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Abstract 

This paper develops a method for solving the multiple attribute decision making 

problems with the single valued neutrosophic information or interval neutrosophic 

information. We first propose two discrimination functions referred to as score 

function and accuracy function for ranking the neutrosophic numbers. An 

optimization model to determine the attribute weights that are partly known is 

established based on the maximizing deviation method. For the special situations 

where the information about attribute weights is completely unknown, we propose 

another optimization model. A practical and useful formula which can be used to 

determine the attribute weights is obtained by solving a proposed non-linear 

optimization problem. To aggregate the neutrosophic information corresponding to 

each alternative, we utilize the neutrosophic weighted averaging (NWA) operators 

which are the single valued neutrosophic weighted averaging (SVNWA) operator 

and the interval neutrosophic weighted averaging (INWA) operator. Thus we can 

determine the order of alternatives and choose the most desirable one(s) based on the 

score function and accuracy function. Finally, some illustrative examples are 

presented to verify the proposed approach and to present its effectiveness and 

practicality. 

 

1. Introduction 

Zadeh introduced the degree of membership/truth (t) in 1965 and proposed the concept of fuzzy set. 

Atanassov introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy 

set. (To date, the intuitionistic fuzzy sets have been widely applied in solving MCDM problems (Peng et al. 

2015b; Wang et al. 2013a, 2013b, 2014)). Using the degree of indeterminacy/neutrality (i) as independent 

component in 1995, Smarandache initiated the neutrosophic set theory. He has coined the words 

“neutrosophy” and neutrosophic. In 2013, he redefined the neutrosophic set to 𝑛  components: 

𝑡1, 𝑡2, … ; 𝑖1, 𝑖2, … ; 𝑓1, 𝑓2, … .  

But, a neutrosophic set will be difficult to apply in real scientific and engineering fields. Therefore, Wang et 

al. (2005, 2010) proposed the concepts of a single valued neutrosophic set (SVNS) and an interval 

neutrosophic set (INS) which are an instance of a neutrosophic set, and provided set-theoretic operators and 

various properties of SVNSs and INSs. Recently, the theory of neutrosophic set has received more and more 

attentions (Liu et al. 2014;Liu and Wang 2014; Liu and Shi 2015; Peng et al. 2014, 2015a, 2015c; Sahin and 

Kucuk 2014; Ye 2013; Ye 2014a, 2014b, 2014c, 2014d, 2014e; Zhang et al. 2014, 2015; Broumi et al. 2015; 

Broumi and Smarandache 2014, 2015; Tian 2015). Zhang et al. (2014) proposed some neutrosophic 

aggregation operators, such as the interval neutrosophic weighted averaging (INWA) operator and the 

interval neutrosophic weighted geometric (INWG) operator, and applied the operators to solve the multiple 

attribute group decision making problems with interval neutrosophic information. 
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For the above researches on the multiple attribute decision making (MADM) problems with interval 

neutrosophic information, we can suppose the attribute weights are fully known. However, in real decision 

making, because of time pressure, lack of knowledge or data, and the expert’s limited expertise about the 

problem domain, the information about attribute weights is incompletely known or completely unknown. So, 

the existing MADMs under neutrosophic environment will be impractical for such situations. Therefore, it is 

necessary to study this issue. In this paper, our aim is to solve the MADM problems in which the attribute 

values take the form of neutrosophic information and attribute weights are incompletely known or 

completely unknown based on the maximizing deviation method. In Section 2, we summarize the some basic 

concepts related to a neutrosophic set and its instances, single valued neutrosophic set and interval 

neutrosophic set. A score function and an accuracy function is also proposed for ranking neutrosophic 

numbers in this section. Section 3 introduces the neutrosophic MADM (NMADM) method under 

neutrosophic environment, in which the information about attribute weights is partly known and the attribute 

values take the form of neutrosophic numbers. An optimization model based on the maximizing deviation 

method is established to determine the attribute weights. For the special situations where the information 

about attribute weights is completely unknown, we develop another optimization model which provides a 

simple and exact formula. To aggregate the neutrosophic information corresponding to each alternative, we 

utilize the neutrosophic weighted averaging (NWA) operators which are the single valued neutrosophic 

weighted averaging (SVNWA) operator and the interval neutrosophic weighted averaging (INWA) operator. 

Thus we can determine the order of alternatives and choose the most desirable one(s) based on the score 

function and accuracy function. In Section 4, some illustrative examples are presented to verify the 

developed approach and to demonstrate its practicality and effectiveness. Section 5 concludes the paper and 

presents some results. 

2. Preliminaries 

In the subsection, we give some concepts related to neutrosophic sets, single valued neutrosophic sets and 

interval neutrosophic sets. 

2.1 Neutrosophic set 

Definition 1. (Smarandache 1998) Let 𝑋 be a universe of discourse, then a neutrosophic set is defined as: 

𝐴 = {〈𝑥, 𝐹𝐴(𝑥), 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)〉: 𝑥 ∈ 𝑋}, 

which is characterized by a truth-membership function 𝑇𝐴: 𝑋 → ]0−, 1+[ , an indeterminacy-membership 

function 𝐼𝐴: 𝑋 → ]0−, 1+[and a falsity-membership function 𝐹𝐴: 𝑋 → ]0−, 1+[. 

There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤

3+.  

In the following, we adopt the representations 𝑢𝐴(𝑥), 𝑝𝐴(𝑥) and 𝑣𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), 

respectively. 

Wang et al. (2010) defined the single valued neutrosophic set which is an instance of neutrosophic set as 

follows: 

2.1 Single valued neutrosophic sets 

Definition 2. (Wang et al. 2010) Let 𝑋 be a universe of discourse, then a single valued neutrosophic set is 

defined as: 

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑝𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 
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where, 𝑢𝐴: 𝑋 → [0,1], 𝑝𝐴: 𝑋 → [0,1] and 𝑣𝐴: 𝑋 → [0,1] with 0 ≤ 𝑢𝐴(𝑥) + 𝑝𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. 

The intervals 𝑢𝐴(𝑥), 𝑝𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth-membership degree, the indeterminacy-membership 

degree and the falsity membership degree of 𝑥 to 𝐴, respectively. 

We will denote the set of all the SVNSs in 𝑋 by 𝒬. A single valued neutrosophic number (SVNN) is denoted 

by �̃� = 〈𝑢, 𝑝, 𝑣〉 for convenience. 

We give a score function and an accuracy function for ranking SVNNs as follows; 

Definition 3. Let �̃� = 〈𝑢, 𝑝, 𝑣〉 be a single valued neutrosophic number. Then a score function 𝑆 of the single 

valued neutrosophic number can be defined by 

𝑆(�̃�) =
1 + 𝑢 − 2𝑝 − 𝑣

2
                                                                                  (1) 

where 𝑆(�̃�) ∈ [−1,1]. 

The score function 𝑆 is reduced the score function proposed by Li (2005) if 𝑝 = 0 and 𝑢 + 𝑣 ≤ 1. 

Example 1. Let �̃�1  =  (0.5,0.2,0.6) and �̃�2  =  (0.6,0.4,0.2) be two single valued neutrosophic numbers for 

two alternatives. Then, by applying Definition 3, we can obtain 

𝑆(�̃�1) =
1 + 0.5 − 2 × 0.2 − 0.6

2
=  0.25 

𝑆(�̃�2) =
1 + 0.6 − 2 × 0.4 − 0.2

2
=  0.30. 

In this case, we can say that alternative �̃�2 is better than �̃�1. 

Definition 4. Let 𝑎 = 〈𝑢, 𝑝, 𝑣〉 be a single valued neutrosophic number, an accuracy function 𝐻 of the single 

valued neutrosophic number can be defined by 

𝐻(𝑎) = 𝑢 − 𝑝(1 − 𝑢) − 𝑣(1 − 𝑝)                                                                      (2) 

where 𝐻(𝑎) ∈ [−1,1]. 

When the value of 𝐻(�̃�) increases, we say that the degree of accuracy of the single valued neutrosophic 

number �̃� increases. 

Example 2. Let �̃�1  =  (0.3,0.1,0.4) and �̃�2  =  (0.5,0.1,0.3) be two single valued neutrosophic numbers for 

two alternatives. Then, by applying Definition 4, we can obtain 𝐻(�̃�1) = −0.13 and 𝐻(�̃�2) = 0.18. 

In this case, we can say that alternative �̃�2 is better than �̃�1. 

With respect to the score function 𝑆 and the accuracy function 𝐻, a method for comparing SVNNs can be 

defined as follows; 

Definition 5. Let �̃�1 = 〈𝑢1, 𝑝1, 𝑣1〉 and �̃�2 = 〈𝑢2, 𝑝2, 𝑣2〉 be two single valued neutrosophic values. Then we 

have 

(1) if 𝑆(�̃�1) > 𝑆(�̃�2), then �̃�1 is greater than �̃�2, denoted by �̃�1 ≻ �̃�2, 

(2) if 𝑆(�̃�1) = 𝑆(�̃�2) and 𝐻(�̃�1) > 𝐻(�̃�2) then �̃�1 is greater than �̃�2, denoted by �̃�1 ≻ �̃�2. 

