathematical atoms by MathAtoms (�).

An interpretation in D is a mapping I which assigns values in D to variables

and truth values in B to Boolean atoms. Given an interpretation, math-terms and

math-formulas are given values D and in B; respectively, by interpreting con-

stants, arithmetical operators and Boolean connectives according to their standard

(arithmetical or logical) semantics. We write I(�) for the truth value of � under

the interpretation I, and similarly I(t) for the domain value of the math-term t.
We say that I satisfies a math-formula �, written I î �, iff I (�) = B. For

example, the math-formula 82 (A1 Y (v1 j 2v2 Q 4)) $ (KA1 Y (v1 = v2 + 3)) is

satisfied by an interpretation I in Z s.t. I(A1) = B, I(v1) = 8, and I(v2) = 1.

We say that a math-formula 8 is satisfiable in D if there exists an inter-

pretation in D which satisfies 8. The problem of checking the satisfiability of

math-formulas is NP-hard, since standard Boolean formulas are a strict subcase

Figure 1. High level view of the MATHSAT algorithm.
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of math-formulas (this means theoretically Bat least as hard^ as standard Boolean

satisfiability, but in practice it turns out to be much harder).

A total (resp., partial) truth assignment for a math-formula � is a function m
from all (resp., a subset of) the atoms of � to truth values. We represent a truth

assignment as a set of literals, with the intended meaning that positive and neg-

ative literals represent atoms assigned to true and to false, respectively. We use

the notation m = {�1, . . . ,�N, K�1 , . . . , K�M, A1, . . . , AR, KAR+1, . . . , KAS}, where

�1, . . . , �N, �1, . . . , �M are mathematical atoms and A1, . . . , AS are Boolean

atoms. We say that m propositionally satisfies �, written m îp�, iff it makes �
evaluate to true. We say that an interpretation I satisfies a truth assignment m iff I
satisfies all the elements of m; if there exists an (resp., no) interpretation that

satisfies an assignment m, then m is said LAL-satisfiable (resp., LAL-

unsatisfiable). The truth assignment {A1, (v1 j 2v2 Q 4), K(v1 = v2 + 3)}

propositionally satisfies (A1 Y (v1 j 2v2 Q 4)) $ (KA1 Y(v1 = v2 + 3)), and it is

satisfied by I s.t. I(A1) = B, I (v1) = 8, and I(v2) = 1.

EXAMPLE 2.1 Consider the following math-formula 8:

: 2v
2
� v3 > 2ð Þ _ A1

n o
^ :A2 _ 2v1 � 4v5 > 3ð Þ
� �

^ 3v1 � 2v2 � 3ð Þ _ A2

n o
^ : 2v3 þ v4 � 5ð Þ _ : 3v1 � v3 � 6ð Þ _ :A1

n o

^ A1 _ 3v1 � 2v2 � 3ð Þ
n o

^ v1 � v5 � 1ð Þ _ v5 ¼ 5� 3v4ð Þ _ :A1

n o

^ A1 _ v3 ¼ 3v5 þ 4ð Þ _ A2

n o
:

The truth assignment m corresponding to the underlined literals is

�
: 2v2 � v3 > 2ð Þ;:A2; 3v1 � 2v2 � 3ð Þ;: 3v1 � v3 � 6ð Þ; v1 � v5 � 1ð Þ;

v3 ¼ 3v5 þ 4ð Þ
�
:

(Notice that m is a partial assignment, because it assigns truth values only to a

subset of the atoms of 8.) m propositionally satisfies 8 as it sets to true one literal

of every disjunction in 8. Notice that m is not LAL-satisfiable Y in fact, neither of

the following subassignments of m has a satisfying interpretation:

: 2v2 � v3 > 2ð Þ; 3v1 � 2v2 � 3ð Þ;: 3v1 � v3 � 6ð Þf g ð1Þ

: 3v1 � v3 � 6ð Þ; v1 � v5 � 1ð Þ; v3 ¼ 3v5 þ 4ð Þf g: ð2Þ

Given a LAL-unsatisfiable assignment m, we call a conflict set any LAL-

unsatisfiable subassignment m 0 � m; we say that m 0 is a minimal conflict set if all
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subsets of m 0 are LAL-consistent. For example, both (1) and (2) are minimal

conflict sets of m.

3. The MATHSAT Algorithm: Basics

A much simplified, recursive representation of the basic MATHSAT procedure is

outlined in Figure 1. MATHSAT takes as input a math-formula �, and (by

reference) any empty interpretation I. Without loss of generality, � is assumed

to be in conjunctive normal form (CNF). MATHSAT returns B if � is LAL-

satisfiable (with I containing a satisfying interpretation), and ± otherwise.

MATHSAT invokes MATHDPLL passing as arguments the Boolean formula

8 :¼M2B �ð Þ and (by reference) an empty assignment for 8 and the empty

interpretation I.
We introduce a bijective function M2B (for BMath-to-Boolean^), also

called boolean abstraction function, that maps Boolean atoms into themselves,

math-atoms into fresh Boolean atoms Y so that two atom instances in 8 are

mapped into the same Boolean atom iff they are syntactically identical and

distributes over sets and Boolean connectives. Its inverse function B2M �ð Þ (for

BBoolean-to-Math^) is called refinement, respectively. Both functions can be

implemented efficiently, so that they require a small constant time for mapping

one atom.

MATHDPLL tries to build an assignment m satisfying 8, such that its refinement

is satisfiable in LAL, and the interpretation I satisfies B2M �ð Þ (and �). This is

done recursively, with a variant of DPLL modified to enumerate assignments,

and trying to refine them according to LAL. In particular:

Base. If 8 == B, then m propositionally satisfies M2B �ð Þ . In order to check

whether m is LAL-satisfiable, which shows that 8 is LAL-satisfiable, MATHDPLL

invokes the linear mathematical solver MATHSOLVE on the refinement B2M �ð Þ ,
and returns a Sat or Unsat value accordingly.

Backtrack. If 8 == ±, then m has led to a propositional contradiction. There-

fore MATHDPLL returns Unsat and backtracks.

