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Abstract: An extension of the D2 test statistic to test the equality of mean for high-dimensional and
k-th order array-variate data using k-self similar compound symmetry (k-SSCS) covariance structure
is derived. The k-th order data appear in many scientific fields including agriculture, medical,
environmental and engineering applications. We discuss the property of this k-SSCS covariance
structure, namely, the property of Jordan algebra. We formally show that our D2 test statistic for k-th
order data is an extension or the generalization of the D2 test statistic for second-order data and for
third-order data, respectively. We also derive the D2 test statistic for third-order data and illustrate
its application using a medical dataset from a clinical trial study of the eye disease glaucoma. The
new test statistic is very efficient for high-dimensional data where the estimation of unstructured
variance-covariance matrix is not feasible due to small sample size.

Keywords: array-variate data; eigenblock; high dimensional data; Wishart distribution; Hotelling’s
T2 statistic; Lawley–Hotelling trace distribution

1. Introduction

We study the hypotheses testing problems of equality of means for high-dimensional
and higher-order (multi-dimensional arrays) data. Standard multivariate techniques such
as Hotelling’s T 2 distribution with one big unstructured variance-covariance matrix (as-
suming a large sample size) do not work for these higher-order data, as Hotelling’s T 2

distribution cannot incorporate any higher-order information into the test statistic and thus
draws wrong conclusions [1]. Higher-order data are formed by representing the additional
associations that are inherent in repetition across several dimensions. To obtain a better
understanding of higher-order data, we first share a simple and interesting example of
higher-order data:

• Traditional multivariate (vector-variate) data are the first-order data. For example, a
clinical trial study of glaucoma, where several factors (m1) such as intraocular pressure
(IOP) and central corneal thickness (CCT) are effective in the diagnosis of glaucoma.
This example is an illustration of the (m1 × 1) vector-variate first-order data.

• When the first-order data are measured at various locations/sites or time points, the
data become two-dimensional matrix-variate data, and we name it as second-order
data. These data are also recognized as multivariate repeated measures data, or doubly
multivariate data; e.g., multivariate spatial data or multivariate temporal data. In the
above example of the clinical trial study, an ophthalmologist or optometrist diagnoses
glaucoma by measuring IOP and CCT (m1) in both the eyes (m2). So, we see how
the vector-variate first-order dataset discussed in the previous paragraph becomes a
(m1 ×m2) matrix-variate second-order dataset by measuring m1 variables repeatedly
over another dimension.
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• When the second-order data are measured at various sites, or over various time points,
the data become three-dimensional array-variate data, and we name it as third-order
data. In addition, these are recognized as triply multivariate data, e.g., multivariate
spatio-temporal data or multivariate spatio-spatio data. In the previous example, if
the IOP and CCT (m1 = 2) are measured in both eyes (m2 = 2) as well as over, say,
three time points (m3 = 3), the dataset would become third-order data.

• When the third-order data are measured at various directions, the data become four-
dimensional (m1 ×m2 ×m3 ×m4) array-variate fourth-order data, e.g., multivariate
directo-spatio-temporal data or multivariate directo-spatio-spatio data.

• When the fourth-order data are measured at various depths, the data become five-
dimensional (m1 ×m2 ×m3 ×m4 ×m5) array-variate fifth-order data, and so on, e.g.,
multivariate deptho-directo-spatio-temporal data.

In the above glaucoma data example, the dataset has m1 variables, and these m1 vari-
ables are repeatedly measured over various dimensions adding higher-order information to
the dataset. Now, the question is, what is the higher-order information? Higher-order infor-
mation is embedded in the higher-order covariance structures that are formed by signifying
the additional associations that are inherent in repetition of the variables across several
dimensions. The other question is how can we measure and capture the higher-order
information? For this, one needs to understand how to read these structured higher-order
data and how to use the appropriate variance-covariance structure to incorporate the
higher-order information that are integral to the higher-order data.

Higher-order data have been studied by many authors in the last 20 years using various
variance-covariance structures to reduce the number of unknown parameters, which is very
important for high-dimensional data. Second-order data are studied using matrix-variate
normal distribution [2,3]. Second-order data can also be analyzed vectorially using a two-
separable (Kronecker product) variance-covariance structure [4,5], or a block compound
symmetry (BCS), also named a block exchangeable (BE) or a 2-SSCS covariance structure [6].
Two-separable covariance structure for second-order data has two covariance matrices,
one for each order of the data; in other words, one covariance matrix for within-subject
information and the other covariance matrix for between-subject information. Combining
the covariance structures of within-subject information and between-subject information
results in a second-order model for second-order data. Ignoring this information often
influences the test statistic, and if not properly taken care of this information, test statistic
will end up yielding wrong conclusions [1]. To obtain a picture of the third-order data,
see [7]. Manceur and Dutilleul [7] used tensor normal distribution with double separable
covariance structure. 2-SSCS and 3-SSCS covariance structures are useful tools for the
analyses of the second- and third-order datasets, respectively. Manceur and Dutilleul [7]
also studied fourth-order data with four-separable covariance structure. In the same way,
k-th order data can be analyzed vectorially with some structured variance-covariance
matrix to integrate the higher-order information into the model, e.g., k-separable covariance
structure [8,9] for the k-th order data. However, k-separable covariance structure may not
be appropriate for all datasets; thus, we investigate some other structure, namely, k-SSCS
covariance structure (defined in Section 3) for the k-th order data in this article. See [10].

The high-dimensionality of a dataset needs to exploit the structural properties of
the data to reduce the number of estimated degrees of freedom for more accurate con-
clusion for the k-th order data, and k-SSCS covariance structure is one of them. For
example, for the third-order glaucoma data, the number of unknown parameters in the
(12× 12)-dimensional unstructured variance-covariance matrix is 78, whereas the number
of unknown parameters for 3-SSCS covariance structure is just 9 and thus may help in
providing the correct information about the true association of the structured third-order
data. The data quickly become high-dimensional with the increase in the order of the
data, and thus, the variance-covariance matrix becomes singular for small samples, and
thus testing of mean is not possible. This necessitates the development of new statistical
methods with a suitable structured variance-covariance matrix, which can integrate the
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existing correlations information of the higher-order data into the test statistic and can take
care of the high-dimensionality of the data as well.

Rao [11,12] introduced 2-SSCS covariance structure while classifying genetically dif-
ferent groups. Olkin and Press [13] examined a circular stationary model. The problem
of estimation in balanced multilevel models with a block circular symmetric covariance
structure was studied by Liang et al. [14]. Olkin [15] studied the hypothesis testing problem
of the equality of the mean vectors of multiple populations of second-order data using a
2-SSCS covariance structure, which is reminiscent of a model of Wilks [16]. Arnold [17]
studied normal testing problems that mean is patterned when the variance-covariance
matrix has a 2-SSCS structure. Arnold [17] also studied multivariate analysis of variance
problem when the variance-covariance matrix has a 2-SSCS structure. Arnold [18] later
developed linear models with a 2-SSCS structure as the error matrix for one matrix-variate
observation. Roy et al. [19] and Žežula et al. [1] studied the hypotheses testing problems
on the mean for the second-order data using a 2-SSCS covariance structure. There are
few studies on third-order data using the 3-SSCS covariance structure. See Leiva and
Roy [20] for classification problems and Roy and Fonseca [21] for linear models with a
3-SSCS covariance structure on the error vectors. Recently, Žežula et al. [22] studied the
mean value test for third-order data using a 3-SSCS covariance structure.

A majority of the above-mentioned authors only studied the second-order matrix-
variate data and used a 2-SSCS covariance structure where the exchangeability (invariance)
property in one factor was present. However, we obtain datasets these days with more than
one factor, and the assumption of exchangeability on the levels of factors is appropriate for
these datasets. A k-SSCS structured matrix results from the exchangeability property of
the k− 1 factors of a dataset. Employing a 2-SSCS covariance structure would be wrong
for the datasets with more than one factor. One may construct a second-order data from a
k-th order data by summing the observations, however, it would result in a loss of detailed
information of particular characteristics that may be of interest. One may also consider
matricization of the k-th order data to a second-order data and then using the 2-SSCS
covariance structure, but then, once again, all the correlation information will be wiped
out. So, the development of new statistical methods are in demand to handle the k-th order
data using k-SSCS variance-covariance matrix.

The aim of this paper is to derive a test statistic for mean for high-dimensional k-th
order data using k-SSCS covariance matrix by generalizing D2 test statistics developed
in Žežula et al. [1]. In doing so, we exploit the distributions of the eigenblocks of the
k-SSCS covariance matrix. We obtain the test statistic to test the mean for one sample case,
paired samples case and two independent samples case. We show through Remark 2 that
our generalized D2 test statistic for the k-th order data generalizes the test statistic for the
second-order data, and we derive the test statistic for the third-order data, which is largely
motivated by the work of Žežula et al. [22] and in Remark 2 as well.

This article is organized as follows. In Section 2, we set up some preliminaries about
some matrix notations and definitions related to block matrices. Section 3 has the definition
of k-SSCS covariance matrix. Section 3 has properties of the k-SSCS covariance matrix,
such as Jordan algebra. Section 4 discusses the estimation of the eigenblocks and their
distributions. The test for the mean for one population is proposed in Section 5. Tests for
the equality of means for two populations are proposed in Section 6, and an example of
a dataset exemplifying our proposed method is presented in Section 7. Finally, Section 8
concludes with some discussion and the scope for the future research.
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2. Preliminaries

Let mg, for g = 1, . . . , k, be natural numbers greater than 1, and pi,j be given by:

pi,j =


j

∏
g=i

mg if 0 ≤ j− i < k

1 if j− i = −1
0 if j− i = −2

, (1)

with i = 1, . . . , k. We denote by Fg the set Fg =
{

1, . . . , mg
}

, for g = 1, . . . , k.

Definition 1. We say that a matrix Ak
p1,k×p1,k

is a k-th order block matrix according to the factoriza-

tion p1,k =
k

∏
g=1

mg to point out that it can be expressed as k different “natural" partitioned matrix

forms, that is:

Ak
p1,k×p1,k

=
(

A fk ,..., fk+1−(k−j); f ∗k ,..., f ∗k+1−(k−j)
p1,j×p1,j

)
fk , f ∗k ∈Fk ;...; f j+1, f ∗j+1∈Fj+1

: j = 0, . . . , k− 1.