Example 3.  Let �̃�1  =  (0.6,0.2,0.2) and �̃�2  =  (0.5,0.1,0.3) be two single valued neutrosophic numbers for 

two alternatives. Then, by applying Definition 5, we can obtain 𝑆(�̃�1) = 𝑆(�̃�2) = 0.5 and 𝐻(�̃�1) = 0.36, 

𝐻(�̃�2) = 0.18. Then it implies that �̃�1 ≻ �̃�2. 

Based on the study given in Zhang et al. (2014), we define two weighted aggregation operators related to 

SVNSs as follows; 
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Definition 6. Let �̃�𝑗 = 〈𝑢𝑗, 𝑝𝑗 , 𝑣𝑗〉(𝑗 = 1,2, … , 𝑛) be a collection of single valued neutrosophic numbers, and 

SVNWA:𝒬𝑛 → 𝒬, if  

SVNWAω(�̃�1, �̃�2, … , �̃�𝑛) =∑𝜔𝑗�̃�𝑗

𝑛

𝑗=1

= (1−∏(1 − 𝑢𝑗)
𝜔𝑗

𝑛

𝑗=1

,∏𝑝𝑗
𝜔𝑗

𝑛

𝑗=1

,∏𝑣𝑗
𝜔𝑗

𝑛

𝑗=1

)                     (3)  

where 𝜔𝑗  is the weight of �̃�𝑗  (𝑗 = 1,2, … , 𝑛) , 𝜔𝑗 ∈ [0,1]  and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 , then SVNWA is called  single 

valued neutrosophic weighted average operator. Especially, when𝜔𝑗 = 1/𝑛  (𝑗 = 1,2,… , 𝑛) , then the 

SVNWA is called an arithmetic average operator for SVNNs.  

Similarly, we can define the single valued neutrosophic weighted geometric average (SVNWG) operator. 

Definition 7. Let �̃�𝑗 = 〈𝑢𝑗, 𝑝𝑗 , 𝑣𝑗〉 (𝑗 = 1,2,… , 𝑛) be a collection of single valued neutrosophic numbers, and 

SVNWG:𝒬𝑛 → 𝒬, if  

SVNWGω(�̃�1, �̃�2, … , �̃�𝑛) =∏�̃�
𝑗

𝜔𝑗

𝑛

𝑗=1

= (∏𝑢𝑗
𝜔𝑗 , 1 −∏(1 − 𝑝𝑗)

𝜔𝑗

𝑛

𝑗=1

𝑛

𝑗=1

, 1 −∏(1 − 𝑣𝑗)
𝜔𝑗

𝑛

𝑗=1

)            (4) 

where 𝜔𝑗  is the weight of �̃�𝑗  (𝑗 = 1,2, … , 𝑛) , 𝜔𝑗 ∈ [0,1]  and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 , then SVNWG is called  single 

valued neutrosophic weighted geometric average operator. Especially, when 𝜔𝑗 = 1/𝑛 (𝑗 = 1,2,… , 𝑛), then 

SVNWG is called a geometric average operator for SVNNs. 

The aggregation results of the  SVNWA and SVNWG operators are still SVNSs.  

Definition 8. (Majumdar and Samanta 2014) Let �̃�1 = 〈𝑢1, 𝑝1, 𝑣1〉 and �̃�2 = 〈𝑢2, 𝑝2, 𝑣2〉 be two single valued 

neutrosophic numbers. Then the normalized Hamming distance measure between �̃�1 and �̃�2 is defined as: 

𝑑(�̃�1, �̃�2) =
1

3
(|𝑢1 − 𝑢2| + |𝑝1 − 𝑝2| + |𝑣1 − 𝑣2|).                                              (5) 

Wang et al. (2005) extended the concept of single valued neutrosophic set to interval neutrosophic set (INS) 

which is a further instance of the NSs. The fundamental characteristic of the INS is that the values of its 

truth-membership function, indeterminacy-membership function and falsity membership function are 

intervals rather than exact numbers. 

2.2 Interval neutrosophic sets 

Definition 9. Wang et al. (2005) Let 𝑋 be a universe of discourse and Int[0,1] be the set of all closed subsets 

of [0,1]. Then an interval neutrosophic set is defined as: 

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑝𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 

where 𝑢𝐴: 𝑋 → Int[0,1] , 𝑝𝐴: 𝑋 → Int[0,1] and 𝑣𝐴: 𝑋 → Int[0,1]  with 0 ≤ sup𝑢𝐴(𝑥) + sup𝑝𝐴(𝑥) +

sup𝑣𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. The intervals 𝑢𝐴(𝑥), 𝑝𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth-membership degree, the 

indeterminacy-membership degree and the falsity membership degree of 𝑥 to 𝐴, respectively. 

For convenience, if let 𝑢𝐴(𝑥) = [𝑢𝐴
𝐿(𝑥), 𝑢𝐴

𝑈(𝑥)], 𝑝𝐴(𝑥) = [𝑝𝐴
𝐿(𝑥), 𝑝𝐴

𝑈(𝑥)] and 𝑣(𝑥) = [𝑣𝐴
𝐿(𝑥), 𝑣𝐴

𝑈(𝑥)], then  

𝐴 = {〈𝑥, [𝑢𝐴
𝐿(𝑥), 𝑢𝐴

𝑈(𝑥)], [𝑝𝐴
𝐿(𝑥), 𝑝𝐴

𝑈(𝑥)], [𝑣𝐴
𝐿(𝑥), 𝑣𝐴

𝑈(𝑥)]〉: 𝑥 ∈ 𝑋} 

with the condition, 0 ≤ sup𝑢𝐴
𝑈(𝑥) + sup𝑝𝐴

𝑈(𝑥) + sup𝑣𝐴
𝑈(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. Here, we only consider the 

sub-unitary interval of [0,1]. Therefore, an interval neutrosophic set is clearly a neutrosophic set.  

We will denote the set of all the INSs in 𝑋 by ℱ. An interval neutrosophic number (INN) is denoted by �̃� =

〈[𝑢−, 𝑢+], [𝑝−, 𝑝+], [𝑣−, 𝑣+]〉 for convenience. 
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We give the score function and accuracy function of an INN as follows. 

Definition 10. Let �̃� = 〈[𝑢−, 𝑢+], [𝑝−, 𝑝+], [𝑣−, 𝑣+]〉 be an interval neutrosophic number, a score function 𝑆 

of the single valued neutrosophic number can be defined by 

𝑆(�̃�) =
2 + 𝑢− + 𝑢+ − 2𝑝− − 2𝑝+ − 𝑣− − 𝑣+

4
                                                           (6) 

where 𝑆(�̃�) ∈ [−1,1]. 

Example 4. Let �̃�1 = ([0.6,0.4], [0.3,0.1], [0.1,0.3])  and �̃�2 = ([0.1,0.6], [0.2,0.3], [0.1, 0.4])  be two 

interval neutrosophic numbers for two alternatives. Then, by Definition 10, we can obtain 𝑆(�̃�1) = 0.65 and 

𝑆(�̃�2) = 0.30. 

In this case we can say that alternative �̃�1 is better than �̃�2. 

Definition 11. Let �̃� = 〈[𝑢−, 𝑢+], [𝑝−, 𝑝+], [𝑣−, 𝑣+]〉  be an interval neutrosophic number, an accuracy 

function 𝐻 of the single valued neutrosophic number can be defined by 

𝐻(�̃�) =
1

2
(𝑢− + 𝑢+ − 𝑝+(1 − 𝑢+) − 𝑝−(1 − 𝑢−)−𝑣+(1 − 𝑝−) − 𝑣−(1 − 𝑝+))                         (7) 

where 𝐻(�̃�) ∈ [−1,1]. 

The larger the value of 𝐻(�̃�) is, the more the degree of accuracy of the single valued neutrosophic value �̃� is. 

The accuracy function 𝐻 is reduced the accuracy function proposed by Nayagam et al. (2011) if 𝑝−, 𝑝+ = 0 

and 𝑢+ + 𝑣+ ≤ 1. 

With respect to the score function 𝑆 and the accuracy function 𝐻, we define a method for comparing INNs as 

follows; 

Definition 12. Let �̃�1 = 〈[𝑢1
−, 𝑢1

+], [𝑝1
−, 𝑝1

+], [𝑣1
−, 𝑣1

+]〉   and �̃�2 = 〈[𝑢2
−, 𝑢2

+], [𝑝2
−, 𝑝2

+], [𝑣2
−, 𝑣2

+]〉   be two 

interval neutrosophic numbers. Then we have 

(1) if 𝑆(�̃�1) > 𝑆(�̃�2), then �̃�1 is greater than �̃�2, denoted by �̃�1 ≻ �̃�2, 

(2) if 𝑆(�̃�1) = 𝑆(�̃�2) and 𝐻(�̃�1) > 𝐻(�̃�2) then �̃�1 is greater than �̃�2, denoted by �̃�1 ≻ �̃�2. 

Next, we give two weighted aggregation operators related to INSs.  