Unit. If a literal l occurs in 8 as a unit clauses, then l must be assigned a true

value. Thus MATHDPLL is invoked recursively with the formula returned by assign
(l, 8) and the assignment obtained by adding l to m as arguments. assign (l, 8)

substitutes every occurrence of l in 8 with B and propositionally simplifies the

result.

Early pruning. MATHSOLVE is invoked on (the refinement of) the current

assignment m. If this is found unsatisfiable, then there is no need to proceed, and

the procedure backtracks.
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Split. If none of the above situations occurs, then choose-literal (8) returns an

unassigned l according to some heuristic criterion. Then MATHDPLL is first

invoked recursively with arguments assign(l, 8) and m?{l}. If the result is

Unsat, then MATHDPLL is invoked with argument assign (Kl, 8) and m?{Kl}.

4. The MATHSAT Algorithm: Enhancements

The algorithm presented in the previous section is oversimplified for explanatory

purposes. It can be easily adapted to deal with advanced SAT solving techniques

such as splitting heuristics, two-literals watching, and restarts (see [44] for an

overview). This section describes several enhancement that have been made to

the interplay between the Boolean and mathematical solvers.

4.1. THEORY-DRIVEN BACKJUMPING AND LEARNING

When MATHSOLVE finds the assignment m to be LAL-unsatisfiable, it also returns

a conflict set h causing the unsatisfiability. This enables MATHDPLL to backjump

in its search to the most recent branching point in which at least one literal l 2 h
is not assigned a truth value, pruning the search space below. We call this

technique theory-driven backjumping. Clearly, its effectiveness strongly depends

on the quality of the conflict sets generated.

EXAMPLE 4.1. Consider the formula 8 and the assignment m of Example 2.1.

Suppose that MATHDPLL generates m following the order to occurrence within 8,

and that MATHSOLVE(m) returns the conflict set (1). Thus MATHDPLL can jump back

directly to the branching point K(3v1 j v3 e 6) without exploring the right

branches of (v3 = 3v5 + 4) and (v1 j v5 e 1). If instead MATHSOLVE(m) returns the

conflict set (2), then MATHSAT backtracks to (v3 = 3v5 + 4). Thus, (2) causes no

reduction in search.

When MATHSOLVE returns a conflict set h, the clause Kh can be added in

conjunction to 8: this will prevent MATHDPLL from generating again any branch

containing h. We call this technique theory-driven learning.

EXAMPLE 4.2. As in Example 4.1, suppose MATHSOLVE(m) returns the conflict

set (1). Then the clause (2v2 j v3 > 2) ¦ K(3v1 j 2v2 e 3) ¦ (3v1 j v3 e 6) is

added in conjunction to �. Thus, whenever a branch containts two elements of

(1), MATHDPLL will assign the third to false by unit propagation.

As in the Boolean case, learning must be used with some care, since it may

cause an explosion in the size of 8. Therefore, some techniques can be used to

discard learned clauses when necessary [8]. Notice however the difference with

standard Boolean backjumping and learning [8]: in the latter case, the conflict set
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propositionally falsifies the formula, while in our case it is inconsistent from the

mathematically viewpoint.

4.2. THEORY-DRIVEN DEDUCTION

With early pruning, MATHSOLVE is used to check whether m is LAL-satisfiable and

thus to possibly prune whole branches of the search. It is also possible to use

MATHSOLVE to reduce the remaining Boolean search: the mathematical analysis of

m performed by MATHSOLVE can discover that the value of some mathematical

atom = =2 m is already determined, based on some subset m 0 2 m of the current

assignment. For instance, consider the case where the literals (v1 = v2) and (v2 j

v3 = 4) are in the current (partial) assignment m, while (v1 j v3 = 4) is currently

unassigned. Since {(v1 = v2), (v2 j v3 = 4)} î (v1 j v3 = 4), atom (v1 j v3 = 4)

must be assigned to B, because assigning it to ± would make m LAL-

inconsistent.

MATHSOLVE is therefore used to detect and suggest to the Boolean search which

unassigned literals have forced values. This kind of deduction is often very

useful because it can trigger new Boolean constraint propagation: the search is

deepened without the need to split. Moreover, the implication clauses describing

the deduction (e.g., K(v1 = v2) ¦ K(v2 j v3 = 4) ¦ (v1 j v3 = 4)) can be learned

at the Boolean level, and added to the main formula: this constrains the remaining

Boolean search even after backtracking.

4.3. A STACK-BASED INTERFACE TO MATHSOLVE

Since the search is driven by the Fstack-based_ Boolean procedure, we define a

stack-based interface to call the math solver. In this way, MATHSOLVE can

significantly exploit previous computations. Consider the following trace (left

column first, then right):

MATHSOLVE ð�1Þ ) Sat Undo �2

MATHSOLVE ð�1[�2Þ ) Sat MATHSOLVE ð�1[�02
�

) Sat

MATHSOLVE ð�1[�2[�3Þ ) Sat MATHSOLVE ð�1[�02[�03
�

) Sat

MATHSOLVE ð�1[�2[�3[�4Þ) Unsat MATHSOLVE ð�1[�02[�03[�04
�
) Sat

On the left, an assignment is repeatedly extended until a conflict is found. We

notice that MATHSOLVE is invoked (during early pruning calls) on incremental
assignments. When a conflict is found, the search backtracks to a previous point

(on the right), and MATHSOLVE is then restarted from a previously visited state.

Based on these considerations, our MATHSOLVE is not a function call: it has a

persistent state and is incremental and backtrackable. Incremental means that it

avoids restarting the computation from scratch whenever it is given in input an

assignment m 0 such that m 0 Ð m and m has already proved satisfiable.

Backtrackable means that it is possible to return to a previous state on the stack
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in a relatively efficient manner. Therefore MATHSOLVE has primitives to add
constraints to the current state, to set backtrack points, and to jump back to a

previously set backtrack point.

4.4. FILTERING

Another way of speeding MATHSOLVE is to give it smaller but in some sense

sufficient sets of constraints.