Note that for the case j = 0, the matrix A is a (k× k)−dimensional matrix with 1× 1 blocks.
Clearly, both m1 ≥ 2 and m2 ≥ 2 for second-order data, and m1 ≥ 2, m2 ≥ 2 and m3 ≥ 2
for third-order data, and so on. Next, we define matrix operators that will be useful tools
in working with these k-th order block matrices, where k ≥ 2. LetMp1,g denote the set of
p1,g × p1,g-matrices.

Definition 2. Let BSp1,g and BTp1,g denote the p1,g-Sum and p1,g-Trace block operators from
Mp1,h toMp1,g for 1 ≤ g ≤ h ≤ k , respecitvely, whereMp1,h will always be evident from the
context. These block operators applied to a matrix

Gk
p1,g pg+1,h×p1,g pg+1,h

=
(

G f , f ∗
p1,g×p1,g

)
f , f ∗∈Fh,g+1=Fh×···×Fg+1=

h−g
×

j=1
Fh+1−j

give the following p1,g × p1,g-matrices:

BSp1,g(Gk) = ∑
f∈Fh,g+1

∑
f ∗∈Fh,g+1

G f , f ∗ and BTp1,g(Gk) = ∑
f∈Fh,g+1

G f , f .

The subindex p1,g in these block matrix operators represents p1,g × p1,g-dimensional blocks
in a partitioned square matrix G, and thus their use results in p1,g × p1,g-dimensional
matrices. Many useful properties of these block operators, which we will use later in this
article, are examined in Leiva and Roy [10]. For any natural number a > 1, we use the
following additional notations:

Qa
a×a

= Ia − Pa, (2)

and Pa =
1
a

Ja, (3)

where Ja = 1a1′a, with 1a be the a× 1 vector of ones, and Ia = [ea,1, · · · , ea,a] being the
a× a− identity matrix with ea,i the ith column vector of Ia. Observe that Pa and Qa are
idempotent matrices and mutually orthogonal to each other, that is:

(Pa)
2 = Pa, (Qa)

2 = Qa and PaQa = 0.
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For a fixed natural number k ≥ 2, let Rk,j be the p1,k × p1,k-matrix

Rk,j+1 = R∗k,j+1 ⊗ Im1 , (4)

where, the symbol ⊗ represents the Kronecker product operator and for each j = 1, . . . , k− 1,

R∗k,j+1
p2,k×p2,k

=

k−(j+1)⊗
h=1

Imk+1−h

⊗Qmj+1
⊗

 k−1⊗
h=k−(j−1)

Pmk+1−h

 (5)

= Ipj+2,k ⊗Qmj+1
⊗ Pmj,m2 ,

with

Pmi ,mi∗ =


k−(i∗−1)⊗

h=k−(i−1)
Pmk+1−h = Pmi ⊗ Pmi−1 ⊗ · · · ⊗ Pmi∗ if i ≥ i∗

1 if i < i∗

and
0⊗

h=1
Imk+1−h = 1 =

k−1⊗
h=k

Pmk+1−h . Also, let Rk,k+1 be the p1,k × p1,k-matrix such that

Rk,k+1 = R∗k,k+1 ⊗ Im1 , (6)

where

R∗k,k+1
p2,k×p2,k

=
k−1⊗
h=1

Pmk+1−h = Pmk ,m2 . (7)

3. Properties of the Self Similar Compound Symmetry Covariance Matrix

Let xr; f be an m1−variate vector of measurements on the rth replicate (individual)

at the f = ( fk, . . . , f2) ∈ F = Fk,2 = Fk × · · · × F2 =
2
×

g=k
Fg factor combination. Let

xr be the p1,k = ∏k
j=1 mj−variate vector of all measurements corresponding to the rth

sample unit of the population, that is, xr =
(
xr;1,...,1, . . . , xr,mk ,...,m1

)′. Thus, the unstructured
covariance matrix Γk has q = p1,k(p1,k + 1)/2 unknown parameters that can be large for
random values of either of the mj’s. Consequently, if the data are high-dimensional, k-SSCS
covariance matrix (defined bellow in Definition 3) with number of unknown parameters
km1(m1 + 1)/2 is a good choice if the exchangeable feature is present in the data.

Definition 3. We say that xr has a k-SSCS covariance matrix if Γk = cov[xr] is of the form:

Γk =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(

Uk,j −Uk,j+1

)]
+ Jp2,k

⊗Uk,k, (8)

where Uk,j, for j = 1, . . . , k, are m1 × m1-matrices called SSCS-component matrices, with the
assumption that Jp2,1

is equal to the real number 1.

An alternative expression to (8) is:

Γk =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗ Tk,j

]
+

k−1⊗
h=1

Jmk+1−h
Tk,k, (9)
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with

Tk,k = Uk,k, (10)

and Tk,j = Uk,j −Uk,j+1 for j = 1, . . . , k− 1 (11)

or equivalently Uk,k = Tk,k, and Uk,i =
k

∑
h=i

Tk,h for i = 1, . . . , k− 1.

The covariance matrix Γk given in (8) is called k-self similar compound symmetry co-
variance matrix because if we consider the p1,k-dimensional vector x =

(
x1,...,1, . . . , xmk ,...,m1

)′
with a k-SSCS covariance matrix Γk and for each fixed gε{2, . . . , k− 1}, we also consider
the partition of x in p1,g-subvectors. Then, its corresponding covariance matrix Γk is parti-
tioned in p1,g × p1,g-submatrices, which is (k + 1− g)-SSCS matrix Γ∗k+1−g

(
see Leiva and

Roy [10]
)

as follows:

Γk
p1,k×p1,k

= Γ∗k+1−g

=

[
k+1−g−1

∑
j=1

Ipj+1,k+1−g ⊗ Jp2,j
⊗
(

U∗k+1−g,j −U∗k+1−g,j+1

)]
+Jp2,k+1−g

⊗U∗k+1−g,k+1−g,

where U∗k+1−g,1 is the g-SSCS matrix given by:

U∗k+1−g,1 =

{
g−1

∑
f=1

Ipj+1,g ⊗ Jp2,j
⊗
(

Uk, f −Uk, f+1

)}
+ Jp2,k

⊗Uk,g,

and U∗k+1−g,j =

( g−1⊗
h=1

Jmg+1−h

)
⊗Uk,g+j−1 for jε{2, . . . , k + 1− g}.

The existence of Γ−1
k can be proved using the principle of Mathematical Induction

and to derive its expression as well. For the expression of Γ−1
k , we need matrices ∆k,j for

j = 1, . . . , k, which are defined as follows:

∆k,j =
j

∑
i=1

p2,i(Uk,i −Uk,i+1), (12)

where Uk,k+1 = 0 and p2,1 = 1. Note that

∆k,j =

{
Uk,1 −Uk,2 i f j = 1

∆k,j−1 + p2,j

(
Uk,j −Uk,j+1

)
i f j = 2, . . . , k

. (13)

It can be proved that if matrices ∆k,j, j = 1, . . . , k are non-singular, then Γ−1
k exists and

is given by:

Γ−1
k =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗ 1

p2,j

(
∆−1

k,j − ∆−1
k,j−1

)]
+ Jp2,k

⊗ 1
p2,k

(
∆−1

k,k − ∆−1
k,k−1

)
,
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(
see Leiva and Roy [10]

)
, where the symbol ∆−1

k,0 indicates the m1 × m1 zero matrix
(∆−1

k,0 = 0m1×m1). It is worthwhile to note that the structure of Γ−1
k is the same as the

structure of Γk, that is, it has the k-SSCS structure given in (9) with (10) and (11) and

Γ−1
k =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗ Tk,j

]
+ Jp2,k

⊗ Tk,k,

where, in this formula Γ−1
k , Tk,j is as follows

Tk,j =
1

p2,j

(
∆−1

k,j − ∆−1
k,j−1

)
, for each j = 1, . . . , k.

Using a similar inductive arguments, it can be proved that:

|Γk| =
k

∏
j=1

∣∣∣∆k,j

∣∣∣pj+1,k−pj+2,k
,

where the matrices ∆k,j are given by (12), and it is assumed that pk+1,k = 1 and pk+2,k = 0.
The matrices ∆k,j, j = 1, . . . , k are the k eigenblocks of the k-SSCS covariance structure. See
Lemma 4 of Leiva and Roy [10] for proof. The matrix Γk can be written as the following
sum of k orthogonal parts:

Γk=
k

∑
j=1

R∗k,j+1 ⊗ ∆k,j (14)

and if Γ−1
k exists, then it can be written as:

Γ−1
k =

k

∑
j=1

R∗k,j+1 ⊗ ∆−1
k,j , (15)

where R∗k,j+1 is given in (5), for each j = 1, . . . , k− 1, and, for j = k, R∗k,k+1 is given in (7).
The conventional Hotelling’s T2 statistic to test the mean is based on the unbiased

estimate of the unstructured variance-covariance matrix, which follows a Wishart distri-
bution. Nevertheless, the unbiased estimate of the k-SSCS covariance matrix does not
follow a Wishart distribution, and thus the test statistic to test the equality of mean does
not follow Hotelling’s T2 statistic. We thus make a canonical transformation of the data
to block diagonalize the k-SSCS covariance matrix, and show that a scalar multiple of the
estimates of the diagonal blocks (eigenblocks) follow independent Wishart distributions
and use this property in our advantage to obtain test statistics to test the mean for the
k-th order data (k ≥ 2). We see from Leiva and Roy [10] that the k-SSCS matrix Γk given
by (8) can be transformed into an m1 ×m1-block diagonal matrix (blocks in the diagonal
are m1 ×m1-matrices) by pre- and post-multiplying Γk by appropriate orthogonal matrices.