Definition 13. (Zhang 2014) Let �̃�𝑗 = 〈[𝑢𝑗
−, 𝑢𝑗

+], [𝑝𝑗
−, 𝑝𝑗

+], [𝑣𝑗
−, 𝑣𝑗

+]〉 (𝑗 = 1,2,… , 𝑛)  be a collection of 

interval neutrosophic values, and INWA:ℱ𝑛 → ℱ, if  

INWAω(�̃�1, �̃�2, … , �̃�𝑛) =∑𝜔𝑗�̃�𝑗

𝑛

𝑗=1

= ([1 −∏(1 − 𝑢𝑗
−)

𝜔𝑗

𝑛

𝑗=1

, 1 −∏(1 − 𝑢𝑗
+)

𝜔𝑗

𝑛

𝑗=1

] , 

                                                                        [∏(𝑝𝑗
−)

𝜔𝑗

𝑛

𝑗=1

,∏(𝑝𝑗
+)

𝜔𝑗

𝑛

𝑗=1

] , [∏(𝑣𝑗
−)

𝜔𝑗

𝑛

𝑗=1

,∏(𝑣𝑗
+)

𝜔𝑗

𝑛

𝑗=1

]),                     (8)  

where 𝜔𝑗  is the weight of �̃�𝑗  (𝑗 = 1,2,… , 𝑛) , 𝜔𝑗 ∈ [0,1]  and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 , then INWA is called  interval 

neutrosophic weighted average operator. Especially, when 𝜔𝑗 = 1/𝑛  (𝑗 = 1,2, … , 𝑛) , then the INWA  is 

called an arithmetic average operator for INNs.  

Definition 14. (Zhang 2014) Let �̃�𝑗 = 〈[𝑢𝑗
−, 𝑢𝑗

+], [𝑝𝑗
−, 𝑝𝑗

+], [𝑣𝑗
−, 𝑣𝑗

+]〉 (𝑗 = 1,2,… , 𝑛)  be a collection of 

interval neutrosophic numbers, and INWG:ℱ𝑛 → ℱ, if  
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INWGω(�̃�1, �̃�2, … , �̃�𝑛) =∏�̃�
𝑗

𝜔𝑗

𝑛

𝑗=1

 

= ([∏(𝑢𝑗
−)

𝜔𝑗

𝑛

𝑗=1

,∏(𝑢𝑗
+)

𝜔𝑗

𝑛

𝑗=1

] , [1 −∏(1 − 𝑝𝑗
−)

𝜔𝑗

𝑛

𝑗=1

, 1 −∏(1 − 𝑝𝑗
+)

𝜔𝑗

𝑛

𝑗=1

] , 

                                                  [1 −∏(1 − 𝑣𝑗
−)

𝜔𝑗

𝑛

𝑗=1

, 1 −∏(1 − 𝑣𝑗
+)

𝜔𝑗

𝑛

𝑗=1

]),                                                  (9)  

where 𝜔𝑗  is the weight of �̃�𝑗  (𝑗 = 1,2,… , 𝑛) , 𝜔𝑗 ∈ [0,1]  and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 , then INWG is called  interval 

neutrosophic weighted geometric average operator. Especially, when 𝜔𝑗 = 1/𝑛 (𝑗 = 1,2,… , 𝑛), then the  

INWG is called a geometric average operator for INNs. 

The aggregation results of the  INWA and INWG operators are still INSs.  

Definition 15. (Ye 2014a) Let �̃�1 = 〈[𝑢1
−, 𝑢1

+], [𝑝1
−, 𝑝1

+], [𝑣1
−, 𝑣1

+]〉  and �̃�2 = 〈[𝑢2
−, 𝑢2

+], [𝑝2
−, 𝑝2

+], [𝑣2
−, 𝑣2

+]〉 be 

two interval neutrosophic numbers. Then the normalized Hamming distance measure between �̃�1 and �̃�2 is 

defined as: 

𝑑(�̃�1, �̃�2) =
1

6
(|𝑢1

− − 𝑢2
−| + |𝑝1

− − 𝑝2
−| + |𝑣1

− − 𝑣2
−| + |𝑢1

+ − 𝑢2
+| + |𝑝1

+ − 𝑝2
+| + |𝑣1

+ − 𝑣2
+|). 

From the above analysis, we develop a method based on the maximizing deviation for the neutrosophic 

multiple attribute decision making problems in which attribute values for alternatives are the single valued 

neutrosophic value and the interval neutrosophic value. 

3. Maximizing deviation method for neutrosophic information 

Suppose that 𝐴 =  {𝐴1, 𝐴2, … , 𝐴𝑚} is the set of alternatives and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} is a set of criterions or 

attributes. The attribute weights are partly known or completely unknown. Let 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇 be the 

weight vector of attributes, such that ∑ 𝜔𝑗
𝑛
𝑗=1 = 1, 𝜔𝑗 ≥ 0 (𝑗 = 1,2, … , 𝑛)and 𝜔𝑗  refers to the weight of 

attribute 𝐶𝑗. 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑡} denotes the set of decision makers (DMs), and 𝜆 = {𝜆1, 𝜆2, … , 𝜆𝑡} denotes 

the weight vector of DMs, 𝜆𝑡 ∈ [0,1], 𝑘 = 1,2, … , 𝑡 , ∑ 𝜆𝑡
𝑡
𝑘=1 = 1. Assume that 𝐴(𝑘) = (𝑎𝑖𝑗

(𝑘))
𝑚×𝑛

 is the 

decision matrix provided by the DM 𝑑𝑘 ∈ 𝐷, 𝑎𝑖𝑗
(𝑘)

 is a neutrosophic value for alternative 𝐴𝑖  associated with 

the attribute 𝐶𝑗 . If 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
= (𝑢𝑖𝑗

(𝑘), 𝑝𝑖𝑗
(𝑘), 𝑣𝑖𝑗

(𝑘))
𝑚×𝑛

, it is a single valued neutrosophic decision 

matrix, where  𝑢𝑖𝑗
(𝑘)

 indicates the degree that the alternative 𝐴𝑖  satisfies the attribute 𝐶𝑗 and 𝑝𝑖𝑗
(𝑘)

  indicates the 

degree that the alternative 𝐴𝑖  is indeterminacy on the attribute 𝐶𝑗, whereas 𝑣𝑖𝑗
(𝑘)

 indicates the degree that the 

attribute 𝐴𝑖  does not satisfy the attribute 𝐶𝑗  given by the decision-maker 𝑑𝑘. We have the conditions 𝑢𝑖𝑗
(𝑘) ∈

[0,1] , 𝑝𝑖𝑗
(𝑘) ∈ [0,1] , and 𝑣𝑖𝑗

(𝑘) ∈ [0,1] , 0 ≤ 𝑢𝑖𝑗
(𝑘) + 𝑝𝑖𝑗

(𝑘) + 𝑣𝑖𝑗
(𝑘) ≤ 3  for 𝑖 = 1,2, … ,𝑚  and 𝑗 = 1,2,… , 𝑛. 

Similarly, if 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
= ([(𝑢𝑖𝑗

−)
(𝑘)
, (𝑢𝑖𝑗

+)
(𝑘)
] , [(𝑝𝑖𝑗

−)
(𝑘)
, (𝑝𝑖𝑗

+)
(𝑘)
] , [(𝑣𝑖𝑗

−)
(𝑘)
, (𝑣𝑖𝑗

+)
(𝑘)
])
𝑚×𝑛

, it is an 

interval neutrosophic decision matrix, where [(𝑢𝑖𝑗
−)

(𝑘)
, (𝑢𝑖𝑗

+)
(𝑘)
] indicates the degree that the alternative 𝐴𝑖  

satisfies the attribute 𝐶𝑗 and [(𝑝𝑖𝑗
−)

(𝑘)
, (𝑝𝑖𝑗

+)
(𝑘)
]  indicates the degree that the alternative 𝐴𝑖  is indeterminacy 

on the attribute 𝐶𝑗, whereas [(𝑣𝑖𝑗
−)

(𝑘)
, (𝑣𝑖𝑗

+)
(𝑘)
] indicates the degree that the attribute 𝐴𝑖  does not satisfy the 

attribute 𝐶𝑗  given by the decision-maker 𝑑𝑘  Here, we have the condition 0 ≤ sup(𝑢𝑖𝑗
+)

(𝑘)
+ sup(𝑝𝑖𝑗

+)
(𝑘)
+

sup(𝑣𝑖𝑗
+)

(𝑘)
≤ 3 for 𝑖 = 1,2,… ,𝑚 and 𝑗 = 1,2,… , 𝑛. 
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Obtaining an overall preference value by synthesizing the performance values of all alternatives of each 

expert is an important step in decision process. 

In this paper, we will utilize the SVNWA and INWA operators as the main aggregation operators for two 

different methods, respectively. 

Definition 16. Suppose that 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘)
)
𝑚×𝑛

= (𝑢𝑖𝑗
(𝑘)
, 𝑝𝑖𝑗
(𝑘)
, 𝑣𝑖𝑗
(𝑘)
)
𝑚×𝑛

 is a single valued neutrosophic 

decision matrix and �̃�𝑖 = (�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛) is the vector of attribute values corresponding to the alternative 𝐴𝑖, 

𝑖 = 1,2, … ,𝑚 . Then the overall preference value of alternative 𝐴𝑖  for DM 𝑑𝑘  can be expressed as, 𝑖 =

1,2,… ,𝑚, 

�̃�𝑖 = (𝑢𝑖𝑗
(𝑘)
, 𝑝𝑖𝑗
(𝑘)
, 𝑣𝑖𝑗
(𝑘)
) = SVNWAω(�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛) = (1 −∏(1 − 𝑢𝑗

(𝑘)
)
𝜔𝑗

𝑛

𝑗=1

,∏𝑝𝑗
(𝑘)𝜔𝑗

𝑛

𝑗=1

,∏𝑣𝑗
(𝑘)𝜔𝑗

𝑛

𝑗=1

) (10) 

where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇 denotes the weight vector of attributes. 