4.4.1. Pure Literal Filtering

Assume that a math-atom = occurs only positively in the formula �, that is, there

is no clause in � having the literal K=. That is, = is a pure literal. Now if = is

assigned to false in the current truth assignment m, that is, K= 2 m, we don’t have

to pass K= to MATHSOLVE. The reason is that if an extension m 0 of m proposi-

tionally satisfies �, so will m 0 \{K=} as = is a pure literal. Similar analysis

applies to the case in which = occurs only negatively in �.

Notice that if a pure literal = is assigned to true in m, then it has to be passed

to MATHSOLVE. Furthermore, one may not fix = to true before the MATHDPLL

search as in the purely Boolean case.

4.4.2. Theory-Deduced Literal Filtering

Another way of reducing the number of math-atoms given to MATHSOLVE is to

exploit theory-deduced clauses, i.e., those clauses resulting from theory-driven

learning (Section 4.1), theory-driven deduction (Section 4.2), and static learning

(Section 4.6). For each theory-deduced clause C = l1 ¦. . .¦ ln, each li being a

math-atom or its negation, the truth assignment {Kl1 , . . . ,Kln} is LAL-

unsatisfiable. That is, all interpretations that satisfy all Kl1 , . . . ,Klnj1 must

satisfy the literal ln. Therefore, if the current truth assignment m contains the

literals Kl1, . . . ,Klnj1, and the literal ln is forced to true by unit propagation on

the clause C, there is no need to pass ln to MATHSOLVE as m is LAL-satisfiable

iff m ? {ln} is. In order to detect these cases, the theory-deduced clauses can be

marked with a flag.

Combining the filtering methods requires some care. The literals Kl1, . . . ,

Klnj1 in the current truth assignment must have been passed to MATHSOLVE (i.e.,

not filtered) in order to apply theory-deduced literal filtering to ln.

4.5. WEAKENED EARLY PRUNING

Early pruning calls are used only to prune the search; if the current (partial)

assignment m is found to be unsatisfiable, the search backtracks, but if it is found

to be satisfiable, the search goes deeper and the assignment will be extended.
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Therefore, during early pruning calls MATHSOLVE does not have to detect all
inconsistencies; as long as calls to MATHSOLVE at the end of a search branch

faithfully detect inconsistency, correctness and completeness are guaranteed.

We exploit this fact by using a faster, but less powerful version of MATHSOLVE

for early pruning calls. Specifically, in the R domain, handling disequalities re-

quires an extra solver that is often time-consuming (see Section 5). As dis-

equalities in R are typically very low-constraining, and thus very rarely cause

inconsistency, during early pruning calls MATHSOLVE ignores disequalities, which

are instead considered when checking complete search branches.

In the Z domain, as the theory of linear arithmetic on Z is much harder, in

theory and in practice, than that on R [9], during early pruning calls MATHSOLVE

looks for a solution on the reals only.

4.6. STATIC LEARNING

Before starting the actual MATHDPLL search, the problem can be preprocessed by

adding some basic mathematical relationships among the math-atoms as Boolean

constraints to the problem. As the added constraints are consequences of the

underlying theory, the satisfiability of the problem is preserved. The new

constraints may significant help to prune the search space in the Boolean level,
thus avoiding some LAL-unsatisfiable models and calls to the more expensive

MATHSOLVE. In other words, before the search, we learn, at low cost, some basic

facts that most often would have to be discovered, at a much higher cost, by the

math solver during the search.

The simplest case of static learning is based on (in)equalities between math-

terms and constants. Assume that � contains a set of math-atoms of form St =

{(t (1 c1), . . . , (t (n cn)}, where t is a math-term (i 2 {<, e, =, Q, >}, and ci are

constant. First, � is conjoined with a set of constraints over the equality atoms of

form (t = ci) in St, ensuring that at most one of them can be true. This can be

achieved with pairwise mutual exclusion constraints of form K(t = ci) ¦ K(t = cj).

Second, the math-atoms in St are connected with a linear number of binary

constraints that compactly encode the obvious mathematical (in)equality rela-

tionship between them. For instance, if St = {(t e 2), (t = 3), (t > 5), (t Q 7)}, then

� is conjoined with the constraints (t = 3)YK(t > 5), (t = 3)YK(t e 2), (t e
2) Y K(t > 5), and (t Q 7)Y (t > 5). Now (t Q 7) implies (t > 5), K(t = 3) and

K(t e 2) in the Boolean level.
Furthermore, some facts among difference constraints of the form t1 j t2 (

c, ( 2 {<, e, =, Q, >}, can be easily derived and added. First, mutually exclusive

pairs of difference constraints are handled. E.g., if (t1 j t2 e 3), (t2 j t1 < j4) 2
MathAtoms (�), then the clause K (t1 j t2 e 3) ¦K (t2 j t1 < j4) is conjoined to

�. Second, clauses corresponding to triangle inequalities and equalities between

difference constraints are added. For example, if (t1 j t2 e 3), (t2 j t3 < 5), (t1 j
t3 < 9) 2 MathAtoms (�), then (t1 j t2 e 3) $ t3 < 5) Y (t1 j t3 < 9) is added
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to �. Similarly, for (t1 j t2 = 3), (t2 j t3 = 0), (t1 j t3 = 5) 2 MathAtoms(�) we

add the constraint (t1 j t2 = 3) A (t2 j t3 = 0)YK(t1 j t3 = 5) to �.

4.7. CLUSTERING

At the beginning of the search, MathAtoms(�), that is, the set of mathematical

atoms, is partitioned into a set of disjoint clusters C1 ?
: : :? Ck: intuitively, two

atoms belong to the same cluster if they share a variable. If Li is the sets of

literals built with the atoms in cluster i, it is easy to see that an assignment m is

LAL-satisfiable if and only if each m 7 Li is LAL-satisfiable. Based on this idea,

instead of having a single, monolithic solver for linear arithmetic, the

mathematical solver is instantiated k different times. Each is responsible for

handling the mathematical reasoning within a single cluster. A dispatcher is

responsible for the activation of the suitable mathematical solver instances,

depending on the mathematical atoms occurring in the assignment to be

analyzed.

The advantage of this approach is manifold. First k solvers running on k
disjoint problems are typically faster than running one solver monolithically on

the union of the problem. Furthermore, the construction of smaller conflict sets

becomes easier, and this may result in a significant gain in the overall search.