For 1 ≤ j < g < i ≤ k, let Imi ,mj denote the mimi−1 · · ·mj identity matrix, that is:

Imi ,mj = Imimi−1···mj = Imi ⊗ Imi−1 ⊗ · · · ⊗ Imj ,

and let
Hmi ,mg
pg,i×pg,i

= Hmi ⊗ Hmi−1 ⊗ · · · ⊗ Hmg ,

where Hmh is an mh ×mh Helmert matrix for each h = 2, . . . , k, i.e., each Hmh is an orthogo-
nal matrix whose first column is proportional to 1mh . Then:

L′h = H ′mh ,m2
⊗ Im1
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is an orthogonal matrix (note that Lh are not function of either of the U i’s), and in particular

L′k = H ′mh ,m2
⊗ Im1 =

(
Imk ⊗ L′k−1

)(
H ′mk
⊗ Imk−1,m1

)
. (16)

Lemma 4 of Leiva and Roy [10] states and proves the block diagonalization result of
the k-SSCS matrix Γk by using the orthogonal matrix L′k as defined in (16), that is:

L′kΓkLk = diag
{

D f ; f = ( fk, fk−1, . . . , f2)
′ ∈ F

}
(17)

= diag
{

D fk , fk−1,..., f2 ; ( fk, fk−1, . . . , f2)
′ ∈ Fk × Fk−1 × . . .× F2

}
,

where, for each j = 1, . . . , k, the m1 ×m1-diagonal matrices D f = D fk , fk−1,..., f2 are given by:

D fk , fk−1,..., f2 = ∆k,j if f2 = 1, . . . , f j = 1, f j+1 6= 1,

where fk+1 6= 1 is not taken into consideration, that is:

D fk , fk−1,..., f2 =



∆k,k if f2 = 1, . . . , fk−1 = 1, fk = 1
∆k,k−1 if f2 = 1, . . . , fk−1 = 1, fk 6= 1
∆k,k−2 if f2 = 1, . . . , fk−2 = 1, fk−1 6= 1

...
...

...
∆k,2 if f2 = 1, f3 6= 1
∆k,1 if f2 6= 1

. (18)

Thus, ∆k,j for j = 1, . . . , k are the k eigenblocks of the k-SSCS covariance matrix Γk. We
will obtain the estimators of the eigenblocks ∆k,j, j = 1, . . . , k in Section 4. In the following
section, we briefly discuss that the k-SSCS covariance structure is of the Jordan algebra type.

k-SSCS Covariance Structure Is of the Jordan Algebra Type

The k-SSCS covariance structure is of the Jordan algebra type (Jordan et al. [23]). Let
Gp1,k be the set of all k-SSCS p1,k × p1,k matrices. It is clear that under the usual matrix
addition and scalar multiplication, Gp1,k is a subspace of the linear vectorial space Sp1,k of
the p1,k × p1,k symmetric matrices. For any natural number k ≥ 2, it is easy to prove the
following proposition:

Proposition 1. If Γk is a k-SSCS matrix given by (9)
(
or equivlently by (8)

)
, then Γ2

k = ΓkΓk is
also a k-SSCS matrix given by:

Γ2
k = ΓkΓk = Γ∗k =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗ T∗k,j

]
+

k−1⊗
h=1

Jmk+1−h
T∗k,k,

where

T∗k,k =

[
k−1

∑
j=1

p2,j

(
Tk,jTk,k + Tk,kTk,j

)]
+ p2,kT2

k,k

=: U∗k,k,

and for h = k− 1, k− 2, . . . , 2, T∗k,h =: U∗k,h −U∗k,h+1, with

U∗k,h =

[
h−1

∑
j=1

p2,j

(
Tk,jTk,h + Tk,hTk,j

)]
+ p2,kU2

k,h + U∗k,h+1

and where T∗k,1 =: U∗k,1 −U∗k,2 = (Uk,1 −Uk,2)
2 = T2

k,1, that is, with U∗k,1 = T2
k,1 + U∗k,2.
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Therefore, we conclude that Gp1,k is a Jordan Algebra. See Lemma 4.1 on Page 10 in
Malley [24], which states that Gp1,k is a Jordan Algebra if and only if Γ2

k = ΓkΓk ∈ Gp1,k for
all Γk ∈ Gp1,k . See Roy et al. [25] and Kozioł et al. [26] for proofs that 2-SSCS and 3-SSCS
covariance structures are of Jordan algebra types.

4. Estimators of the Eigenblocks

Let xr : r = 1, . . . , n be p1,k × 1 random vectors partitioned into m1 × 1 subvectors
as follows:

xr =

(
x′r; f : f = ( fk, fk−1, . . . , f2) ∈ F = Fk,2 =

2
×
j=k

Fj

)′
=

(
x′r; fk , fk−1,..., f2

: f j ∈ Fj =
{

1, . . . , mj
}

, for j = k, k− 1, . . . , 2
)′

.

The vectors xr : r = 1, . . . , n are a random sample from a population with distribution
Np1,k (µ; Γk), where Γk is a positive definite k-SSCS structured covariance matrix as given
in (8) in Definition 3. Let X be the n× p1,k-sample data matrix as follows:

X
n×p1,k

=

 x′1
...

x′n

 =

(
X ·;1,...,1

n×m1

, . . . , X ·; fk ,..., f2
n×m1

, . . . , X ·;mk ,...,m2
n×m1

)

with

X ·, f
n×m1

=X ·, fk , fk−1,..., f2 =
n×m1


x′1, f

...
x′n, f

 =

 x′r, f
1×m1

n

r=1

.

In this section, we prove that certain unbiased estimators (to be defined) of the matrix
parameters Uk,j : j = 1, . . . , k− 1 can be written as functions of the usual sample variance-
covariance matrix S as follows:

S =
1

n− 1
X ′QnX

=
1

n− 1


X ′·;1,...,1

m1×n
...

X ′·;mk ,...,m2
m1×n

Qn

(
X ·;1,...,1

n×m1

, . . . , X ·;mk ,...,m2
n×m1

)
=
(

S f , f ∗
)

f , f ∗∈F
,

where Qn is given in (2) with (3). Now the sample mean x can be expressed as:

x
p1,k×1

=
1
n

X ′
p1,k×n

1n =
1
n

 X ′·;1,...,1
...

X ′·;mk ,...,m2

1n =


1
n X ′·;1,...,11n

...
1
n X ′·;mk ,...,m2

1n


=

(
1
n

X ′·; f
m1×n

1n

)
f∈F

=

(
1
n

n

∑
r=1

xr; f

)
f∈F

=

(
x f

m1×1

)
p1,k×1 f∈F

.
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Thus, S f , f ∗ in S can be expressed as:

S f , f ∗ =
1

n− 1
X ′·; f QnX ′·; f ∗ =


1

n−1

n
∑

r=1

(
xr; f − x f

m1×1

)(
x′r; f − x′f

1×m1

)
if f = f ∗

1
n−1

n
∑

r=1

(
xr; f − x f

m1×1

)(
x′r; f ∗ − x′f ∗

1×m1

)
if f 6= f ∗

.

Since S is an unbiased estimator of Γk, we have:

E
[
S f ; f ∗

]
= E

[
S fk , fk−1,..., f2; f ∗k , f ∗k−1,..., f ∗2

]
=

{
Uk,1 i f f2 = f ∗2 , . . . , fk = f ∗k
Uk,j i f f j 6= f ∗j , f j+1 = f ∗j+1, . . . , fk = f ∗k for j = 2, . . . , k .

Therefore, to find a better unbiased estimator of Uk,j, we average all the above random
matrices that are unbiased estimator of the same Uk,j. The unbiased estimators Ûk,j of Uk,j
for each j = 1, . . . , k are derived in Lemma 5 in Leiva and Roy [10] with qk,j defined in
Lemma 3 in Leiva and Roy [10] as:

qk,j =

{
p2,k i f j = 1

p2,k
(
mj − 1

)
p2,j−1 i f j = 2, . . . , k

. (19)

Unbiased estimators of the eigenblocks ∆k,j can be obtained from (13). Then, using
(14), the unbiased estimators of Γk can be obtained as the following othogonal sums:

Γ̂k =
k

∑
j=1

R∗k,j+1 ⊗ ∆̂k,j,

and if Γ̂
−1
k exists, it can be obtained from (15) as follows:

Γ̂
−1
k =

k

∑
j=1

R∗k,j+1 ⊗ ∆̂
−1
k,j , (20)

where R∗k,j+1 is given in (5), for each j = 1, . . . , k− 1, and, for j = k, R∗k,k+1 is given in (7).
The computation of the unbiased estimates of the component matrices Uk,j for each

j = 1, . . . , k is easy, as all of them have explicit solutions. At this point, we want to mention
that for k-separable covariance structure the estimates of the component matrices are not
easy, as the MLEs have implicit equations, and therefore are not tractable analytically. Now,
from Theorem 1 of Leiva and Roy [10], we see that a multiple of the unbiased estimators of
the eigenblocks ∆̂k,j for each j = 1, . . . , k, have Wishart distributions as follows:

(n− 1)pj+2,k
(
mj+1 − 1

)
∆̂k,j = (n− 1)BTp1,1

(
Rk,j+1S Rk,j+1

)
: j = 1, . . . , k− 1,

and (n− 1)∆̂k,k = (n− 1)BTp1,1(Rk,k+1S Rk,k+1),

where Rk,j+1 = R∗k,j+1 ⊗ Im1 given by (4) with (5) and (6) with (7), are independent and

(n− 1)pj+2,k
(
mj+1 − 1

)
∆̂k,j ∼ Wm1

(
(n− 1)pj+2,k

(
mj+1 − 1

)
; ∆k,j

)
for 1, . . . , k− 1

and (n− 1)∆̂k,k ∼ Wm1

(
(n− 1); ∆k,k

)
.
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From Corollary 1 of Leiva and Roy [10], the 2-SSCS covariance matrix for second-order data
or multivariate repeated measures data has two eigenblocks, ∆2,2 and ∆2,1 with multiplicity
m2 − 1, and their distributions are as follows:

(n− 1)(m2 − 1)∆̂2,1 ∼ Wm1

(
(n− 1)(m2 − 1), ∆2,1

)
,

and (n− 1)∆̂2,2 ∼ Wm1

(
(n− 1), ∆2,2

)
.