Definition 17. Suppose that 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
= ([(𝑢𝑖𝑗

−)
(𝑘)
, (𝑢𝑖𝑗

+)
(𝑘)
] , [(𝑝𝑖𝑗

−)
(𝑘)
, (𝑝𝑖𝑗

+)
(𝑘)
] , [(𝑣𝑖𝑗

−)
(𝑘)
, (𝑣𝑖𝑗

+)
(𝑘)
])
𝑚×𝑛

 is 

an interval neutrosophic decision matrix and �̃�𝑖 = (�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛)  is the vector of attribute values 

corresponding to the alternative 𝐴𝑖 , 𝑖 = 1,2,… ,𝑚. Then the overall preference value of alternative 𝐴𝑖  for 

DM 𝑑𝑘 can be expressed as, 𝑖 = 1,2, … ,𝑚, 

�̃�𝑖 = ([𝑢𝑖𝑗
−(𝑘)

, 𝑢𝑖𝑗
+(𝑘)

] , [𝑝𝑖𝑗
−(𝑘)

, 𝑝𝑖𝑗
+(𝑘)

] , [𝑣𝑖𝑗
−(𝑘)

, 𝑣𝑖𝑗
+(𝑘)

]) = INWAω(�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛) 

= ([1 −∏(1 − 𝑢𝑖𝑗
−(𝑘))

𝜔𝑗
𝑛

𝑗=1

, 1 −∏(1 − 𝑢𝑖𝑗
+(𝑘))

𝜔𝑗
𝑛

𝑗=1

] , 

             [∏(𝑝
𝑖𝑗
−(𝑘))

𝜔𝑗
𝑛

𝑗=1

,∏(𝑝
𝑖𝑗
+(𝑘))

𝜔𝑗
𝑛

𝑗=1

] , [∏(𝑣𝑖𝑗
−(𝑘))

𝜔𝑗
𝑛

𝑗=1

,∏(𝑣𝑖𝑗
+(𝑘))

𝜔𝑗
𝑛

𝑗=1

]),                          (11) 

where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇 be the weight vector of attributes. 

Because many practical group decision making problems are complex and uncertain, and human thinking is 

inherently subjective, the information about attribute weights is usually incomplete. Generally speaking, the 

incomplete attribute weight information can be expressed as the following relationships among the weights, 

for 𝑖 ≠ 𝑗:  

Form 1. A weak ranking: 𝜔𝑖 ≥ 𝜔𝑗; 

Form 2. A strict ranking: 𝜔𝑖−𝜔𝑗 ≥ 𝛼𝑖    (𝛼𝑖 > 0); 

Form 3. A ranking of differences: 𝜔𝑖−𝜔𝑗 ≥ 𝜔𝑘−𝜔𝑙 (𝑗 ≠ 𝑘 ≠ 𝑙) 

Form 4. A ranking with multiples: 𝜔𝑖 ≥ 𝛼𝑖𝜔𝑗   (0 ≤ 𝛼𝑖 ≤ 1) 

Form 5. An interval form: 𝛼𝑖 ≤ 𝜔𝑖 ≤ 𝛼𝑖 + 𝜀𝑖 ,  (0 ≤ 𝛼𝑖 ≤ 𝛼𝑖 + 𝜀𝑖 ≤ 1). 

Wang (1998) developed the maximizing deviation method for handling the multiple attribute decision 

making problems characterized by numerical information. In decision making problem, it is essential to rank 

them by comparing alternatives. The larger the ranking value �̃�𝑖 (or �̃�𝑖) is, the better corresponding alternative 

𝐴𝑖 is. If an attribute is creating little differences on all alternatives, it implies that such an attribute has a 

small important in decision process. Contrary, if an attribute has very clear differences in terms of the 

performance values of each alternative, we say that such an attribute should be in the foreground in selecting 

the best alternative. That is, if one attribute has a similar effect among alternatives, it should be assigned with 

a small weight; otherwise the attribute which makes larger deviations should be assigned a bigger weight. 

Especially, if all alternatives have a very similar performance value in term of a given attribute, then such an 

attribute will not have much effect on ranking the alternatives. In other word, such an attribute should be 
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assigned  with a very small weight. Also, Wang (1998) put forward that zero should be assigned with the 

corresponding to attribute. 

To determine the differences among the performance values of all alternatives, we adopt the deviation 

method. For the DM 𝑑𝑘 and the attribute 𝐶𝑗, the deviation of alternative 𝐴𝑖 to all the other alternatives can be 

expressed as follows: 

𝐻𝑖𝑗
(𝑘)(𝜔) =∑𝑑 (𝑎𝑖𝑗

(𝑘)
, 𝑎𝑠𝑗
(𝑘)
)𝜔𝑗

𝑚

𝑠=1

,
𝑖 = 1,2,… ,𝑚
𝑗 = 1,2, … , 𝑛

.  

Let  

𝐻𝑗
(𝑘)(𝜔) =∑𝐻𝑖𝑗

(𝑘)(𝜔) =∑∑𝑑(𝑎𝑖𝑗
(𝑘), 𝑎𝑠𝑗

(𝑘))𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑚

𝑖=1

, 𝑗 = 1,2,… , 𝑛. 

Then 𝐻𝑗
(𝑘)(𝜔) gives the deviation value of all alternatives to other alternatives for the attribute 𝐴𝑖 and the 

DM 𝑑𝑘. 

Using the single valued neutrosophic sets and the interval neutrosophic sets, we can select a weight vector 𝜔 

for maximize operator of all deviation values with respect to all the attributes and all the DMs.  

3.1 Maximizing deviation method for single valued neutrosophic sets 

In the subsection, we construct a non-linear programming model with single valued neutrosophic 

information, as follows: 

(𝑀 − 1)

{
 
 

 
 max𝐻(𝜔) = ∑𝜆𝑘

𝑡

𝑘=1

∑∑∑𝑑(𝑎𝑖𝑗
(𝑘), 𝑎𝑠𝑗

(𝑘))𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

subject to 𝜔𝑗 ≥ 0,∑ 𝜔𝑗
𝑛

𝑗=1
= 1, 𝑗 = 1,2, … , 𝑛 

                                        (12) 

where 𝜆𝑘 is the weight of DM 𝑑𝑘, and 

𝑑 (𝑎𝑖𝑗
(𝑘)
, 𝑎𝑠𝑗
(𝑘)
) =

1

3
(|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|). 

By solving the model (𝑀 − 1), we get the optimal solution 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇, which can be used as the 

weight vector of attributes. 

If the  attribute weights is completely unknown, we can establish another programming model: 

(𝑀 − 2)

{
 
 

 
 max𝐻(𝜔) = ∑𝜆𝑘

𝑡

𝑘=1

1

3
∑∑∑𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

(|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|)

subject to 𝜔𝑗 ≥ 0,∑𝜔𝑗
2

𝑛

𝑗=1

= 1, 𝑗 = 1,2,… , 𝑛

 

To solve this model, we construct the Lagrange function: 

𝐿(𝜔, 𝜋) = ∑𝜆𝑘

𝑡

𝑘=1

1

3
∑∑∑𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

(|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|) +
𝜋

6
(∑𝜔𝑗

2

𝑛

𝑗=1

− 1)       (13) 

where 𝜋 is the Lagrange multiplier.  

Then we compute the partial derivatives of L as follows: 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

{
 
 

 
 𝜕𝐿

𝜕𝜔𝑗
=∑𝜆𝑘

𝑡

𝑘=1

∑∑(|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗| + 𝜋𝜔𝑗 = 0)

𝑚

𝑠=1

𝑚

𝑖=1

𝜕𝐿

𝜕𝜋
=∑𝜔𝑗

2

𝑛

𝑗=1

− 1 = 0

 

From Eq.(13), we get a simple and exact formula for determining the attribute weights as follows: 

𝜔𝑗
∗ =

∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|)

𝑚
𝑠=1

𝑚
𝑖=1

√∑ (∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|)

𝑚
𝑠=1

𝑚
𝑖=1 )

2𝑛
𝑗=1

.                  (14) 

By normalizing 𝜔𝑗
∗ (𝑗 = 1,2,… , 𝑛) be a unit, we have 

𝜔𝑗 =
∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|)

𝑚
𝑠=1

𝑚
𝑖=1

∑ ∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (|𝑢𝑖𝑗 − 𝑢𝑠𝑗| + |𝑝𝑖𝑗 − 𝑝𝑠𝑗| + |𝑣𝑖𝑗 − 𝑣𝑠𝑗|)

𝑚
𝑠=1

𝑚
𝑖=1

𝑛
𝑗=1

.                         (15) 

3.2. Maximizing deviation method for interval neutrosophic sets 

Similar to the previous method, we also construct a non-linear programming model with interval 

neutrosophic information, as follows; 

(𝑀 − 3)

{
 
 

 
 max𝐻(𝜔) = ∑𝜆𝑘

𝑡

𝑘=1

∑∑∑𝑑(𝑎𝑖𝑗
(𝑘)
, 𝑎𝑠𝑗
(𝑘)
)𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

subject to 𝜔𝑗 ≥ 0,∑ 𝜔𝑗
𝑛

𝑗=1
= 1, 𝑗 = 1,2,… , 𝑛 

 

where 𝜆𝑘 is the weight of DM 𝑑𝑘, and 

𝑑 (𝑎𝑖𝑗
(𝑘)
, 𝑎𝑠𝑗
(𝑘)
) =

1

6
(|𝑢𝑖𝑗

− − 𝑢𝑠𝑗
− | + |𝑝𝑖𝑗

− − 𝑝𝑠𝑗
− | + |𝑣𝑖𝑗

− − 𝑣𝑠𝑗
− | + |𝑢𝑖𝑗

+ − 𝑢𝑠𝑗
+ | + |𝑝𝑖𝑗

+ − 𝑝𝑠𝑗
+ | + |𝑣𝑖𝑗

+ − 𝑣𝑠𝑗
+ |). 