Finally, when caching the results of previous calls to the linear solvers, it

increases the likelihood of a hit.

5. A Layered MATHSOLVE

In this section, we discuss the structure of MATHSOLVE. We disregard the issues

related to clustering, since the different instances of MATHSOLVE that result are

completely independent of each other. MATHSOLVE is responsible for checking the

satisfiability of a set of mathematical atoms m and returning, as appropriate, a

model or a conflict set.

Figure 2. Control flow of MATHSOLVE.
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In many calls to MATHSOLVE, a general solver for linear constraints is not

needed: very often, the unsatisfiability of the current assignment m can be

established in less expressive, but much easier, subtheories. Thus, MATHSOLVE is

organized in a layered hierarchy of solvers of increasing solving capabilities. If a

higher-level solver finds a conflict, then this conflict is used to prune the search at

the Boolean level; if it does not, the lower-level solvers are activated.

Layering can be understood as trying to favor faster solvers for more abstract

theories over slower solvers for more general theories. Figure 2 shows a rough

idea of the structure of MATHSOLVE. Three logical components can be

distinguished. First, the current assignment m is passed to the equational solver,

which deals only with (positive and negative) equalities (Section 5.1). Secondly,

if this solver does not find a conflict, MATHSOLVE tries to find a conflict over the

reals (see Section 5.2). Third, if the current assignment is also satisfiable over the

reals and the variables are to be interpreted over the integers, a solver for linear

arithmetic over the integers is invoked (see Section 5.3).

5.1. EQUALITY AND UNINTERPRETED FUNCTIONS

The first layer of MATHSOLVE is provided by the equational solver, a satisfiability

checker for the logic of unconditional ground equality over uninterpreted

function symbols. It is incremental and supports efficient backtracking. The

solver generates conflict sets, deduces assignments for equational literals, and

can provide explanations for its deductions. Thanks to the equational solver,

MATHSAT can be used as an efficient decision procedure for the full logic of

equality over uninterpreted function symbols (EUF). However, in this section we

focus on the way the equational solver is used to improve the performance on

LAL.

The solver is based on the basic congruence closure algorithm suggested in

[29]. We slightly extend the logic by allowing for enumerated objects and

numbers, with the understanding that each object denotes a distinct domain

element (i.e., an object is implicitly different from all the other objects and from

all numbers). Similarly, different numbers are implicitly different from each

other (and from all objects).

The congruence closure module internally constructs a congruence data

structure that can determine whether two arbitrary terms are necessarily forced to

be equal by the currently asserted constraints, and can thus be used to determine

the value of (some) equational atoms. It also maintains a list of asserted dis-
equations and signals unsatisfiability if either one of these or an implicit dis-

equation is violated by the current congruence.

If two terms are equal, an auxiliary proof tree data structure allows us to

extract the reason, that is, the original constraints (and just those) that forced this
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equality. If a disequality constraint is violated, we can return the reason (together

with the violated inequality) as a conflict set.
Similarly, we can perform forward deduction: for each unassigned equational

atom, we can determine whether the two sides are already forced to be equal by

the current assignment, and hence whether the atom has to be asserted as true or

false. Again, we can extract the reason for this deduction and use it to represent

the deduction as a learned clause on the Boolean level.

There are two ways in which the equational solver can be used: as a full

solver for a purely equational cluster or as a layer in the arithmetic reasoning

process. In the first case, the equational solver is associated to a cluster not

involving any arithmetic at all, which contains only equation of the vi ( vj, vi (
cj, with ( 2{=, m}. As stated above, the equation solver implicitly knows that

syntactically different constants in D are semantically distinct. Hence, it provides

a full solver for some clusters, avoiding the need to call an expensive linear

solver on an easy problem. This can significantly improve performance, since in

practical examples a purely equation cluster often is present Y typical examples

are the modeling of assignments in a programming language, and gate and

multiplexer definitions in circuits.

In the second case, the equational solver also receives constraints involving

arithmetic operators. While arithmetic functions are treated as fully uninter-

preted, the equational solver has a limited interpretation of < and e, knowing

only that s < t implies s m t, and s = t implies s e t and K(s < t). However, all

deductions and conflicts under EUF semantics are also valid under fully

interpreted semantics. Thus, the efficient equational solver can be used to prune

the search space. Only if the equational solver cannot deduce any new

assignments and reports a tentative model, does this model need to be analyzed

by lower solvers.

5.2. LINEAR ARITHMETIC OVER THE REALS

To check a given assignment m of linear constraints for satisfiability over the

reals, MATHSOLVE first considers only those constraints that are in the difference

logic fragment. That is, it considers the subassignment of m consisting of all

constraints of the forms vi j vj ( c and vi ( c, with ( 2 {=, m, <, >, e, Q}.

Satisfiability checking for this subassignment is reduced to a negative-cycle

detection problem in the graph whose nodes correspond to variables and whose

edges correspond to the constraints. MATHSOLVE uses an incremental version of

the Bellman-Ford algorithm to search for a negative-cycle and hence for a

conflict. See, for instance [13], for background information. In many practical

cases, for instance in bounded model-checking problems of timed automata, a

sizable amount or even all of m is in the difference logic fragment. This causes a

considerable speedup, since the Bellman-Ford algorithm is much more efficient
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than a general linear solver and generally generates much better (smaller) conflict

sets.

If the difference logic fragment of m turns out to be satisfiable, MATHSOLVE

checks the satisfiability of the subassignment of m consisting of all constraints

except the disequalities by means of the simplex method. MATHSOLVE uses a

variant of the simplex method, namely, the Cassowary algorithm (see [10]), that

uses slack variables to efficiently allow the addition and removal of constraints

and the generation of minimal conflict set.

When this also turns out to be consistent, disequalities are taken into account:

the incremental and backtrackable machinery is used to check, for each

disequality Scivi m cj in m, and separately from the other disequalities, whether

it is consistent with the non-disequality constraints in m. We do so by adding and

retracting both Scivi < cj and Scivi > cj. If one of the disequalities is inconsistent,

the assignment m is inconsistent. However, because the theory of the reals is

(logically) convex, if each disequality separately is consistent, then all of m is

consistent Y this follows from a dimensionality argument, basically because it

is impossible to write an affine subspace A of Rk as a finite union of proper

affine subspaces of A.