The 3-SSCS covariance matrix for third-order data has three eigenblocks, ∆3,3, ∆3,2
with multiplicity m3 − 1 and ∆3,1 with multiplicity m3(m2 − 1), and their distributions are
as follows:

(n− 1)m3(m2 − 1)∆̂3,1 ∼ Wm1

(
(n− 1)m3(m2 − 1), ∆3,1

)
,

and (n− 1)(m3 − 1)∆̂3,2 ∼ Wm1

(
(n− 1)(m3 − 1), ∆3,2

)
,

and (n− 1)∆̂3,3 ∼ Wm1

(
(n− 1), ∆3,3

)
.

5. Test for the Mean
5.1. One Sample Test

Using the notation and assumptions in Section 4, let X
n×p1,k

= (x1, . . . , xn)
′ be a n× p1,k-

dimensional data matrix formed from the random samples x1, . . . , xn from Np1,k (µ; Γk). Let

x be the sample mean, then x ∼ Np1,k

(
µ, 1

n Γk

)
. We are interested in testing the following

hypothesis:
H0 : µ = µ0 vs H1 : µ 6= µ0, (21)

for known µ0. For testing hypothesis (21), we use the test statistic D2 defined as:

D2 = n(x− µ0)
′Γ̂
−1
k (x− µ0). (22)

5.1.1. Distribution of Test Statistic D2 under H0

Now, let L′k = H ′mk ,m2
⊗ Im1 be the matrix as given in (16). We use here the following

canonical transformation:

z = L′k(x− µ0) =
(

H ′mk ,m2
⊗ Im1

)
(x− µ0).

Therefore, z =
(
z1,...,1

′, . . . , zmk ,...,m2
′)′ = L′k(x− µ0) ∼ Np1,k (0, Ωk). Therefore, ac-

cording to (17) with (18), we have:

Ωk =
1
n

Dk = L′k

(
1
n

Γk

)
Lk

=
1
n

(
H ′mk ,m2

⊗ Im1

)
Γk
(

Hmk ,m2 ⊗ Im1

)
=

1
n

diag
{

D fk , fk−1,..., f2 ; ( fk, fk−1, . . . , f2)
′ ∈ Fk × Fk−1 × . . .× F2

}
,

where, for each j = 1, . . . , k, the diagonal m1 ×m1- matrices D f = D fk , fk−1,..., f2 are given by:

D fk , fk−1,..., f2 = ∆k,j i f f2 = 1, . . . , f j = 1, f j+1 6= 1,

where fk+1 6= 1 is not taken into consideration, and the m1 × 1 component vectors z fk ,..., f2 ,
with f = ( fk, . . . , f2) ∈ F, are independent. The distribution of z fk ,..., f2 , under H0 is
given by:

z fk ,..., f2 ∼ Nm1

(
0,

1
n

∆k,j

)
i f
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f 2,j =
(

f2, . . . , f j
)
, f j+1 ∈ Fj+1 − {1}, and f j+2,k =

(
f j+2, . . . , fk

)
∈ Fj+2 × · · · × Fk.

Since

Hmi Imi H
′
mi

= Imi =
[
emi ,1, emi ,2, . . . , emi ,mi

]
Hmi Pmi H

′
mi

= emi ,1e′mi ,1 = diag

1, 0, . . . , 0︸ ︷︷ ︸
mi−1


and Hmi Qmi

H ′mi
=

mi

∑
j=2

emi ,je
′
mi ,j = diag

0, 1, . . . , 1︸ ︷︷ ︸
mi−1

,

for j = 1, . . . , k− 1, we have:

Hmk ,m2 R∗k,j+1 H ′mk ,m2
=

(
Hmk ,mj+2 ⊗ Hmj+1 ⊗ Hmj ,m2

)(
Ipj+2,k ⊗Qmj+1

⊗ Pmj,m2

)
(

H ′mk ,mj+2
⊗ H ′mj+1

⊗ H ′mj ,m2

)
=

k−j−1⊗
i=1

[
emk+1−i ,1, . . . , emk+1−i ,mk+1−i

]
⊗
(mj+1

∑
i=2

emj+1 ,ie′mj+1 ,i

)
⊗
(

epj,2 ,1e′pj,2 ,1

)

= diag



...0, . . . , 0︸ ︷︷ ︸ ...

p2,j

1, 0, . . . , 0︸ ︷︷ ︸ ...

p2,j−1

· · ·
...1, 0, . . . , 0︸ ︷︷ ︸

p2,j−1︸ ︷︷ ︸
mj+1

... · · · ...0, . . . , 0︸ ︷︷ ︸ ...

p2,j

1, 0, . . . , 0︸ ︷︷ ︸ ...

p2,j−1

· · ·
...1, 0, . . . , 0︸ ︷︷ ︸

p2,j−1︸ ︷︷ ︸
mj+1︸ ︷︷ ︸

pj+2,k

...


,

and for j = k, we have:

Hmk ,m2 R∗k,k+1H ′mk ,m2
= Hmk ,m2 Pmk,m2 H ′mk ,m2

= ep2,k ,1e′p2,k ,1 = diag

1, 0, . . . , 0︸ ︷︷ ︸
p2,k−1

.

Therefore, using (20), the statistic D2 in (22) can be written as:

D2 = n(x− µ0)
′Γ̂
−1
k (x− µ0)

= nz′
(

H ′mk ,m2
⊗ Im1

){ k

∑
j=1

R∗k,j+1 ⊗ ∆̂
−1
k,j

}(
Hmk ,m2 ⊗ Im1

)
z

= nz′
k−1

∑
j=1

diag


pj+2,k︷ ︸︸ ︷

......0′p2,j

...1, 0′p2,j−1

... · · ·
...1, 0′p2,j−1

...︸ ︷︷ ︸
mj+1

... · · · ......0′p2,j

...1, 0′p2,j−1

... · · ·
...1, 0′p2,j−1

...︸ ︷︷ ︸
mj+1

...


⊗ ∆̂

−1
k,j

}
z + nz′

{
diag

(
1, 0, . . . , 0︸ ︷︷ ︸

p2,k−1

)
⊗ ∆̂

−1
k,k

}
z,

that is,

D2 =:
k

∑
j=1

T2
0j, (23)
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where for j = 1, . . . , k− 1

T2
0j = tr

n
mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

z fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

z′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

∆̂
−1
k,j

 (24)

and for j = k, we assume

T2
0k = tr

n
mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

z fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

z′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

∆̂
−1
k,k



= n tr

z1, . . . , 1︸ ︷︷ ︸
k−1 ones

z′1, . . . , 1︸ ︷︷ ︸
k−1 ones

∆̂
−1
k,k

. (25)

Note that the subsets of vectors involved in T2
01, . . . , T2

0k, respectively, form a partition of

the set of independent vectors
{

z fk ,..., f2 : fk, . . . , f2 ∈ F
}

. Therefore, T2
01, . . . , T2

0k are mutually
independent. Moreover, since for j = 1, . . . , k,

H j = n
mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

z fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

z′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

∼ Wm1

(
k(j); ∆k,j

)
,

where
k(j) = pj+2,k

(
mj+1 − 1

)
,

and
Ej = (n− 1)pj+2,k

(
mj+1 − 1

)
∆̂k,j ∼ Wm1

(
dj; ∆k,j

)
,

with
dj = (n− 1)pj+2,k

(
mj+1 − 1

)
.

Therefore, T2
0j given by (24) reduces to

T2
0j = tr

H j

(
Ej

(n− 1)pj+2,k
(
mj+1 − 1

))−1


= (n− 1)pj+2,k
(
mj+1 − 1

)
tr
(

H jE−1
j

)
= dj tr

(
H jE−1

j

)
,

and has a Lawley–Hotelling trace (LH-trace) distribution denoted by T 2
0

(
m1; pj+2,k

(
mj+1 − 1

)
, dj

)
if dj = (n− 1)pj+2,k

(
mj+1 − 1

)
≥ m1. Note that, using (25), the case j = k reduces to

Hk = nz1,...,1z1,...,1
′ ∼ Wm1(1, ∆k,k) and Ek = (n− 1)∆̂k,k ∼ Wm1(n− 1; ∆k,k). Then, T2

0k
has the LH-trace distribution T 2

0 (m1; 1, (n− 1)) if (n− 1) ≥ m1.
Thus, the distribution of D2 given by (23) is the convolution of k-independent LH-trace

distributions:

k⊕
j=1

T 2
0

(
m1; pj+2,k

(
mj+1 − 1

)
, dj = (n− 1)pj+2,k

(
mj+1 − 1

)
≥ m1

)
.
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The critical values of this distribution can be obtained using simulations. However, LH-trace
distribution is usually aproximated by F distribution, and we use here the second approxima-
tion suggested in McKeon [27]. For jth case, i.e., for j = 1, . . . , k− 1, let us use the notations
m(j) = dj −m1 − 1 = (n− 1)pj+2,k

(
mj+1 − 1

)
−m1 − 1, k(j) = pj+2,k

(
mj+1 − 1

)
and

Bj =

[
m(j) + k(j)

]
[
m(j) − 2

] ·
[
m(j) + m1

]
[
m(j) + 1

]
=

[
npj+2,k

(
mj+1 − 1

)
−m1 − 1

][
(n− 1)pj+2,k

(
mj+1 − 1

)
− 1
]

[
(n− 1)pj+2,k

(
mj+1 − 1

)
−m1 − 3

][
(n− 1)pj+2,k

(
mj+1 − 1

)
−m1

] .

Then, the distribution

T 2
0
(
m1; pj+2,k(mj+1 − 1), (n− 1)pj+2,k(mj+1 − 1)

)
of T2

0j = dj tr
(

HjE−1
j

)
can be approximated by gjF

(
Kj, Dj

)
where Kj = k(j)m1 = pj+2,k

(
mj+1− 1

)
m1, Dj = 4+

Kj+2
Bj−1 = 4+

pj+2,k(mj+1−1)m1+2
Bj−1 and gj =

djKj
m(j)

Dj−2
Dj

=
(n−1)p2

j+2,k(mj+1−1)
2
m1

(n−1)pj+2,k(mj+1−1)−m1−1
Dj−2

Dj
.