Solving the model (𝑀 − 3), we get the optimal solution 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇, which can be used as the 

weight vector of attributes. 

If the  attribute weights is completely unknown, we can establish another programming model: 

(𝑀 − 4)

{
 
 

 
 max𝐻(𝜔) = ∑𝜆𝑘

𝑡

𝑘=1

1

6
∑∑∑𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

(Δ𝑢𝑝𝑣)

subject to 𝜔𝑗 ≥ 0,∑𝜔𝑗
2

𝑛

𝑗=1

= 1, 𝑗 = 1,2,… , 𝑛 

 

where 𝜆𝑘  is the weight of DM 𝑑𝑘  and Δ𝑢𝑝𝑣 = |𝑢𝑖𝑗
− − 𝑢𝑠𝑗

− | + |𝑝𝑖𝑗
− − 𝑝𝑠𝑗

− | + |𝑣𝑖𝑗
− − 𝑣𝑠𝑗

− | + |𝑢𝑖𝑗
+ − 𝑢𝑠𝑗

+ | +

|𝑝𝑖𝑗
+ − 𝑝𝑠𝑗

+ | + |𝑣𝑖𝑗
+ − 𝑣𝑠𝑗

+ |. 

To solve this model, we construct the Lagrange function: 

𝐿(𝜔, 𝜋) = ∑𝜆𝑘

𝑡

𝑘=1

1

6
∑∑∑𝜔𝑗

𝑚

𝑠=1

𝑚

𝑖=1

𝑛

𝑗=1

(Δ𝑢𝑝𝑣) +
𝜋

12
(∑𝜔𝑗

2

𝑛

𝑗=1

− 1),                               (16) 

where 𝜋  is the Lagrange multiplier and Δ𝑢𝑝𝑣 = |𝑢𝑖𝑗
− − 𝑢𝑠𝑗

− | + |𝑝𝑖𝑗
− − 𝑝𝑠𝑗

− | + |𝑣𝑖𝑗
− − 𝑣𝑠𝑗

− | + |𝑢𝑖𝑗
+ − 𝑢𝑠𝑗

+ | +

|𝑝𝑖𝑗
+ − 𝑝𝑠𝑗

+ | + |𝑣𝑖𝑗
+ − 𝑣𝑠𝑗

+ |.  
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Then we compute the partial derivatives of L as follows: 

{
 
 

 
 𝜕𝐿

𝜕𝜔𝑗
=∑𝜆𝑘

𝑡

𝑘=1

∑∑((Δ𝑢𝑝𝑣) + 𝜋𝜔𝑗 = 0)

𝑚

𝑠=1

𝑚

𝑖=1

𝜕𝐿

𝜕𝜋
=∑𝜔𝑗

2

𝑛

𝑗=1

− 1 = 0

                                                      (17) 

where, Δ𝑢𝑝𝑣 = |𝑢𝑖𝑗
− − 𝑢𝑠𝑗

− | + |𝑝𝑖𝑗
− − 𝑝𝑠𝑗

− | + |𝑣𝑖𝑗
− − 𝑣𝑠𝑗

− | + |𝑢𝑖𝑗
+ − 𝑢𝑠𝑗

+ | + |𝑝𝑖𝑗
+ − 𝑝𝑠𝑗

+ | + |𝑣𝑖𝑗
+ − 𝑣𝑠𝑗

+ |.  

From Eq. (17), we get a simple and exact formula for determining the attribute weights as follows: 

𝜔𝑗
∗ =

∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (Δ𝑢𝑝𝑣)

𝑚
𝑠=1

𝑚
𝑖=1

√∑ (∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (Δ𝑢𝑝𝑣)

𝑚
𝑠=1

𝑚
𝑖=1 )

2𝑛
𝑗=1

.                                                              (18) 

By normalizing 𝜔𝑗
∗ (𝑗 = 1,2,… , 𝑛) be a unit, we have 

𝜔𝑗 =
∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (Δ𝑢𝑝𝑣)

𝑚
𝑠=1

𝑚
𝑖=1

∑ ∑ 𝜆𝑘
𝑡
𝑘=1 ∑ ∑ (Δ𝑢𝑝𝑣)

𝑚
𝑠=1

𝑚
𝑖=1

𝑛
𝑗=1

,                                                                 (19) 

where  Δ𝑢𝑝𝑣 = |𝑢𝑖𝑗
− − 𝑢𝑠𝑗

− | + |𝑝𝑖𝑗
− − 𝑝𝑠𝑗

− | + |𝑣𝑖𝑗
− − 𝑣𝑠𝑗

− | + |𝑢𝑖𝑗
+ − 𝑢𝑠𝑗

+ | + |𝑝𝑖𝑗
+ − 𝑝𝑠𝑗

+ | + |𝑣𝑖𝑗
+ − 𝑣𝑠𝑗

+ |. 

Using by MatLab software with optimization toolbox or Lindo/Lingo software package, the solution of 

aforementioned maximization problem could be easily solved by a few simple calculations. 

With respect to the aforementioned models, we establish a practical and suitable methods for solving the 

NMADM problems. In our methods, the attribute weights is partly known or completely unknown, and the 

attribute values are the single valued neutrosophic information or interval neutrosophic information. The 

methods are described by the following steps: 

Method (1): Maximizing deviation method for single valued neutrosophic sets 

Step1. Let 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
 be a single valued neutrosophic decision matrix, where 𝑎𝑖𝑗

(𝑘) = (𝑢𝑖𝑗
(𝑘), 𝑝𝑖𝑗

(𝑘), 𝑣𝑖𝑗
(𝑘)) is an 

attribute value, given by the decision maker 𝑑𝑘, for the alternative 𝐴𝑖 with respect to the attribute 𝐶𝑗  and  

�̃�𝑖 = (�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛) be the vector of attribute values corresponding to the alternative 𝐴𝑖. 

Step2. If the attribute weights are partly known, then we solve the model (M-1) to obtain the attribute weights. If the 

information about the attribute weights is completely unknown, then we use the model (M-2). 

Step3. (i) Utilize the weight vector 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇of attributes and by Eq. (10), and obtain the matrix of 

overall single valued neutrosophic preference values �̃�𝑖 corresponding to the alternative 𝐴𝑖(𝑖 = 1,2, … ,𝑚).  

           (ii) By using the SVNWA operator again and weights of decision makers, compute the collective overall 

single valued neutrosophic preference values �̃�𝑖 of alternative 𝐴𝑖(𝑖 = 1,2, … ,𝑚). 

Step4. Calculate the scores 𝑆(�̃�𝑖) of the collective overall single valued neutrosophic preference values �̃�𝑖(𝑖 =

1,2, … ,𝑚) to rank all the alternatives 𝐴𝑖(𝑖 = 1,2, … ,𝑚) and then to select the best one(s). 

If there is no difference between two scores 𝑆(�̃�𝑖) and 𝑆(�̃�𝑗), then we need to calculate the accuracy degrees 

𝐻(�̃�𝑖) and 𝐻(�̃�𝑗) of the collective overall single valued neutrosophic preference values �̃�𝑖 and �̃�𝑗, respectively, 

and then rank the alternatives 𝐴𝑖  and 𝐴𝑗  corresponding to the accuracy degrees 𝐻(�̃�𝑖)  and 𝐻(�̃�𝑗)(𝑖, 𝑗 =

1,2, … ,𝑚). 

Step 5. Rank all the alternatives 𝐴𝑖(𝑖 = 1,2, … ,𝑚) and select the best one(s) in accordance with 𝑆(�̃�𝑖)  and 𝐻(�̃�𝑖) 

Step 6. End. 

Method (2): Maximizing deviation method for interval neutrosophic sets 
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Step1. Let 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
 be an interval neutrosophic decision matrix, where 𝑎𝑖𝑗

(𝑘) =

([𝑢𝑖𝑗
−(𝑘), 𝑢𝑖𝑗

+(𝑘)], [𝑝𝑖𝑗
−(𝑘), 𝑝𝑖𝑗

+(𝑘)], [𝑣𝑖𝑗
−(𝑘), 𝑣𝑖𝑗

+(𝑘)]) is an attribute value, given by the decision maker 𝑑𝑘 , for the 

alternative 𝐴𝑖  with respect to the attribute 𝐶𝑗  and �̃�𝑖 = (�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛)  be the vector of attribute values 

corresponding to the alternative 𝐴𝑖. 