5.3. LINEAR ARITHMETIC OVER THE INTEGERS

Whenever the variables are interpreted over the reals, MATHSOLVE is done at this

point. If the variables are to be interpreted over the integers, and the problem is

unsatisfiable in R , then it also is so over Z . When the problem is satisfiable

in the reals, it is possible that it is not so in the integers. The first step carried out

by MATHSOLVE in this case is a simple form of branch-and-cut (see, e.g., [26])

that searches for solutions over the integers by tightening the constraints. The

algorithm acts on the representation of the solution space constructed over the

integers and makes use of the incremental and backtrackable machinery. Branch-

and-cut also takes into account disequalities.

Branch-and-cut is complete only when the solution space is bounded, and

there are practical cases when it can be very slow to converge. Therefore, if it

does not find either an integer solution or a conflict within a small, predetermined

amount of search, the current assignment is analyzed with the FourierYMotzkin

Elimination (FME) procedure. Since it is computationally expensive, FME is

called only as a last resort.

6. The MATHSAT System

The MATHSAT system is a general solver implementing the ideas and algorithms

described earlier in this paper. It also has some other features and accepts a richer

input language than pure LAL, as for example, equalities over uninterpreted

functions are allowed.
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It is structured in three main components: (i) a preprocessor, (ii) a Boolean

satisfiability solver, and (iii) the MATHSOLVE theory reasoner.

6.1. PREPROCESSOR

MATHSAT supports a rich input language, with a large variety of Boolean and

arithmetic operators, including a ternary if-then-else construct on the term and

formula level. For reasons of simplicity and efficiency, MATHDPLL, the core

engine of the solver, handles a much simplified language. Reducing the rich input

language to this simpler form is done by a preprocessor module.

The preprocessor performs some basic normalization of atoms, so that the

core engine has to deal only with a restricted set of predicates. It eliminates each

ternary if-then-else term t = ITE(b, t1, t2) over math terms t1 and t2 by replacing

it with a new variable vt and adding the boolean if-then-else constraint ITE (b,

vt = t1, vt = t2) to the formula. Furthermore, it uses a standard linear-time, satis-

fiability preserving translation to transform the formula (including the remaining

if-then-else on the Boolean level) into clause normal form.

6.2. BOOLEAN SOLVER

The propositional abstraction of the math-formula produced by the preprocessor

is given to the Boolean satisfiability solver extended to implement the MATHDPLL

algorithm described in Section 3. This solver is built upon the MINISAT solver

[17], from which it inherits conflict-driven learning and back-jumping, restarts

[8, 22, 37], optimized Boolean constraint propagation based on the two-watched

literal scheme, and the VSIDS splitting heuristics [28]. In fact, if MATHSAT is

given a purely Boolean problem, it behaves substantially like MINISAT, as

MATHSOLVE is not instantiated.j The communication with MATHSOLVE is carried

out through an interface (similar to the one in [20]) that passes assigned literals,

LAL-consistency queries, and back-tracking commands and receives back

answers to the queries, mathematical conflict sets, and implied literals (Section 3).

The Boolean solver has been extended to handle some options relevant when

dealing with math-formulas. For instance, MATHSAT inherits MINISAT’s feature

of periodically discarding some of the learned clauses to prevent explosion of the

formula size. However, clauses generated by theory-driven learning and forward

deduction mechanisms (Section 3) are never discarded, as a default option, since

they may have required a lot of work in MATHSOLVE. As a second example, it is

possible to initialize the VSIDS heuristics weights of literals so that either

Boolean or theory atoms are preferred as splitting choices early in the MATHDPLL

search.

j In some experiments on some very big pure SAT formulas, which are not reported here,
MATHSAT took on average 10Y20% more time than MINISAT to solve the same instances.

MATHSAT: TIGHT INTEGRATION OF SAT AND MATHEMATICAL DECISION PROCEDURES 279



6.3. MATHSOLVE

The implementation of MATHSOLVE is composed of several software modules.

The equational reasoner is implemented in C/C++ and reuses some of the data

structures of the theorem prover E [33] to store and process terms and atoms. The

module for handling difference constraints is developed in C++. The simplex

algorithm for linear arithmetic over the reals is based on the Cassowary system

[5]. The branch-and-cut procedure is implemented on top of it and uses the

incrementally features of Cassowary to perform the search. For the Four-

ierYMotzkin elimination. MATHSOLVE uses the Omega system [30].

A very important point is that MATHSAT is able to deal with infinite-precision

arithmetic. To this end, the mathematical solver handles arbitrary large rational

numbers by means of the GMP library [21].

7. Experimental Evaluation

In this section we report on the experiments we have carried out to evaluate the

performance of our approach. The experiments were run on a bi-processor

XEON 3.0 GHz machine with 4 GB of memory (test in Section 7.2), on a 4-

Processor PentiumIII 700 MHz machine with 6 GB of memory (tests in Section

7.3.1), and on a bi-processor XEON 1.4 GHz machine with 2 GB of memory

(tests in Section 7.3.2), all of them running Linux RedHat Enterprise. The time

limit for all the experiments was set to 300 s, and the memory limit was set to

512 MB.

An executable version of MATHSAT and the source files of all the experiments

performed in the paper are available at [27].