Finally, for j = k, the distribution

T 2
0
(
m1; 1, (n− 1)

)
is the usual Hotelling T 2

1,n−1, that is, distributed as an exact distribution as follows:

(n− 1)m1

n−m1
F (m1, n−m1).

This means that the distribution of D2 can be approximated by the convolution of the
above k distributions

(
(k− 1) approximated F distribution and one exact F distribution

)
,

where its critical values are obtained by the method suggested by Dyer [28].

Remark 1. The statistic T2
0j, j = 1, . . . , k − 1 has LH-trace distribution T 2

0
(
m1; pj+2,k(mj+1 −

1), dj
)

if dj = (n− 1)pj+2,k(mj+1 − 1) ≥ m1. We also note that T2
0k has the LH-trace distribution

T 2
0 (m1; 1, (n− 1)) if (n− 1) ≥ m1. Now, for k-th order data, all mj ≥ 2 for j = 1, . . . , k and

k ≥ 2. See Definition 1. Now, k > j. Therefore, k − j ≥ 1 and then k − j − 2 ≥ −1. Thus,
pj+2,k ≥ 1. Since mj ≥ 2 for all k-th order data, mj+1 ≥ 2, we have (n− 1)pj+2,k(mj+1− 1) ≥ m1
when (n− 1) ≥ m1. Therefore, the only constraint needed on sample size in order to have all
T2

0j, j = 1, . . . , k to follow LH-trace distribution is (n− 1) ≥ m1, i.e., n ≥ m1 + 1, regardless of
any mj, j = 2, . . . , k. In essence, the minimum sample size needed to compute the D2 test statistic
is m1 + 1, although the minimum sample size needed to compute the Hotelling’s T 2 test statistic is
p1,k + 1, where p1,k is the full dimension of the observations. For this reason, one cannot compute
Hotelling’s T 2 test statistic for a small sample data set where n ≤ p1,k, which is doable for the D2

test statistic.

We will now discuss some special cases of the D2 statistic in the following remark.
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Remark 2. For second-order data or multivariate repeated measures data, D2 = T2
01 + T2

02. Now,
T2

02 is distributed as LH-trace distribution T 2
0 (m1; 1; n− 1), and T2

01 is distributed as LH-trace
distribution as follows

T 2
0
(
m1; p1+2,k(m1+1 − 1); (n− 1)p1+2,k(m1+1 − 1)

)
or T 2

0
(
m1; p3,2(m2 − 1); (n− 1)p3,2(m2 − 1)

)
as k = 2

or T 2
0
(
m1; (m2 − 1); (n− 1)(m2 − 1)

)
as p3,2 = 1 by (1).

Thus, T2
01 is distributed as LH-trace distribution T 2

0
(
m1; (m2 − 1); (n− 1)(m2 − 1)

)
.

So, we see that this test exactly matches the test obtained by Žežula et al. [1] for multivariate
repeated measures data (second-order data) with 2-SSCS or BCS covariance structure. Therefore,
we can say that our mean test statistic in this article is an extension or generalization of Žežula et
al.’s [1] mean test statistic for k-th order data with k-SSCS covariance structure.

We will now derive the mean test statistic for third-order data with 3-SSCS covariance
structure. For third-order data, D2 = T2

01 + T2
02 + T2

03. Now, T2
03 is distributed as LH-trace

distribution T 2
0 (m1; 1; n− 1), and T2

02 is distributed as LH-trace distribution as follows:

T 2
0
(
m1; p2+2,k(m2+1 − 1); (n− 1)p2+2,k(m2+1 − 1)

)
or T 2

0
(
m1; p4,3(m3 − 1); (n− 1)p4,3(m3 − 1)

)
as k = 3

or T 2
0
(
m1; (m3 − 1); (n− 1)(m3 − 1)

)
as p4,3 = 1 by (1),

that can be approximated by g2F (K2, D2), where K2 = (m3 − 1)m1, D2 = 4 + K2+2
B2−1 and g2 =

d2K2
m(2)

D2−2
D2

= (n−1)(m3−1)2m1
(n−1)(m3−1)−m1−1

D2−2
D2

, with d2 = (n− 1)(m3 − 1), m(2) = d2 − m1 − 1 and

B2 =
[m(2)+(m3−1)m1][m(2)+m1]

[m(2)−2][m(2)+1]
, and T2

01 is distributed as LH-trace distribution as follows

T 2
0
(
m1; p1+2,k(m1+1 − 1); (n− 1)p1+2,k(m1+1 − 1)

)
or T 2

0
(
m1; p3,3(m2 − 1); (n− 1)p3,3(m2 − 1)

)
as k = 3

or T 2
0
(
m1; m3(m2 − 1); (n− 1)m3(m2 − 1)

)
as p3,3 = m3 by (1),

that can be approximated by g1F (K1, D1) where K1 = m3(m2 − 1)m1, D1 = 4+ K1+2
B1−1 and g1 =

d1K1
m(1)

D1−2
D1

=
(n−1)m2

3(m2−1)2m1
(n−1)m3(m2−1)−m1−1

D1−2
D1

, with d1 = (n− 1)m3(m2 − 1), m(1) = d1 − m1 − 1

and B1 =
[m(1)+m3(m2−1)m1][m(1)+m1]

[m(1)−2][m(1)+1]
.

So, one can easily derive the test statistic for j-th order data for j = 2, . . . , k from
our generalized D2 statistic. The distribution of D2 under H0 for second-order data with
2-SSCS covariance structure is discussed in detail in Žežula et al. [1]. We will discuss the
distribution of D2 under H0 for third-order data in detail in the following section.

5.1.2. Distribution of Statistic D2 under H0 for Third-order Data with 3-SSCS
Covariance Structure

This section is adopted from the work of Žežula et al. [22]. However, we use a much
simpler, straightforward approach so that the practitioners or the analysts can appreciate
and apply the method easily. Let L3 = Hm3 ⊗ Hm2 ⊗ Im1 = Hm3,m2 ⊗ Im1 be a matrix such
that for each j = 2, 3 Hmj is an (mj ×mj) Helmert matrix, that is, an (mj ×mj) orthogonal
matrix with the first column proportional to the mj × 1 vector of 1’s. We use here the
following canonical transformation:

z = L′3(x− µ0) =
(

H ′m3,m2
⊗ Im1

)
(x− µ0).
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Therefore, z = (z1,1
′, . . . , zm3,m2

′)′ = L′3(x− µ0) ∼ Np1,k (0, Ω3), where

Ω3 =
1
n

D3 = L′3

(
1
n

Γ3

)
L3 =

1
n
(

H ′m3,m2
⊗ Im1

)
Γ3(Hm3,m2 ⊗ Im1)

=
1
n

diag
{

D f3 f2 ; ( f3, f2)
′ ∈ F = F3 × F2

}
,

where, for each j = 1, 2, 3, the diagonal m1 ×m1-matrices D f = D f3, f2 are given by

D f3, f2 = ∆3,j if


f2 6= 1 j = 1

f2 = 1, f3 6= 1 j = 2
f2 = 1, f3 = 1 j = 3

,

and the m1 × 1 component vectors z f3, f2 , with f = ( f3, f2) ∈ F, are independent, with

distributions (under the null hypothesis) z f3, f2 ∼ Nm1

(
0, 1

n ∆3,j

)
if

f 2,j =
(

f2, . . . , f j
)
= 1j−1, f j+1∈Fj+1 − {1}, and f j+2,3 =

(
f j+2, . . . , fk

)
∈Fj+2 × · · · × F3.

Therefore, particularizing D2, given by (23), for k = 3 we have

D2 =
k

∑
j=1

tr


n

mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

z fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

z′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

∆̂
−1
k,j





= tr

n
m3

∑
fk=1

m2

∑
f2=2︸ ︷︷ ︸

3−1 Sums

z f3, f2 z′f3, f2
∆̂
−1
3,1

+ tr

n
m3

∑
fk=2︸︷︷︸

3−2 Sums

z f3,1z′f3,1∆̂
−1
3,2

+ tr
[
nz1,1z′1,1∆̂

−1
3,3

]

=: T2
01 + T2

02 + T2
03.

Since the subsets of vectors involved in T2
01, T2

02, T2
03, respectively, form a partition

of the set of independent vectors
{

z f3, f2 : f3, f2 ∈ F3 × F2 = F
}

, T2
01, T2

02, T2
03 are mutually

independent. Moreover, since, for j = 1,

H1 = n
m3

∑
fk=1

m2

∑
f2=2︸ ︷︷ ︸

3−1 Sums

z f3, f2 z′f3, f2
∼ Wm1

(
m3(m2 − 1); ∆k,j

)
=Wm1

(
k1; ∆k,j

)
, and

E1 = (n− 1)m3(m2 − 1)∆̂3,1 ∼ Wm1((n− 1)m3(m2 − 1); ∆3,1) =Wm1(d1; ∆3,1), and

T2
01 = tr

[
n

m3

∑
fk=1

m2

∑
f2=2

z f3, f2 z′f3, f2
∆̂
−1
3,1

]
= tr

[
H1

(
E1

(n− 1)m3(m2 − 1)

)−1
]

= (n− 1)m3(m2 − 1)tr
(

H1E−1
1

)
= d1tr

(
H1E−1

1

)
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has a LH-trace distribution denoted by T 2
0 (m1; m3(m2 − 1), d1) if d1 = (n− 1)m3(m2 −

1) > m1. Similarly, for j = 2,

H2 = n
m3

∑
fk=2︸︷︷︸

3−2 Sums

z f3,1z′f3,1 ∼ Wm1((m3 − 1); ∆3,2) and

E2 = (n− 1)(m3 − 1)∆̂3,2 ∼ Wm1((n− 1)(m3 − 1); ∆3,2), and

T2
02 = tr

[
n

m3

∑
f3=2

z f3,1z′f3,1∆̂
−1
3,2

]
= tr

[
H2

(
E2

(n− 1)(m3 − 1)

)−1
]

= (n− 1)(m3 − 1)tr
(

H2E−1
2

)
= d2tr

(
H2E−1

2

)
,

has a LH-trace distribution denoted by T 2
0 (m1; (m3 − 1), d2) if d2 = (n− 1)(m3 − 1) > m1.