Step2. If the attribute weights are partly known, then we solve the model (M-3) to obtain the attribute weights. If the 

information about the attribute weights is completely unknown, then we solve the model (M-4). 

Step3. (i) Utilize the weight vector 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝑇of attributes and by Eq. (11), and obtain the matrix of 

overall interval neutrosophic preference values �̃�𝑖 corresponding to the alternative 𝐴𝑖(𝑖 = 1,2, … ,𝑚).  

           (ii) By using the INWA operator again and weights of decision makers, compute the collective overall 

interval neutrosophic preference values �̃�𝑖 of alternative 𝐴𝑖(𝑖 = 1,2, … ,𝑚). 

Step4. Calculate the scores 𝑆(�̃�𝑖) of the overall interval neutrosophic preference value �̃�𝑖(𝑖 = 1,2, … ,𝑚) to rank all 

the alternatives 𝐴𝑖(𝑖 = 1,2, … ,𝑚) and then to select the best one(s).  

If there is no difference between two scores 𝑆(�̃�𝑖) and 𝑆(�̃�𝑗), then we need to calculate the accuracy degrees 

𝐻(�̃�𝑖) and 𝐻(�̃�𝑗) of the collective overall interval neutrosophic preference values �̃�𝑖 and �̃�𝑗, respectively, and 

then rank the alternatives 𝐴𝑖 and 𝐴𝑗  in accordance with the accuracy degrees 𝐻(�̃�𝑖)  and 𝐻(�̃�𝑗)(𝑖, 𝑗 =

1,2, … ,𝑚). 

Step 5. Rank all the alternatives 𝐴𝑖(𝑖 = 1,2, … ,𝑚) and select the best one(s) in accordance with 𝑆(�̃�𝑖) and 𝐻(�̃�𝑖). 

Step 6. End. 

4. Numerical examples 

Example 5. Let us consider decision making problem adapted from Xu and Xia (2012). An automotive 

company is desired to select the most appropriate supplier for one of the key elements in its manufacturing 

process. After pre-evaluation, five suppliers have remained as alternatives for further evaluation. In order to 

evaluate alternative suppliers, a committee composed of three decision makers has been formed. The 

committee selects four attributes to evaluate the alternatives; (1) product quality  𝐶1 , (2) relationship 

closeness 𝐶2, (3) delivery performance 𝐶3, (4) price 𝐶4. Decision makers (without loss of generality), whose 

weight vector is 𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (
1

4
,
1

4
,
1

4
,
1

4
)  , use the single valued neutrosophic values to evaluate the 

four possible alternatives 𝐴𝑖(𝑖 =  1, 2, 3, 4) under the above four attributes and construct the single valued 

neutrosophic decision matrices 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
 𝑘 = (1,2,3,4), as listed in Table 1-4. 

Table 1: Decision matrices 𝐴(1) given by DM-1 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 (0.4,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5) (0.7,0.2,0.3) 

𝐴2 (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.3) (0.5,0.1,0.2) 

𝐴3 (0.3,0.2,0.3) (0.5,0.2,0.3) (0.1,0.5,0.2) (0.1,0.4,0.5) 

𝐴4 (0.7,0.2,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2) (0.4,0.5,0.1) 

Table 2: Decision matrices 𝐴(2) given by DM-2 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 (0.1,0.3,0.5) (0.5,0.1,0.5) (0.3,0.1,0.6) (0.4,0.1,0.4) 

𝐴2 (0.2,0.5,0.4) (0.3,0.4,0.3) (0.2,0.3,0.1) (0.2,0.3,0.5) 

𝐴3 (0.5,0.2,0.6) (0.2,0.4,0.3) (0.5,0.2,0.5) (0.1,0.5,0.3) 

𝐴4 (0.2,0.4,0.2) (0.1,0.1,0.3) (0.1,0.5,0.4) (0.5,0.3,0.1) 

Table 3: Decision matrices 𝐴(3) given by DM-3 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 (0.3,0.2,0.1) (0.3,0.1,0.3) (0.1,0.4,0.5) (0.2,0.3,0.5) 

 1 
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𝐴2 (0.6,0.1,0.4) (0.6,0.4,0.2) (0.5,0.4,0.1) (0.5,0.2,0.4) 

𝐴3 (0.3,0.3,0.6) (0.4,0.2,0.4) (0.2,0.3,0.2) (0.3,0.5,0.1) 

𝐴4 (0.3,0.6,0.1) (0.5,0.3,0.2) (0.3,0.3,0.6) (0.4,0.3,0.2) 

Table 4: Decision matrices 𝐴(4) given by DM-4 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 (0.2,0.2,0.3) (0.3,0.2,0.3) (0.2,0.3,0.5) (0.4,0.2,0.5) 

𝐴2 (0.4,0.1,0.2) (0.6,0.3,0.5) (0.1,0.2,0.2) (0.5,0.1,0.2) 

𝐴3 (0.3,0.5,0.1) (0.2,0.2,0.3) (0.5,0.4,0.3) (0.5,0.3,0.2) 

𝐴4 (0.3,0.1,0.1) (0.2,0.1,0.4) (0.2,0.3,0.2) (0.3,0.1,0.6) 

Then, we use the approach developed to obtain the most desirable alternative(s). 

Case1: Assume that the attribute weights are partly known and the weight information is given as follows: 

{

0.18 ≤ 𝜔1 ≤ 0.20,0.15 ≤ 𝜔2 ≤ 0.25,0.30 ≤ 𝜔3 ≤ 0.35,0.30 ≤ 𝜔4 ≤ 0.40,

𝜔𝑗 ≥ 0,∑ 𝜔𝑗
4

𝑗=1
= 1, 𝑗 = 1,2,3,4

} 

Step (1) Obtain the decision matrix 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
 given by the DM 𝑑𝑘 and all the components 𝑎𝑖𝑗

(𝑘)
 

are single valued neutrosophic values (See Table 1-4). 

Step (2) Utilize the model (M-1) to establish the following non-liner programming model: 

{

max𝐻(𝜔) = 1.06𝜔1 + 0.83𝜔2 + 1.63𝜔3 + 1,23𝜔4

subject to 𝜔𝑗 ≥ 0,∑ 𝜔𝑗
𝑛

𝑗=1
= 1, 𝑗 = 1,2,… , 𝑛 

 

Solving this model, we obtain the weight vector of attributes: 𝜔 = (0.18,0.15,0.35,0.32). 

Step (3) By the weight vector 𝜔 = (0.18,0.15,0.35,0.32) and by Eq. (10), we obtain the overall single 

valued neutrosophic preference values �̃�𝑖 of the alternatives 𝐴𝑖(𝑖 = 1,2,3,4), as shown in Table 

5. 

Table 5: Matrix of the overall preference values with respect to party known attributes weights 

 𝑑1 𝑑2 𝑑3 𝑑4 

�̃�1 (0.4684,0.2000,0.3587) (0.3371,0.1218,0.4962) (0.2023,0.2616,0.3466) (0.4142,0.2305,0.4224) 

�̃�2 (0.5355,0.1274,0.2305) (0.2158,0.3434,0.2532) (0.5355,0.2497,0.2219) (0.4634,0.1502,0.2294) 

�̃�3 (0.2124,0.3440,0.3065) (0.3524,0.2975,0.4064) (0.2833,0.3324,0.2166) (0.3171,0.3422,0.2162) 

�̃�4 (0.5016,0.2785,0.1414) (0.2699,0.3204,0.2170) (0.3665,0.3399,0.2593) (0.3866,0.1468,0.2784) 

By using the SVNWA operator again (here, take 𝜆 = (
1

4
,
1

4
,
1

4
,
1

4
) as the DM’s weight vector), thus we get 

the collective overall single valued neutrosophic preference values �̃�𝑖 of alternatives 𝐴𝑖, 

�̃�1 = (0.3630,0.1957,0.4018), �̃�2 = (0.4511,0.2013,0.2335), 

�̃�3 = (0.2931,0.3285,0.2763), �̃�4 = (0.3868,0.2583,0.2169). 

Step (4) Calculate the scores 𝑆(�̃�𝑖) the collective overall single valued neutrosophic preference values 

�̃�𝑖(𝑖 = 1,2,3,4). 

𝑆(�̃�1) = 0.2848, 𝑆(�̃�2) = 0.4074, 𝑆(�̃�3) = 0.1798, 𝑆(�̃�4) = 0.3265. 

Step (5) Rank all the alternatives 𝐴𝑖(𝑖 = 1,2,3,4) in accordance with the scores 𝑆(�̃�𝑖)(𝑖 = 1,2,3,4) of the 

collective overall single valued neutrosophic preference values �̃�𝑖(𝑖 = 1,2,3,4): 𝐴2  ≻  𝐴4  ≻

 𝐴1  ≻  𝐴3 and thus 𝐴2 is the most desirable alternative. 
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Case2:  If the attribute weights are completely unknown, we propose another approach to determine the most 

desirable alternative(s). 

Step (1) See (Step1). 

Step (2) Utilize the Eq. (15) to obtain the weight vector of attributes: 𝜔 = (0.2238,0.1748,0.3427,0.2587). 