7.1. DESCRIPTION OF THE TEST CASES

The set of benchmarks we used in the experimentation, described below,

involves all the suites available in the literature we are aware of. For the test on

LAL, we used the following suites. The SAL suite, originally presented in [32],

is a set of benchmarks for ground decision procedures, derived from bounded

model checking of timed automata and linear hybrid systems, and from test-case

generation for embedded controllers. The RTLC suite, provided by the authors

of [31], formalizes safety properties for RTL (see [31] for a more detailed

description). The CIRC suite, generated by ourselves, encodes the verification of

certain properties for some simple circuits. The suite is composed of three kinds

of benchmark, all of them being parametric in (and scaling up with) N, that is,

the width of the data-path of the circuit, so that [0..2N
j 1] is the range of integer

variables. In the first benchmark, the modular sum of the integers is checked for
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inequality against the bitwise sum of their bit decomposition. The negation of the

resulting formula is therefore unsatisfiable. In the second benchmark, two iden-

tical shift-and-add multipliers and two integers a and b are given; a and the bit

decomposition of b (respectively b and the bit decomposition of a) are given as

input to the first (respectively, the second) multiplier and the outputs of the two

multiplier are checked for inequality. The negation of the resulting formula is

therefore unsatisfiable. In the third benchmark, an integer a and the bitwise

decomposition of an integer b are given as input to a shift-and-add multiplier; the

output of the multiplier is compared with the constant integer value p2, p being

the biggest prime number strictly smaller than 2N. The resulting formula is

satisfiable, but it has only one solution, where a = b = p. The TM suite is a set of

benchmark for (temporal) metric planning, provided to us by the authors of [36]

(see also [41]).

The benchmark below have been used for the comparison in Section

7.3.2 and fall into the difference logic fragment of LAL. The DLSAT suite is

provided to us by the authors of [14] (see the paper for more detail). The suite

contains two different sets of benchmark: the first set formalizes the problem of

finding the optimal schedule for the job shop problem, a combinatorial op-

timization problem; the second set is concerned with bounded model checking

of timed automata that model digital circuits with delays, and formalizes the

problem of finding the maximal stabilization time for the circuits. The SEP

suite [34] is a set of benchmarks for separation logic (i.e., difference logic)

derived from symbolic simulation of several hardware designs, which is

maintained by O. Strichman. The DTP suite [1, 38] is a set of benchmarks

from the field of temporal reasoning. The set of benchmark is similar in spirit to

the standard random k-CNF SAT benchmark and consists of randomly generated

2-CNF difference formulas. For our tests we have selected 60 randomly ge-

nerated DTP formulas with 35 numerical variables in the Bhard^ satisfiability

transition area.

The SAL, TM, DLSAT, and DTP suites are in the domain of reals, while the

RTCL, CIRC, and SEP suites are in the domain of integers. Because of the

different sources of problems within one suite, the benchmark suites cannot be

straightforwardly characterized in terms of structural properties of their formulas

(except for the DPT suite, in which only positive difference inequalities in the

form (x j y e c) occur). Nearly all problems contain a significant quantity of

Boolean atoms (e.g., control variables in circuits, actions in planning problems,

discrete variables in timed and hybrid system). Nearly all problems contain many

difference inequalities in the form (x j y e c) (e.g., time constraints in sched-

uling problems and in timed and hybrid systems verification problems, range

constraints in RTL, circuits). Some problems, such as ATPG problems in RTLC

and timed and hybrid systems in SAL, contain lots of simple equalities in the

form (x = y) or (x = c). The problems in the CIRC suite contain complex LAL

atoms with very big integer constants, like (b = Si 2ibi) or (x e 232).
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7.2. EVALUATING DIFFERENT OPTIMIZATIONS

In this section we evaluate the impact of several optimizations on the overall

performance of MATHSAT. The experimental evaluation has been conducted in

the following way. We chose a Bdefault^ option configuration for MATHSAT, that

involves theory-driven backjumping and learning, theory-driven deduction,

weakened early pruning, static learning, clustering, and EQ layering (that is,

using the EUF solver as described in the second case of Section 5.1).

The configuration has been tested against each of the configuration obtained

by switching off (or changing) different options one at a time (in other words,

each version that has been tested differs from the default version only with

respect to one of the optimizations). Specifically, the variants we considered are

respectively the default version without (weekend) early pruning, with full early

pruning, without clustering, without theory-driven deduction, without static learn-

ing, and without EQ layering.

The six variants of MATHSAT have been run on the following test suites: SAL,

RTLC, CIRC, TM, DLSAT, SEP, DTP.

The scatter plots of the overall results are given in Figure 3. Each plot reports

the results of the evaluation on each of the options. The X and Y axes show,

Figure 3. Scatter plots for six different variations of MATHSAT (Y axis), compared against the

default version (X axis).
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respectively, the performance of the default version and of the modified ver-

sion of MATHSAT. A dot in the upper part of a picture, that is, above the diagonal,

means that the default version performs better, and vice versa. The two upper-

most horizontal lines represent benchmarks that ended in time-out (lower) or

out-of-memory (higher) for the modified version of MATHSAT, whereas the two

rightmost vertical lines represent time-out (left) or out-of-memory (right) for the

default version. Notice that the axes are logarithmic, so that only big per-

formance gaps are highlighted. For example, the fact that a variant is 50% faster

or slower than the default on some sample (i.e., a 1.5 performance factor) is

hardly discernible on these plots.

From the plots in Figure 3 we observe the following facts.

Y Dropping (weakened) early pruning worsens the performances significant-

ly, or even drastically, in most benchmarks. This is due to the fact that

early pruning may allow for significant cuts to the boolean search tree, and

that the extra cost of intermediate calls to MATHSOLVE is much reduced by

the incrementality of MATHSOLVE. From nearly all our experiments, it turns

out that early pruning causes a significant reduction of the number of

branches explored in the Boolean search tree, which is proportional to the

overall reduction of CPU time.
Y Using full early pruning instead of its weakened version most often worsens

performances, on both R and Z domains. From the experimental data, we

see that full early pruning does not introduce significant reductions in the

number of boolean branches explored, while the calls to MATHSOLVE require

longer times on average.

Within the R domian, this fact seems to suggest that ignoring disequalities

in the consistency check makes MATHSOLVE faster without reducing sig-

nificantly the pruning effect of the boolean search space. Within the R
domain, this fact seems to suggest that in most cases the assignments that

are consistent in R are consistent also in Z and that the overhead due to

handling integers also in early pruning calls in sometimes heavy.
Y Dropping clustering slightly worsens the performances in most cases, al-

though the gaps are not dramatic. A possible explanation is that the effects

of Bdividing and conquering^ the mathematical search space are not as

relevant as those of other factors (e.g., cutting the Boolean search space).