Note that the case j = 3 reduces to H3 = nz1,1z1,1
′ ∼ Wm1(1, ∆3,3) and E3 = (n− 1)∆̂3,3 ∼

W(n− 1; ∆3,3), then T2
03 has the LH-trace distribution T 2

0 (m1; 1, d3) if d3 = (n− 1) > m1.

Therefore, the distribution of D2 =
3
∑

j=1
T2

0j is the following convolution of three

independent LH-trace distributions:

3⊕
j=1

T 2
0
(
m1; pj+2,3

(
mj+1 − 1

)
, dj
)
=

T 2
0 (m1; m3(m2 − 1), d1)⊕ T 2

0 (m1; (m3 − 1), d2)⊕ T 2
0 (m1; 1, d3), (26)

if for j = 1, 2, 3, (n− 1)pj+2,3
(
mj+1 − 1

)
≥ m1. The critical values of this distribution

can be obtained using simulations. LH-trace distribution is usually approximated by
F distribution as mentioned before, however, we use here the second approximation
suggested in McKeon [27].

For j = 1, denoting by m(1) = d1 − m1 − 1 = (n− 1)m3(m2 − 1)− m1 − 1, by k1 =
m3(m2 − 1) and by

B1 =

[
m(1) + k1

]
[
m(1) − 2

] ·
[
m(1) + m1

]
[
m(1) + 1

]
=

[nm3(m2 − 1)−m1 − 1][(n− 1)m3(m2 − 1)− 1]
[(n− 1)m3(m2 − 1)−m1 − 3][(n− 1)m3(m2 − 1)−m1]

,

the distribution
T 2

0 (m1; m3(m2 − 1), (n− 1)m3(m2 − 1))

of T2
01 = d1 tr

(
H1E−1

1

)
can be approximated by g1F (K1, D1), where K1 = m3(m2 − 1)m1,

D1 = 4 + m3(m2−1)m1+2
B1−1 and g1 = d1

K1
m(1)

D1−2
D1

=
(n−1)m2

3(m2−1)2m1
(n−1)m3(m2−1)−m1−1

D1−2
D1

.

For j = 2, denoting by m(2) = d2 − m1 − 1 = (n− 1)(m3 − 1) − m1 − 1, by k(2) =
m3 − 1 and by

B2 =

[
m(2) + k(2)

]
[
m(2) − 2

] ·
[
m(2) + m1

]
[
m(2) + 1

]
=

[n(m3 − 1)−m1 − 1][(n− 1)(m3 − 1)− 1]
[(n− 1)(m3 − 1)−m1 − 3][(n− 1)(m3 − 1)−m1]

,
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the distribution
T 2

0 (m1; (m3 − 1), d2)

of T2
02 = d2 tr

(
H2E−1

2

)
can be approximated by g2F (K2, D2), where K2 = (m3 − 1)m1,

D2 = 4 + (m3−1)m1+2
B2−1 and g2 = (n− 1)(m3 − 1) K2

m(2)

D2−2
D2

= (n−1)(m3−1)2m1
(n−1)(m3−1)−m1−1

D2−2
D2

.

Finally, for our last case corresponding to j = 3, the distribution T 2
0 (m1; 1, (n− 1)) is

the usual Hotelling T 2
m1,n−1, that is, an exact distribution as follows:

(n− 1)m1

n−m1
F (m1, n−m1).

This means that the distribution of D2 can be approximated by the convolution of the
above three F distributions (two approximated F distribution and one exact F distribution),
where its critical values are obtained by the method suggested by Dyer [28].

Now, we need to perform the convolution of three distribution functions. Since
convolution is associative, for three distribution functions F1,F2, and F3, the associative
law of random variables implies that

(
F1 ⊗ F2

)
⊗ F3 = F1 ⊗

(
F2 ⊗ F3

)
, so we can

dispense with the parentheses and can write F1 ⊗F2 ⊗F3. In the following section, we
present the unbiased estimates of the eigenblocks for a 3-SSCS covariance matrix.

5.2. The Expressions of the ∆’s Estimators for the Case k = 3

1. From Lemma 5 in Leiva and Roy [10], the unbiased estimators Û3,j of U3,j for each
j = 1, 2, 3, are written as follows:

Û3,1 =
1

p2,3
BTp1,1(S) =

1
p2,3

∑
f∈F

S f ; f

=
1

(n− 1)q3,1

2 sums︷ ︸︸ ︷
∑

f3∈F3

∑
f2∈F2

n

∑
r=1

(
xr; f3, f2 − x f3, f2

m1×1

)x′r; f3, f2
− x′f3, f2

m1×1

, (27)

Û3,2 =
BSp1,1

[
BTp1,2(S)

]
− BSp1,1

[
BTp1,1(S)

]
q3,2

=
BSp1,1

[
BTp1,2(S)

]
− BTp1,1(S)

q3,2

=
1

(n− 1)q3,2

1 sum︷︸︸︷
∑

f3∈F3

1 special sum pair︷ ︸︸ ︷(
∑

f2∈F2

∑
f2 6= f ∗2 ∈F2

)
n

∑
r=1

(
xr; f3, f2 − x f3, f2

m1×1

)(
x′r; f ∗3 , f ∗2

− x′f ∗3 , f ∗2
1×m1

)
,

(28)

and

Û3,3 =
BSp1,1

[
BTp1,3 (S)

]
− BSp1,1

[
BTp1,2 (S)

]
q3,3

=
1

(n− 1)q3,3

1 special sum pair︷ ︸︸ ︷(
∑

f3∈F3

∑
f3 6= f ∗3 ∈F3

) 1 sum pair︷ ︸︸ ︷(
∑

f2∈F2

∑
f ∗2 ∈F2

)
n

∑
r=1

(
xr; f3, f2 − x f3, f2

m1×1

)(
x′r; f ∗3 , f ∗2

− x′f ∗3 , f ∗2
1×m1

)
,

(29)

where q3,j, j = 1, 2, 3 are given in (19). Therefore, an unbiased estimator of Γ3 is
given by:

Γ̂3 =

[
2

∑
j=1

Ipj+1,3 ⊗ Jp2,j
⊗
(

Û3,j − Û3,j+1

)]
+ Jp2,3

⊗ Û3,3.
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Since k-SSCS matrix Γk in (9) is of Jordan algebra type, following Kozioł et al. [26] one
can show that the above estimate Γ̂3 is the best unbiased, consistent and complete
estimator for Γ3.

2. For each j = 1, 2, 3 an unbiased estimator of ∆3,j, ∆̂3,j is given by:

∆̂3,j =
j

∑
i=1

p2,i

(
Û3,i − Û3,i+1

)
,

where Û3,4 = 0 and p2,1 = 1, or equivalently:

∆̂3,j =

{
Û3,1 − Û3,2 i f j = 1

∆̂3,j−1 + p2,j

(
Û3,j − Û3,j+1

)
i f j = 2, 3

,

The above unbiased estimators admit the following expressions as functions of S:

∆̂3,j =
mj+1 · BSp1,1

[
BTp1,j(S)

]
− BSp1,1

[
BTp1,j+1(S)

]
p2,3
(
mj+1 − 1

) ,

for j = 1, 2 and where BSp1,1

[
BTp1,1(S)

]
= BTp1,1(S) and BSp1,1

[
BTp1,j+1(S)

]
= BSp1,1(S),

and an unbiased estimator of ∆3,3, ∆̂3,3 is given by:

∆̂3,3 =
1

p2,3
BSp1,1(S).

6. Test for the Equality of Two Means
6.1. Paired Observation Model

In this section, we consider that in each one of the n individuals, a p1,k-variate vector is
measured at two different times (e.g., before and after a treatment). These measurements
are k-th order (array-variate) measurements from each individual. To be more precise,
for each f = ( fk, . . . , f2)

′ ∈ F, let vr; fk,..., f2 and wr; fk,..., f2 be the paired m1-dimensional
vectors measured at the ( fk, . . . , f2) site of the r individuals, for r = 1, . . . , n. Let ur be
the partitioned 2m-variate vectors u′r = (v′r, w′r) =

((
v′r,1, . . . , v′r,mk

)
,
(

w′r,1, . . . , w′r,mk

))
,

where vr; fk
=
(

v′r; fk,1, . . . , v′r; fk−1,mk−1

)′
and wr; fk

=
(

w′r; fk,1, . . . , w′r; fk,mk−1

)′
where vr; fk, fk−1

=(
v′r; fk, fk−1,1, . . . , v′r; fk, fk−1,mk−2

)′
and wr; fk, fk−1

=
(

w′r; fk, fk−1,1, . . . , w′r; fk, fk−1,mk−2

)′
, with vr; fk,..., f3

=
(

v′r; fk ,..., f3,1, . . . , v′r; fk ,..., f3,m2

)′
and wr; fk ,..., f3 =

(
w′r; fk ,..., f3,1, . . . , w′r; fk ,..., f3,m2

)′
, respectively,

where v′r; fk ,..., f3, f2
=

(
vr; fk ,..., f3, f2,1, . . . , vr; fk ,..., f3, f2,m1

)
and w′r; fk ,..., f3, f2

=
(

wr; fk ,..., f3, f2,1, . . . , wr; fk ,..., f3, f2,m1

)
are the m1 paired measurements taken from the rth

individual, for r = 1, . . . , n. We assume that u1, . . . , un
i.i.d.∼ N2p1,k (µu, Γu), where i.i.d. stands

for independent and identically distributed, and µu = (µ′v, µ′w)′ and Γu is the partitioned
2p1,k × 2p1,k-matrix

Γu =

 Γv
p1,k×p1,k

Γvw
p1,k×p1,k

Γwv
p1,k×p1,k

Γw
p1,k×p1,k

,
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where

Γv =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(
Uv,j −Uv,j+1

)]
+ Jp2,k

⊗Uv,k and

Γw =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(
Uw,j −Uw,j+1

)]
+ Jp2,k

⊗Uw,k, and

Γvw = Γ′wv =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(
Uvw,j −Uvw,j+1

)]
+ Jp2,k

⊗Uvw,k.