Step (3) Utilize the weight vector 𝜔 = 0.2238,0.1748,0.3427,0.2587) and by Eq. (10), we obtain the 

overall single valued neutrosophic preference values �̃�𝑖  of the alternatives 𝐴𝑖(𝑖 = 1,2,3,4), as 

shown in Table 6. 

Table 6: Matrix of the overall preference values with respect to  

completely unknown attributes weights  

 𝑑1 𝑑2 𝑑3 𝑑4 

�̃�1 (0.4465,0.2000,0.3573) (0.3291,0.1278,0.5023) (0.2201,0.2495,0.3189) (0.4329,0.2298,0.4078) 

�̃�2 (0.5425,0.1268,0.2298) (0.2184,0.3536,0.506) (0.5425,0.2451,0.2203) (0.4571,0.1536,0.2347) 

�̃�3 (0.2323,0.3275,0.2979) (0.3680,0.2861,0.4173) (0.2867,0.3189,0.2412) (0.2907,0.3457,0.2112) 

�̃�4 (0.5213,0.2580,0.1431) (0.2470,0.3145,0.2275) (0.3658,0.3503,0.2495) (0.3951,0.1457,0.2568) 

By using the SVNWA operator again (here, take 𝜆 = (
1

4
,
1

4
,
1

4
,
1

4
) as the DM’s weight vector), thus we get 

the collective overall single valued neutrosophic preference values �̃�𝑖 of alternatives 𝐴𝑖, 

�̃�1 = (0.3614, 0.1956, 0.3909),  �̃�2 = (0.4541, 0.2027, 0.2336), 

�̃�3 = (0.2961, 0.3188, 0.2821),  �̃�4 = (0.3902, 0.2537, 0.2137). 

Step (4) Calculate the scores 𝑆(�̃�𝑖) of the collective overall single valued neutrosophic preference values 

�̃�𝑖(𝑖 = 1,2,3,4). 

𝑆(�̃�1) = 0.2895, 𝑆(�̃�2) = 0.4075, 𝑆(�̃�3) = 0.1881, 𝑆(�̃�4) = 0.3345 

Step (5) Rank all the alternatives 𝐴𝑖(𝑖 = 1,2,3,4) in accordance with the scores 𝑆(�̃�𝑖)(𝑖 = 1,2,3,4) the 

collective overall single valued neutrosophic preference values �̃�𝑖(𝑖 = 1,2,3,4): 𝐴2  ≻  𝐴4  ≻

 𝐴1  ≻  𝐴3 and thus the most desirable alternative is 𝐴2. 

Example 6. Let us consider decision making problem adapted from Wei et al. (2013). Suppose an 

organization plans to implement ERP system. The first step is to form a project team that consists of CIO and 

two senior representatives from user departments. By collecting all possible information about ERP vendors 

and systems, project team chooses four potential ERP systems 𝐴𝑖  (𝑖 =  1, 2, 3, 4) as candidates. The 

company employs some external professional organizations (or experts) to aid this decision making. The 

project team selects four attributes to evaluate the alternatives: (1) function and technology 𝐶1, (2) strategic 

fitness 𝐶2 , (3) vendor’s ability 𝐶3 , and (4) vendor’s reputation 𝐶4 . Decision makers (without loss of 

generality), take weight vector 𝜆 = (𝜆1, 𝜆2, 𝜆3) = (
1

3
,
1

3
,
1

3
)  and use the interval neutrosophic values to 

evaluate the four possible alternatives 𝐴𝑖(𝑖 =  1, 2, 3, 4) under the above four attributes and construct the 

interval neutrosophic decision matrices 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘))

𝑚×𝑛
 𝑘 = (1,2,3), as listed in Table 7-9. 

Table 7: Decision matrices 𝐴(1) given by DM-1 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 ([0.4,0.5], [0.2,0.3], [0.3,0.5]) ([0.3,0.4], [0.3,0.6], [0.2,0.4]) ([0.2,0.5], [0.2,0.6], [0.3,0.5]) ([0.5,0.6], [0.3,0.5], [0.2,0.5]) 

𝐴2 ([0.6,0.7], [0.1,0.2], [0.2,0.3]) ([0.1,0.3], [0.1,0.4], [0.2,0.5]) ([0.4,0.5], [0.2,0.5], [0.3,0.7]) ([0.2,0.4], [0.1,0.4], [0.3,0.3]) 

𝐴3 ([0.3,0.4], [0.2,0.3], [0.3,0.4]) ([0.3,0.6], [0.2,0.3], [0.2,0.5]) ([0.2,0.7], [0.2,0.4], [0.3,0.6]) ([0.2,0.6], [0.4,0.7], [0.2,0.7]) 

𝐴4 ([0.2,0.6], [0.1,0.1], [0.1,0.2]) ([0.2,0.5], [0.4,0.5], [0.1,0.6]) ([0.3,0.5], [0.1,0.3], [0.2,0.2]) ([0.4,0.4], [0.1,0.6], [0.1,0.5]) 

Table 8: Decision matrices 𝐴(2) given by DM-2 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 ([0.4,0.6], [0.1,0.3], [0.2,0.4]) ([0.3,0.5], [0.1,0.4], [0.3,0.4]) ([0.4,0.5], [0.2,0.4], [0.1,0.3]) ([0.3,0.6], [0.3,0.6], [0.3,0.6]) 
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𝐴2 ([0.3,0.5], [0.1,0.2], [0.2,0.3]) ([0.3,0.4], [0.2,0.2], [0.1,0.3]) ([0.2,0.7], [0.3,0.5], [0.3,0.6]) ([0.2,0.5], [0.2,0.7], [0.1,0.2]) 

𝐴3 ([0.5,0.6], [0.2,0.3], [0.3,0.4]) ([0.1,0.4], [0.1,0.3], [0.3,0.5]) ([0.5,0.5], [0.4,0.6], [0.3,0.4]) ([0.1,0.2], [0.1,0.4], [0.5,0.6]) 

𝐴4 ([0.3,0.4], [0.1,0.2], [0.1,0.3]) ([0.3,0.3], [0.1,0.5], [0.2,0.4]) ([0.2,0.3], [0.4,0.5], [0.5,0.6]) ([0.3,0.3], [0.2,0.3], [0.1,0.4]) 

Table 9: Decision matrices 𝐴(3) given by DM-3 

 𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 ([0.1,0.3], [0.2,0.3], [0.4,0.5]) ([0.3,0.3], [0.1,0.3], [0.3,0.4]) ([0.2,0.6], [0.3,0.5], [0.3,0.5]) ([0.4,0.6], [0.3,0.4], [0.2,0.3]) 

𝐴2 ([0.3,0.6], [0.3,0.5], [0.3,0.5]) ([0.3,0.4], [0.3,0.4], [0.3,0.5]) ([0.3,0.5], [0.2,0.4], [0.1,0.5]) ([0.1,0.2], [0.3,0.5], [0.3,0.4]) 

𝐴3 ([0.4,0.5], [0.2,0.4], [0.2,0.4]) ([0.2,0.3], [0.1,0.1], [0.3,0.4]) ([0.1,0.4], [0.2,0.6], [0.3,0.6]) ([0.4,0.5], [0.2,0.6], [0.1,0.3]) 

𝐴4 ([0.2,0.4], [0.3,0.4], [0.1,0.3]) ([0.1,0.4], [0.2,0.5], [0.1,0.5]) ([0.3,0.6], [0.2,0.4], [0.2,0.2]) ([0.2,0.4], [0.3,0.3], [0.2,0.6]) 

 

Then, we use the approach developed to obtain the most desirable alternative(s). 

Case1: Assume that the attribute weights are partly known and the weight information is given as follows: 

{

0.16 ≤ 𝜔1 ≤ 0.18,0.20 ≤ 𝜔2 ≤ 0.25,0.20 ≤ 𝜔3 ≤ 0.30,0.35 ≤ 𝜔4 ≤ 0.40

𝜔𝑗 ≥ 0,∑ 𝜔𝑗
4

𝑗=1
= 1, 𝑗 = 1,2,3,4

} 

Step (1) Obtain the decision matrix 𝐴(𝑘) = (𝑎𝑖𝑗
(𝑘)
)
𝑚×𝑛

 given by the DM 𝑑𝑘 and all the components 𝑎𝑖𝑗
(𝑘)

 

are interval neutrosophic values (See Table 7-9). 

Step (2) Utilize the model (M-3) to establish the following non-liner programming model: 

{

max𝐻(𝜔) = 0.71𝜔1 + 0.69𝜔2 + 0.81𝜔3 + 1.01𝜔4

subject to 𝜔𝑗 ≥ 0,∑ 𝜔𝑗
𝑛

𝑗=1
= 1, 𝑗 = 1,2,… , 𝑛 

 

Solving this model, we obtain the weight vector of attributes: 𝜔 = (0.16,0.20,0.24,0.40). 

Step (3) By the weight vector 𝜔 = (0.16,0.20,0.24,0.40) and by Eq. (11), we obtain the overall interval 

neutrosophic preference values �̃�𝑖 of the alternatives 𝐴𝑖(𝑖 = 1,2,3,4), as shown in Table 10. 