This combines with the fact that the mathematical solver is very effective

in producing small conflict sets, even in presence of larger problems. In our

test, only a few tests actually had more than one cluster. A more refined

analysis shows that for the problems with only a single cluster the overhead

is not significant.
Y Dropping theory-driven deduction worsens the performance in most cases.

The importance of deduction is both in the immediate effect of assigning

truth values to unassigned literals, which fires Boolean constraint prop-
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agation, and in the learning of extra clauses from the deduction. From our

experiments, it turns out that theory-driven deduction is most effective in

problems that are rich in simpler equalities like (x = c) and (x = y) (e.g., the

problems in the RTLC and the BMC on timed system problems in SAL),

which can be easily and effectively deduced by the EUF solver.
Y Static learning seems to introduce only slight improvements on average.

This may be due to the fact that most benchmarks derive from the encoding

of verification problems, so that short clauses that can be learned easily

are already part of the encodings (see, e.g., [4]). Moreover, in general, the

effect of static learning is hindered in part by theory-driven learning. From

our experiments, it turns out that in some benchmarks (e.g., DTP, and

partly DLSAT and CIRC) where lots of clauses can be learned off-line,

static-learning is effective (e.g., more than one order magnitude faster on

DTP) while on other benchmarks where very few or no clause can be

learned off-line, static learning is ineffective.
Y Dropping EQ layering worsens the performance in most cases. We believe

this is due to the fact that many practical problems contain lots of simple

equalities, from which lots of information can be deduced and learned by

simply applying equality propagation and congruence closure. From our

experiments, it turns out that EQ layering is most effective in problems

which are rich of simpler equalities like (x = c) and (x = y) (e.g., the

problems in RTLC and the BMC on timed system problems in SAL),

which can be easily and effectively handled by the EUF solver.

Figure 4 shows the impact of switching off simultaneously all six options

described above. We notice that, altogether, the six optimizations improve the

performances significantly, and even dramatically in most cases.

7.3. COMPARISON WITH OTHER STATE-OF-THE-ART TOOLS

In this section we report the results of the evaluation of MATHSAT with respect

to other state-of-the-art tools. We distinguish the evaluation into two parts: in

Figure 4. Scatter plots for the version of MATHSAT with all features disabled (Y axis)

compared against the default version (X axis).
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Section 7.3.1 we compare MATHSAT against CVC, ICS, and UCLID, which

support linear arithmetic logic (LAL), whereas in Section 7.3.2 we compare

MATHSAT against TSAT++ and DLSAT, which are specialized solvers for

difference logic (DL).

Figure 5. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s times,

respectively.
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7.3.1. Comparison on Linear Arithmetic Logic

We have compared MATHSAT with ICS [18, 23], CVCLITE [7, 15], and UCLID

[35, 43]. We ran ICS version 2.0 and UCLID version 1.0. For CVCLITE, we used

the version available on the online repository, as of 10 October 2004, given that

the latest officially released version showed a bug related to the management of

integer variables (the version we used turned out to be much faster than the

official one).

The results are reported in Figure 5. Each column shows the comparison

between MATHSAT and, respectively, CVCLITE, ICS and UCLID. Each of the

rows corresponds to the comparison of the four systems on the SAL, RTCL,

CIRC, and TM test suites, respectively.

Each point in the scatter plot corresponds to a problem run; on the X axis we

have the execution time of MATHSAT, while the Y axis shows the execution time

of the competitor system. A point above the diagonal means a better performance

of MATHSAT and vice versa. The two uppermost horizontal lines represent

benchmarks that ended in time-out (lower) or out-of-memory (higher) for the

competitor system, whereas the two rightmost vertical lines represent time-out

(left) or out-of-memory (right) for MATHSAT.

The comparison with CVCLITE shows that MATHSAT performs generally

much better on the majority of the benchmarks in the SAL suite (CVCLITE

timeouts on several of them, MATHSAT only on five of them). On the RTLC

suite, the comparison is slightly in favor of MATHSAT. For the CIRC and TM

suites, the comparison is definitely in favor of MATHSAT, although there are a

few problems in the TM suite that neither of the systems can solve.

The comparison with ICS is reported in the second column. We see that on

the SAL suite (i.e., on ICS own test suite) ICS is slightly superior on the smaller

problems. However, MATHSAT performs slightly better on the medium and

significantly better on the most difficult problems in the suite, where ICS

repeatedly times out. In the RTLC suite, ICS is clearly dominated by MATHSAT.

In the CIRC suite MATHSAT performs better on nearly all tests, although the

performance gaps are not impressive. In the TM suite, ICS performs slightly

better than MATHSAT.

The comparison with UCLID is limited to the problems that can be expressed,

that is, some problems in SAL and RTLC, and shows a very substantial

performance gap in favor of MATHSAT.

An alternative view of the comparison is shown in Figures 6 and 7 (these

curves are also known as runtime distributions). For each of the systems, we

report the number of benchmarks solved (Y axis) in a given amount of time

(X axis) (the samples are ordered by increasing computaion time). The upper

point in the trace also shows how many samples were solved within the time

limit. (Notice that the data for UCLID must be interpreted with care because it

was confronted only with a subset of the problems. For the same reason, UCLID

is not reported in the totals).
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The curves highlight that UCLID is the worst scorer except for the RTLC

suite, where it performs better than ICS, that MATHSAT and ICS perform globally

better than CVCLITE, and that MATHSAT is sometimes slower on the smaller

problems than ICS, but more powerful when it comes to harder problems.

One potential criticism to every empirical comparison is that the choice of the

test cases may bias the results. For our tests, however, we remark that we have

run all the test cases used by the ICS team in [16], that we have also introduced

Figure 7. Number of benchmarks solved (Y axis) versus time (X axis) (all suites).

Figure 6. Number of benchmarks solved (Y axis) versus time (X axis) for each suite.
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other suites with problems from other application domains, and that, except for

the CIRC suite, all the suites we have used have been proposed by other authors

in previous papers.

7.3.2. Comparison on Difference Logic

We also compared MATHSAT with TSAT++ [2, 42] and DLSAT [14], which are

specialized solvers for difference logics. We did not include in the comparison

SEP [34, 40], a decision procedure based on an eager encoding in propositional

logic, since it is known to be outperformed by TSAT++ [2].