The matrices Γvw and Γwv are accountable for the linear dependence among the
considered m1 paired measurements. Particular cases of Γvw could be of interest, e.g.,
Uvw,1 = · · · = Uvw,k, that is, Γvw = Γ′wv = Jp2,k

⊗Uvw,k
(
see, for example, when k = 2,

Definition 2 on Page 388 in Leiva [6]
)
. Under this set up, we are interested in testing the

following hypothesis:
H0 : µv = µw vs. H1 : µv 6= µw.

If we define x = v−w the above hypothesis is equivalent to

H0 : µx = 0 vs H1 : µx 6= 0,

as µx = E(v −w) = µv − µw. Moreover, xr =vr −wr, r = 1, . . . , n, are i.i.d. N (µx; Γ)
where µx = µv − µw and

Γ = cov(x) = cov(v−w) = Γv + Γw − Γvw − Γwv

=

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(
Ux,j −Ux,j+1

)]
+ Jp2,k

⊗Ux,k,

where Ux,j = Uv,j + Uw,j −Uvw,j −U ′vw,j for j = 1, . . . , k.

Assuming Γ is a positive definite matrix and that n > p1,k, one may consider the
likelihood ratio test for the above hypothesis testing problem for k- level multivariate
data assuming the mean vectors µv and µw are unstructured. Note that this test problem
reduces to the one sample mean case of the previous section where µ0 = 0. Therefore, all
the results obtained in the previous section are valid for this case. Following the same
logic as in Remark 1, the needed sample size for the test is n ≥ m1 + 1, regardless of any
mj, j = 2, . . . , k.

6.2. Independent Observation Model

In this section, we consider the case where we have two independent samples: one random

sample of size n1 of p1,k vectors vr1 : r1 = 1, . . . , n1
i.i.d.∼ Np1,k(µv, Γv), with v′r1

=
(

v′r1,1, . . . , v′r1,mk

)
,

where v′r1; fk
=
(

v′r1; fk,1, . . . , v′r1; fk,mk−1

)
, v′r1; fk, fk−1

=
(

v′r1; fk, fk−1,1, . . . , v′r1; fk, fk−1,mk−2

)
, . . . , and where

v′r1; fk ,..., f3
=
(

v′r1; fk ,..., f3,1, . . . , v′r1; fk ,..., f3,m2

)
with v′r1; fk,..., f3, f2

=
(

vr1; fk,..., f3, f2,1, . . . , vr1; fk,..., f3, f2,m1

)
being the m1 measurements taken from the rth

1 individual, for r1 = 1, . . . , n1, and another

random sample of size n2 of p1,k vectors wr2 : r2 = 1, . . . , n2
i.i.d.∼ Np1,k (µw, Γw), with

w′r2
=
(

w′r2,1, . . . , w′r2,mk

)
, where w′r2; fk

=
(

w′r2; fk ,1, . . . , w′r2; fk ,mk−1

)
, where w′r2; fk , fk−1

=(
w′r2; fk , fk−1,1, . . . , w′r2; fk , fk−1,mk−2

)
, . . . , and where w′r2; fk ,..., f3

=
(

w′r2; fk ,..., f3,1, . . . , w′r2; fk ,..., f3,m1

)
with w′r2; fk ,..., f3, f2

=
(

wr2; fk ,..., f3, f2,1, . . . , wr2; fk ,..., f3, f2,m1

)
being the m1 measurements taken

from the rth
2 individual, for r2 = 1, . . . , n2, for f = ( fk, . . . , f2)

′ ∈ F.
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Our interest is in testing the following hypothesis:

H0 : µv = µw vs. H1 : µv 6= µw, (30)

under the assumption that Γv = Γw = Γ = Γk is an unknown k-SSCS covariance matrix
of the form (8). Let V = (v1, . . . , vn1) and W = (w1, . . . , wn2) denote the corresponding

two sample matrix data. We know that the sample means v = 1
n1

n1
∑

r1=1
vr1 and w =

1
n2

n2
∑

r2=1
wr2 are independent of the covariance matrix estimators S1 = 1

n1−1 VQn1
V ′ and

S2 = 1
n2−1 WQn2

W ′ respectively. Therefore, they are also independent of Spl, the pooled
unbiased estimator Γ (convex linear combination of unbiased estimators of Γ), which is
given by:

Spl =
n1 − 1

n1 + n2 − 2
S1 +

n2 − 1
n1 + n2 − 2

S2

=
(

Spl
fk ,..., f2; f ∗k ,..., f ∗2

)m2 ;...;mk

f2, f ∗2 =1;...; fk , f ∗k =1
=
(

Spl
f ; f ∗

)
f ; f ∗∈F

,

where

Spl
f ; f ∗ =

n1
∑

r1=1

(
vr1; f − v f

)(
v′r1; f ∗ − v′f ∗

)
+

n2
∑

r2=1

(
wr2; f −w f

)(
w′r2; f ∗ −w′f ∗

)
(n1 + n2 − 2)

.

Now

v−w ∼ Np1,k

(
µv − µw,

1
npl Γk

)
, where npl =

n1n2

n1 + n2
.

We know that under H0:

v−w ∼ Np1,k

(
0,

1
npl Γk

)
, and Spl ∼ Wp1,k

(
n1 + n2 − 2,

1
n1 + n2 − 2

Γk

)
.

Due to the exchangeable form of Γk, it is clear that we again have:

E
[
Spl

f ; f ∗

]
= E

[
Spl

fk ,..., f2; f ∗k ,..., f ∗2

]
(31)

=

{
Uk,1 i f f2 = f ∗2 , . . . , fk = f ∗k
Uk,j i f f j 6= f ∗j , f j+1 = f ∗j+1, . . . , fk = f ∗k f or j = 2, . . . , k .

Note that each of the following expressions is the arithmetic mean of all submatrices
of Spl, which, according to (31), have the same expectation. It is easy to prove that for each

j = 1, . . . , k, an unbiased estimator of Uk,j, Û
pl
k,j, for j = 1 is given by:

Û
pl
k,1 =

1
p2,k

BTp1,1

(
Spl
)
=

1
p2,k

∑
f∈F

Spl
f ; f

=
n1 − 1

n1 + n2 − 2
1

p2,k
∑
f∈F

S1: f ; f +
n2 − 1

n1 + n2 − 2
1

p2,k
∑
f∈F

S2: f ; f ,



Symmetry 2022, 14, 291 22 of 27

and for j = 2, . . . , k, Û
pl
k,j after some algebraic simplification is given by:

Û
pl
k,j =

BSp1,1

[(
BTp1,j

(
Spl
))
− BTp1,j−1

(
Spl
)]

qk,j

=
n1 − 1

n1 + n2 − 2
1

qk,j
∑

fk∈Fk

· · · ∑
f j+1∈Fj+1

 ∑
f j∈Fj

∑
f j 6= f ∗j ∈Fj

 ∑
f j−1∈Fj−1

∑
f ∗j−1∈Fj−1

· · ·
 ∑

f2∈Fk

∑
f ∗2 ∈Fk

S1: f ; f ∗

+
n2 − 1

n1 + n2 − 2
1

qk,j
∑

fk∈Fk

· · · ∑
f j+1∈Fj+1

 ∑
f j∈Fj

∑
f j 6= f ∗j ∈Fj

 ∑
f j−1∈Fj−1

∑
f ∗j−1∈Fj−1

· · ·
 ∑

f2∈Fk

∑
f ∗2 ∈Fk

S2: f ; f ∗ ,

where qk,j is given in (19). Therefore, we can use the following unbiased estimator of
variance and covariance matrices

Γ̂
pl

= Γ̂
pl
k =

[
k−1

∑
j=1

Ipj+1,k ⊗ Jp2,j
⊗
(

Upl
k,j −Upl

k,j+1

)]
+ Jp2,k

⊗Upl
k,k,

and Ω̂
pl
k =

1
npl D̂

pl
k = L′k

(
1

npl Γ̂
pl
k

)
Lk =

1
npl

(
H ′mk ,m2

⊗ Im1

)
Γ̂

pl
k
(

Hmk ,m2 ⊗ Im1

)
=

1
npl diag

{
D̂

pl
fk , fk−1,..., f2

; ( fk, fk−1, . . . , f2)
′ ∈ Fk × Fk−1 × . . .× F2

}
,

where, for each j = 1, . . . , k, the diagonal m1 ×m1-matrices Dpl
f = Dpl

fk , fk−1,..., f2
are given by:

D̂
pl
fk , fk−1,..., f2

= ∆̂
pl
k,j i f f2 = 1, . . . , f j = 1, f j+1 6= 1,

where fk+1 6= 1 is not taken into consideration and where

∆̂
pl
k,j =

j

∑
i=1

p2,i

(
Û

pl
k,i − Û

pl
k,i+1

)
,

with Û
pl
k,k+1 = 0, or equvalently:

∆̂
pl
k,j =

 Û
pl
k,1 − Û

pl
k,2 i f j = 1

∆̂
pl
k,j−1 + p2,j

(
Û

pl
k,j − Û

pl
k,j+1

)
i f j = 2, . . . , k

.

The usual likelihood ratio test of (30) is to reject H0 if:

T2 =
n1n2

n1 + n2
(v−w)′

(
Spl
)−1

(v−w) > c2.

Since (n1 + n2 − 2)Spl = (n1 − 1)S1 + (n2 − 1)S2 ∼ Wm1((n1 + n2 − 2); Γk),

T2 =

(
1
n1

+
1
n2

)− 1
2
[(v−w)− (µv − µw)]′︸ ︷︷ ︸
∼Normalp1,k

 (n1 + n2 − 2)Spl

(n1 + n2 − 2)︸ ︷︷ ︸
∼Wishart/d. f .


−1(

1
n1

+
1
n2

)− 1
2
[(v−w)− (µv − µw)]︸ ︷︷ ︸
∼Normalp1,k

.