Table 10: Matrix of the overall preference values with respect to party known attributes weights 

 𝑑1 𝑑2 𝑑3 

�̃�1 ([0.383,0.525], [0.255,0.499], [0.235,0.487]) ([0.341,0.558], [0.183,0.449], [0.215,0.439]) ([0.292,0.510], [0.225,0.380], [0.267,0.389]) 

�̃�2 ([0.315,0.469], [0.118,0.377], [0.259,0.407]) ([0.237,0.541], [0.197,0.411], [0.145,0.301]) ([0.225,0.296], [0.272,0.478], [0.230,0.457]) 

�̃�3 ([0.237,0.601], [0.263,0.451], [0.235,0.576]) ([0.288,0.396], [0.155,0.397], [0.368,0.491]) ([0.299,0.441], [0.174,0.392], [0.181,0.392]) 

�̃�4 ([0.309,0.481], [0.131,0.367], [0.118,0.359]) ([0.277,0.317], [0.184,0.352], [0.169,0.421]) ([0.209,0.455], [0.250,0.372], [0.155,0.397]) 

By using the INWA operator again (here, take 𝜆 = (
1

3
,
1

3
,
1

3
) as the DM’s weight vector), thus we get the 

collective overall interval neutrosophic preference values �̃�𝑖 of alternatives 𝐴𝑖, 

�̃�1 = ([0.3401,0.5318], [0.2196,0.4406], [0.2388,0.4345]), 

�̃�2 = ([0.2606,0.4720], [0.1854,0.4207], [0.2059,0.3831]), 

�̃�3 = ([0.2754,0.4874], [0.1930,0.4134], [0.2506,0.4816]),  

�̃�4 = ([0.2654,0.4218], [0.1829,0.4469], [0.1462,0.3922]). 

Step (4) Compute the scores 𝑆(�̃�𝑖) of the collective overall interval neutrosophic preference values �̃�𝑖(𝑖 =

1,2,3,4). 

𝑆(�̃�1) = 0.2194, 𝑆(�̃�2) = 0.2328, 𝑆(�̃�3) = 0.2044, 𝑆(�̃�4) = 0.2222. 

Step (5) Rank all the alternatives 𝐴𝑖(𝑖 = 1,2,3,4) in accordance with the scores 𝑆(�̃�𝑖)(𝑖 = 1,2,3,4) of the 

collective overall interval valued preference values �̃�𝑖(𝑖 = 1,2,3,4): 𝐴2  ≻  𝐴4  ≻  𝐴1  ≻  𝐴3 and 

thus 𝐴2 is the most desirable alternative. 
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Case2:  If the attribute weights are completely unknown, we proposed another approach to determine the 

most desirable alternative(s). 

Step (1) See Step (1). 

Step (2) Utilize the Eq. (19) to obtain the weight vector of attributes: 𝜔 = 0.2224,0.2155,0.2518,0.3103) 

Step (3) Utilize the weight vector 𝜔 = 0.2224,0.2155,0.2518,0.3103)  and by Eq. (11), we obtain the 

overall interval neutrosophic preference values �̃�𝑖 of the alternatives 𝐴𝑖(𝑖 = 1,2,3,4) (see Table 

11). 

Table 11: Matrices of the overall preference values with respect to  

completely unknown attributes weights 

 𝑑1 𝑑2 𝑑3 

�̃�1 ([0.369,0.514], [0.247,0.485], [0.242,0.476]) ([0.349,0.556], [0.167,0.425], [0.207,0.421]) ([0.270,0.488], [0.216,0.373], [0.282,0.406]) 

�̃�2 ([0.345,0.492], [0.119,0.362], [0.251,0.414]) ([0.245,0.542], [0.189,0.371], [0.153,0.314]) ([0.243,0.427], [0.270,0.476], [0.227,0.466]) 

�̃�3 ([0.245,0.592], [0.248,0.419], [0.242,0.552]) ([0.318,0.427], [0.165,0.390], [0.351,0.475]) ([0.293,0.437], [0.172,0.372], [0.194,0.405]) 

�̃�4 ([0.292,0.496], [0.134,0.325], [0.119,0.336]) ([0.276,0.323], [0.175,0.348], [0.174,0.415]) ([0.206,0.458], [0.248,0.383], [0.147,0.375]) 

By using the INWA operator again (here, take 𝜆 = (
1

3
,
1

3
,
1

3
) as the DM’s weight vector), thus we get the 

collective overall interval neutrosophic preference values �̃�𝑖 of alternatives 𝐴𝑖, 

�̃�1 = ([0.3308,0.5203], [0.2080,0.4260], [0.2425,0.4344]), 

�̃�2 = ([0.2795,0.4892], [0.1832,0.4008], [0.2067,0.3938]), 

�̃�3 = ([0.2861,0.4915], [0.1922,0.3941], [0.2555,0.4745]),  

�̃�4 = ([0.2590,0.4303], [0.1808,0.4389], [0.1454,0.3747]). 

Step (4) Compute the scores 𝑆(�̃�𝑖) of the overall interval neutrosophic preference values �̃�𝑖(𝑖 = 1,2,3,4). 

𝑆(�̃�1) = 0.2265, 𝑆(�̃�2) = 0.2503, 𝑆(�̃�3) = 0.2187, 𝑆(�̃�4) = 0.2324. 

Step (5) Rank all the alternatives 𝐴𝑖(𝑖 = 1,2,3,4) in accordance with the scores 𝑆(�̃�𝑖)(𝑖 = 1,2,3,4) of the 

overall interval neutrosophic preference values �̃�𝑖(𝑖 = 1,2,3,4) : 𝐴2  ≻  𝐴4  ≻  𝐴1  ≻  𝐴3  and 

thus the most desirable alternative is 𝐴2 

From the examples, we can see that the proposed neutrosophic decision-making methods are more suitable 

for real scientific and engineering applications because they can handle not only incomplete information but 

also the indeterminate information and inconsistent information existing in real situations. Therefore, the 

technique proposed in this paper extends the existing decision making methods and provides a new way for 

decision makers. 

By a comparative study with existing methods, we can represent the useable and feasibility of the developed 

group decision-making method. Here, we discuss some methods used to determine the final ranking order of 

all the alternatives with the single valued neutrosophic information, which are based on the cosine similarity 

measure and the correlation coefficient (Ye 2013), the weighted cross-entropy (Ye 2014b), the aggregation 

operators (Ye 2014e) and the outranking approach (Peng et al. 2014, Zhang et al. 2015). In these methods, 

the weights of decision makers and attribute weights are completely known and the decision process is 

carried out in the opinion of only a decision maker. In fact, in many MAGDM with neutrosophic 

information, because of time pressure, lack of knowledge or data, and the decision makers’ limited expertise 

about the problem domain, the information about the weights of decision makers and attributes are 

incompletely known or completely unknown. Our method has a group decision making approach and utilizes 

the maximizing deviation method to determine the weight values that are incompletely known or completely 

unknown of decision makers and attributes, respectively, which is more flexible and reasonable; while the 

Ye (2013, 2014b, 2014e)’s method, Peng et al. (2014) and Zhang et al. (2015)’s methods ask the decision 

makers to provide the weight values of decision makers and attributes in advance, which is subjective and 

sometime cannot yield the persuasive results.  
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With respect to above analyses, a single valued neutrosophic set and an interval neutrosophic set is a special 

case of a neutrosophic set, and a neutrosophic set is a set where each element of the universe has the degrees 

of truth, indeterminacy and falsity, which lie within ]0−, 1+[, the non-standard unit interval. In particular, the 

uncertainty presented here, i.e. the indeterminacy factor, is independent of truth and falsity values, whereas 

the incorporated uncertainty is dependent on the degree of belongingness and non-belongingness of 

intuitionistic fuzzy sets. Therefore, this leads to the theory that intuitionistic fuzzy sets are a special case of 

single valued neutrosophic sets. Moreover, SNSs can solve some problems that are beyond the scope of 

fuzzy sets and intuitionistic fuzzy sets. Therefore, the proposed MAGDM approach under single valued 

neutrosophic environment can be used also to solve MADM problems with fuzzy information and 

intuitionistic information. Thus, the comparison shows that our method has its great superiority in handling 

the ambiguity and uncertainty inherent in MAGDM problems with neutrosophic information. 

5. Conclusions 

DMs have a major role to provide the information about alternatives in decision making process. Because of 

time pressure, lack of knowledge or data, and the expert’s limited expertise about the problem domain, the 

information about attribute weights given by DMs is partly known or completely unknown. Recently, some 

authors proposed many of methods to overcome the limitations. In this paper, we first defined two 

discrimination functions such that score function and accuracy function used to rank the neutrosophic 

numbers. Considering by the idea that the attribute with a larger deviation value among alternatives should 

be assigned with a larger weight, we then established a method called the maximizing deviation method to 

compute the optimal weights of attributes under neutrosophic environment, in which the attribute values are 

characterized in terms of neutrosophic values. When aggregating the neutrosophic information 

corresponding to each alternative, we utilize the neutrosophic weighted averaging (NWA) operators, the 

single valued neutrosophic weighted averaging (SVNWA) operator and the interval neutrosophic weighted 

averaging (INWA) operator. Thus one can easily determines the order of alternatives and can chooses the 

most desirable one(s) based on the proposed score function and accuracy function.  Finally, an application of 

developed approach is given to explain its effectiveness and practicality. Our method is straightforward and 

has no loss of information. In the future, we shall continue working in application of the neutrosophic 

multiple attribute decision-making. 
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