In Figure 8 we report the results of the comparison between MATHSAT and

TSAT++ (left column), and DLSAT (right column). Figure 9 shows an overall

comparison using runtime distributions.

MATHSAT performs slightly better than TSAT++ on the DLSAT suite, slightly

worse or equivalently better on the SEP suite, and significantly better on the DTP

suite (i.e., TSAT++ own suite). MATHSAT performs significantly better than

DLSAT on its own suite, slightly worse on the SEP suite (notice that the samples

Figure 8. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s

times, respectively.
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here are much fewer and much simpler) and significantly better in the DTP suite.

On the whole, we can see that MATHSAT and TSAT++ both outperform DLSAT.

Interestingly, MATHSAT exhibits on these problems a behavior that is com-

parable to or even better than TSAT++, which is a highly specialized solver,

despite its ability to deal with a larger class of problems.

8. Related Work

In this paper we have presented a new decision procedure for linear arithmetic

logic. The verification problem for LAL is well known and has received a lot of

interest in the past. In particular, decision procedures are the ones considered in

Section 7.3, namely, CVCLITE [7, 15], ICS [18, 23], and UCLID [35, 43].

CVCLITE is a library for checking validity of quantifier-free first-order

formulas over several interpreted theories, including real and integer linear

arithmetic, arrays, and uninterpreted functions. CVCLITE replaces the older tools

SVC and CVC [15]. ICS is a decision procedure for the satisfiability of formulas

in a quantifier-free, first-order theory containing both uninterpreted function

symbols and interpreted symbol from a set of theories including arithmetic,

Figure 9. Number of benchmarks solved (Y axis) versus time (X axis) for each suite.
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tuples, arrays, and bit vectors. UCLID is a tool incorporating a decision functions

procedure for arithmetic of counters, the theories of uninterpreted functions and

equality (EUF), separation predicates, and arrays. UCLID is based on an Beager^
reduction to propositional SAT; that is, the input formula is translated into a

SAT formula in a single satisfiability-preserving step, and the output formula is

checked for satisfiability by a SAT solver.

In this paper, we have compared these tools using benchmarks from linear

arithmetic logic (in the case of UCLID the subset of arithmetic of counters). A

comparison on the benchmarks dealing with the theory of EUF is part of our

future work.

Other relevant systems are Verifun [19], a tool using lazy-theorem proving

based on SAT-solving, suporting domain-specific procedures for the theories of

EUF, linear arithmetic and the theory of arrays, and the tool ZAPATO [6], a tool for

counterexample-driven abstraction refinement whose overall architecture is

similar to Verifun. The DPLL(T) [20] tool is a decision procedure for the theory

of EUF. Similarly to MATHSAT, DPLL(T) is based on a DPLL-like SAT-solver

engine coupled with an efficient congruence closure module [29] that has

inspired our own equational reasoner. However, our use of EUF reasoning is

directed to tackling the harder problem of LAL satisfiability.

ASAP [25] is a decision procedure for quantifier-free Presburger arithmetic

(that is, the theory of LAL over nonnegative integers). ASAP is implemented on

top of UCLID and would have been a natural candidate for our experimental

evaluation; unfortunately, a comparison was not possible because neither the sys-

tem nor the benchmarks described in [25] have been made available.

We mentioned HDPLL, a decision procedure for LAL, specialized for the

verification of circuits at the RTL level [31]. The procedure is based on DPLL-

like Boolean search engine integrated with a constraint solver based on Fourier-

Motzkin elimination and finite domain constraint propagation. According to the

experimental results in [31], HDPLL seems to be very effective for its appli-

cation domain. We are very interested in incorporating some of the ideas into

MATHSAT and in performing a thorough experimental comparison. However,

HDPLL is not publicly available.

Concerning the fragment of difference logic, other related tools are the ones

considered in Section 7.3.2, namely, TSAT++ [2, 42], and DLSAT [14]. While

TSAT++ and DLSAT implemented an approach similar to MATHSAT, they are

specialized to dealing with difference logics and do not implement any form of

layering. In general, TSAT++ appears to be much more efficient than DLSAT,

based on a lean implementation that tightly integrates the theory solver with a

state-of-the-art library for SAT. An alternative approach is implemented in SEP

[34, 40], that is based on a eager approach that reduces satisfiability of the

difference logic to the satisfiability of a purely propositional formula.

Concerning the very different domain of constraint logic programming, we

notice that some ideas related to the mathematical solver(s) presented in this
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paper (i.e., layering, stack-based interfaces, theory-deduction) are to some extent

similar to those presented in [24].j

9. Conclusions and Future Work

In this paper we have presented a new approach to the satisfiability of linear

arithmetic logic. The work is carried out within the (known) framework of

integration between off-the-shelf SAT solvers, and specialized theory solvers. We

proposed several improvements. In the top level algorithm, we exploit theory

learning and deduction, theory-driven backjumping, and we adopt a stack-based

interface that allows for an incremental and backtrackable implementation of the

mathematical solver. We also use static learning and clustering. We heavily exploit

the idea of layering: the satisfiability of theory constraints is evaluated in theories

of increasing strength (equality, linear arithmetic over the reals, and linear

arithmetic over the integers). The idea is to prefer less expensive solvers (for

weaker theories), thus reducing the use of more expensive solvers. We carried out a

thorough experimental evaluation of our approach: our MATHSAT solver is able to

tackle effectively a wide class of problems, with performance comparable with

and often superior to the state-of-the-art competitors, both on LAL problems and

against specialized competitors on the subclass of difference logics.

As future work, we plan to enhance MATHSAT by investigating different

splitting heuristics and the integration of other boolean reasoning techniques, that

are complementary to DPLL. An extension of MATHSAT to nonlinear arithmetics

is currently ongoing, based on the integration of computer-algebraic methods.

Further extensions include the development of specialized modules to deal with

memory access, bit-vector arithmetic, and the extension to the integration of EUF

and LA. On the side of verification, we envisage MATHSAT as a back-end for

lifting SAT-based model checking beyond the Boolean case, to the verification of

sequential RTL circuits and of hybrid systems.
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