Nevertheless, we cannot use the above result, as in our case, Γ̂
pl
k is an estimator

of Γk. However, by Theorem 1 of Leiva and Roy [10], we know that the random vec-
tors (n− 1)pj+2,k

(
mj+1 − 1

)
∆̂k,j = (n− 1)BTp1,1

(
Rk,j+1S Rk,j+1

)
: j = 1, . . . , k − 1, and
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(n− 1)∆̂k,k = (n− 1)BTp1,1

(
Rk,j+1S Rk,j+1

)
, where Rk,j+1 = R∗k,j+1 ⊗ Im1 are given by (4)

with (5) and (6) with (7) are independent and

(n1 + n2 − 2)pj+2,k
(
mj+1 − 1

)
∆̂

pl
k,j ∼ Wm1

(
∆k,j; (n1 + n2 − 2)pj+2,k

(
mj+1 − 1

))
for j = 1, . . . , k− 1,

and (n1 + n2 − 2)∆̂
pl
k,k ∼ Wm1

(
∆k,k; (n1 + n2 − 2)

)
, where pk+1,k = 1.

Since the estimators ∆̂
pl
k,j : j = 1, . . . , k are functions of Spl, they are independent of

v − w. Therefore, using a similar procedure as in the one sample case where we used
the transformation z = Lk(x− µ0) =

(
Hmk ⊗ · · · ⊗ Hm2 ⊗ Im1

)
(x− µ0), we now use the

following transformation:

d =
(
d1,...,1

′, . . . , dmk ,...,m2
′)′ = L′k(v−w)

(
Hmk ⊗ · · · ⊗ Hm2 ⊗ Im1

)
(v−w).

According to the previous result, d = L′k(v−w) ∼ Np1,k (0, Ωk), where

Ωk =
1
n

Dk = L′k

(
1
n

Γk

)
Lk =

1
n

(
H ′mk ,m2

⊗ Im1

)
Γk
(

Hmk ,m2 ⊗ Im1

)
=

1
n

diag
{

D fk , fk−1,..., f2 ; ( fk, fk−1, . . . , f2)
′ ∈ Fk × Fk−1 × . . .× F2

}
,

where, for each j = 1, . . . , k, the diagonal m1 ×m1- matrices D f = D fk , fk−1,..., f2 are given by:

D fk , fk−1,..., f2 = ∆k,j if f2 = 1, . . . , f j = 1, f j+1 6= 1.

Using a similar result as the one used in the one sample case, we obtain the statistic(
Dpl
)2

as follows:

(
Dpl
)2

=
n1n2

n1 + n2
(v−w)′

(
Γ̂

pl)−1
(v−w) = npld

′
Γ̂
−1
k d

= npl
k−1

∑
j=1


mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

d′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

(
∆̂

pl
k,j

)−1
d fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸

j−1 ones


+npld′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸

k−1 ones

(
∆̂

pl
k,k

)−1
d1, . . . , 1︸ ︷︷ ︸

k−1 ones

=
k

∑
j=1

tr


n1n2

n1 + n2

mk

∑
fk=1

. . .
mj+2

∑
f j+2=1

mj+1

∑
f j+1=2︸ ︷︷ ︸

k−j Sums

d fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

d′fk ,..., f j+1,1, . . . , 1︸ ︷︷ ︸
j−1 ones

(
∆̂

pl
k,j

)−1




=:

k

∑
j=1

T2
0j.

Then, the distribution of
(

Dpl
)2

=
k
∑

j=1
T2

0j is the convolution of k independent LH-trace

distributions as follows:

k⊕
j=1

T 2
0

(
m1; pj+2,k

(
mj+1 − 1

)
, dj = (n1 + n2 − 2)pj+2,k

(
mj+1 − 1

)
≥ m1

)
.
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The only condition needed on the sample size in order to have the above convolution of
k independent LH-trace distribution is n1 + n2 ≥ m1 + 2. However, LH-trace distributions
are usually approximated by F distribution

(
We use here the second approximation

suggested in McKeon [27]
)
. This means that the distribution of

(
Dpl
)2

can be aproximated
by the convolution of k F distributions, where its critical values are obtained by the method
sugested by Dyer [28].

7. An Example

We apply our proposed extended D2 test statistic to a third-order (k = 3) medical
dataset as described in the Introduction, where the interest is in testing the equality of mean
of a population of glaucoma patients to a target mean of another population of glaucoma
patients [29]. Several studies showed that the central corneal thickness (CCT) plays a
major role in the diagnosis of glaucoma. Intraocular pressure (IOP) is positively correlated
with CCT and may therefore affect diagnosis. Therefore, CCT should be measured along
with IOP in all patients for verification of glaucoma. CCT and IOP vary from individual
to individual, from right eye to left eye, and from time to time. We have a sample of
30 glaucoma patients. Measurements on IOP and CCT were taken from both the eyes (sites)
and were observed over three time points at an interval of three months. Clearly, then,
this dataset is a third-order dataset with m1 = 2, m2 = 2, and m3 = 3. This dataset was
studied by Leiva and Roy [20] by assuming a 3-SSCS covariance structure. Here, we also
assume that this dataset has a 3-SSCS covariance structure. The (2× 1)-dimensional sample
partitioned mean vector in our sample of 30 glaucoma patients is presented in Table 1.

Table 1. The (2 × 1) dimensional sample partitioned mean vector in our sample of 30 glaucoma
patients.

t s (IOP, CCT)

1 1 (24.333, 527.367)′

1 2 (23.567, 534.633)′

2 1 (20.233, 525.333)′

2 2 (19.567, 532.500)′

3 1 (19.233, 527.133)′

3 2 (18.933, 534.867)′

Additionally, using the Formulas (27)–(29) presented in Section 5.2, the unbiased
estimates Û3,1, Û3,2, and Û3,3 are:

Û3,1 =

[
12.230 12.061
12.061 426.155

]
, Û3,2 =

[
5.826 6.939
6.939 164.156

]
, and Û3,3 =

[
3.528 9.268
9.268 288.684

]
,

respectively. Using the above estimates, the unbiased estimate of Γ3 is:

Γ̂3 = Iv ⊗ Iu ⊗ Û3,1 + Iv ⊗ (Ju − Iu )⊗ Û3,2 + (Jv − Iv )⊗ Ju ⊗ Û3,3 =

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]
3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]
3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]



.

The 2× 2 block diagonals Û3,1 represent the estimate of the variance-covariance matrix
of the two response variables IOP and CCT at any given eye and at any given time point,
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whereas the 2× 2 block off diagonals Û3,2 represent the estimate of the covariance matrix of
the two response variables IOP and CCT between the two eyes and at any given time point.
The 2× 2 block off diagonals Û3,3 represent the covariance matrix of the two response
variables IOP and CCT between any two time points.

Iester et al. [29] reported the mean and standard deviation (SD) of the IOP and CCT
measurements for both the eyes from 794 Italian Caucasian glaucoma patients (see Table 2).
We deem these means as the means of the IOP and CCT at the first time point and then
randomly generate four samples within three standard errors (SD of mean) from these
reported means of IOP and CCT to represent the means of IOP and CCT for the left and
right eyes in the third and sixth months, respectively. These randomly generated means of
IOP and CCT for the left and right eyes at three time points in vector form are reported
in Table 3, and we will take this mean vector as the targeted mean µ0 in (21). The sample
mean vector in Table 1 appears to be very different from the targeted population mean
vector µ0 in Table 3.

Table 2. IOP and CCT measurements from 794 Italian Caucasian glaucoma patients.

Mean SD

Right IOP 16.16 3.55
Right CCT 545.68 35.82
Left IOP 16.28 3.31
Left CCT 546.89 36.09

Table 3. The (2 × 1) dimensional targeted partitioned mean vector µ0 in the Italian Caucasian
glaucoma patients.

t s (IOP, CCT)

1 1 (16.16, 545.68)
1 2 (16.28, 546.89)
2 1 (15.97, 546.18)
2 2 (16.25, 550.30)
3 1 (16.20, 546.90)
3 2 (16.07, 549.64)

The aim of our study is to see whether our sample of 30 glaucoma patients has the
same mean vector as the Italian Caucasian glaucoma patients. Our main intention of the
analysis of our glaucoma dataset is to illustrate the use of our new hypotheses testing
procedures rather than giving any insight into the dataset itself.

The calculated D2 statistic (26), which is a convolution of three independent L–H
distributions, T2

0 (2; 3, 87), T2
0 (2; 2, 58) and T2

0 (2; 1, 29), respectively, which in turn is ap-
proximated by two approximated F distributions and one exact F distribution, is 317.2971,
and the corresponding p value is 0. So, we reject the null hypothesis that the population
mean of our dataset is equal to the Italian Caucasian glaucoma patients, and this conclusion
was expected from the data.

8. Conclusions and Discussion

We study the tests of hypotheses of equality of means for one population as well as
for two populations for high-dimensional and higher-order data with k-SSCS covariance
structure. Such a structure is natural and a credible assumption in many research studies.
MLEs and the unbiased estimates of the matrix parameters of the k-SSCS covariance struc-
ture have closed-form solutions. On the other hand, the MLEs and the unbiased estimates
of the matrix parameters of the k−separable covariance structure are not tractable and
are computationally intensive. So, k-SSCS covariance structure is a desirable covariance
structure for k-th order data. Aghaian et al. [30] examined differences in CCT of 801 subjects,
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establishing the fact that the CCT of Japanese participants was significantly lower than that
of Caucasians, Chinese, Filipinos, and Hispanics, and greater than that of African Ameri-
cans. African American individuals have thinner corneas compared to white individuals
[31]. So, CCT and IOP in glaucoma patients vary with race, and our result confirms this
fact. Our proposed new hypotheses testing procedures are perfect for high-dimensional
array-variate data, which are ubiquitous in this century. In discriminant analysis [32],
the first step is to test the equality of means for the two populations. Therefore, our new
method developed in this article will have important applications in the analysis of modern
multivariate datasets with higher-order structure. Our new method can be extended to
non-normal datasets. In addition, it can be extended in testing the equality of means for
more than two populations and simultaneous hypotheses testing in models with k-SSCS
covariance structure.
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