
1 3

DOI 10.1007/s00018-013-1491-1 Cellular and Molecular Life Sciences

Cell. Mol. Life Sci. (2014) 71:1245–1263

REVIEW

Mechanisms of cellular invasion by intracellular parasites

Dawn M. Walker · Steve Oghumu · Gaurav Gupta · 

Bradford S. McGwire · Mark E. Drew · 

Abhay R. Satoskar 

Received: 12 April 2013 / Revised: 4 October 2013 / Accepted: 7 October 2013 / Published online: 13 November 2013 

© Springer Basel 2013

migrate through various tissues, to evade the host immune 

system, and to undergo intracellular replication. These cel-

lular migration and invasion events are absolutely essen-

tial for the completion of the lifecycles of these parasites 

and lead to their for disease pathogenesis. This review is 

an overview of the molecular mechanisms of protozoan 

parasite invasion of host cells and discussion of therapeu-

tic strategies, which could be developed by targeting these 

invasion pathways. Specifically, we focus on four species 

of protozoan parasites Leishmania, Trypanosoma cruzi, 

Plasmodium, and Toxoplasma, which are responsible for 

significant morbidity and mortality.
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Invasion

Mechanisms of host-cell invasion in Leishmania

Introduction

Leishmania are obligate intracellular protozoa that infect 

mononuclear phagocytes. The parasites exist in two morpho-

logical forms, as an intracellular aflagellated amastigote in 

the vertebrate hosts, such as humans, dogs, lizards or rodents, 

and as a motile flagellated promastigote in the invertebrate 

sand fly vector. Six major Leishmania species (L. tropica,  

L. major, L. donovani, L. infantum, L. braziliensis, and 

L. mexicana) cause the three main forms of the disease in 

humans, dermal cutaneous leishmaniasis, visceral leishmani-

asis (VL), and muco-cutaneous leishmaniasis. The form and 

severity of the disease greatly depend on the infecting Leish-

mania species and the immune status of the host [1].
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Life cycle

Leishmania amastigotes are taken up by a female sand 

fly from an infected vertebrate host during a blood meal. 

Within the gut of the sand fly, Leishmania amastigotes 

transform via intermediate non-infective procyclic promas-

tigotes into infective metacyclic promastigotes [2]. Infec-

tive metacyclic promastigotes are introduced intradermally 

into the pool of blood of the vertebrate host by the feeding-

infected sand fly [3]. Within a short span of time, neutro-

phils are recruited to site of sand fly bite, where they engulf 

the promastigotes providing them with temporary shelter 

[4]. Infected neutrophils or free parasites are then taken 

up by professional phagocytes (dendritic cells and mac-

rophages), which migrate away from the site of the sand 

fly inoculation site [5]. Leishmania promastigotes survive 

in the parasitophorous vacuoles where they transform into 

amastigotes and replicate, eventually overburdening the 

infected cell leading to rupture. Extracellular amastigotes 

re-infect local phagocytes leading to subsequent cycles of 

infection. The transmission cycle is complete when infected 

phagocytes or extracellular parasites are taken up by feed-

ing sandflies. Amastigotes then transform into promastig-

otes in the sand fly midgut and then further differentiate to 

become infective metacyclic promastigotes, which are able 

to infect a new vertebrate host [6]. Leishmania can also 

be transmitted through blood transfusion from previously 

infected to naive human hosts [7, 8].

Mediated uptake by host cells at the site of sand fly 

inoculation

When an infected sand fly releases Leishmania promas-

tigotes into the skin, they evade immediate host immune 

response and destruction by seeking refuge in different 

types of host cells, which includes dermal macrophages 

(Fig. 1), fibroblasts, keratinocytes, and dendritic cells 

(DCs). Metacyclic promastigotes evade immediate destruc-

tion by deactivating the host’s complement system [9, 10]. 

In particular, lipophosphoglycan (LPG), which is highly 

expressed on the surface of metacyclic promastigotes, inter-

feres with the insertion of membrane attack complex [11] 

and promastigote specific kinases deactivate the classical 

and alternative complement pathway by phosphorylating 

complement proteins [12]. Furthermore, the surface-mem-

brane metalloprotease, glycoprotein 63 (known as gp63, 

leishmanolysin, or major surface protease), cleaves C3b 

attached to its surface, to an inactive form, C3bi, which 
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Fig. 1  Mechanisms of host-cell invasion in Leishmania
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facilitates the complement receptor 3 (CR3)-mediated entry 

into the host cells [13]. Leishmania promastigotes gain 

entry into the dermal macrophages by utilizing the host 

CR3, which prevents the parasites from being killed by cir-

culating phagocytes and non-immune serum. Additionally, 

in dermal macrophages, which lack the respiratory burst 

machinery, promastigotes have enhanced ability to trans-

form into and multiply as amastigotes compared to other 

macrophage populations [14]. Similarly, both Leishmania 

promastigotes and amastigotes are actively ingested by 

the skin fibroblasts [15]. These cells provide a safe envi-

ronment for Leishmania for up to 7 days post-infection, as 

they produce low levels of nitric oxide even in the presence 

of lipopolysaccharide and interferon-γ, compared to mac-

rophages [15]. The saliva of sand flies has been shown to 

have hemostatic and immunomodulatory effects in the host, 

which affect the infectivity and pathogenesis of Leishma-

nia [16]. While many of these effects are common to the 

saliva from Old (Phlebotomus spp.) and New (Lutzomyia 

spp.) World sand flies, there also some effects that are dif-

ferent. Sand fly saliva contains a multitude of components, 

the most well described is the vasodilator protein called 

Maxadilan [17, 18]. Sand fly saliva increases the migra-

tion of inflammatory cells to the site of deposition, enhanc-

ing the interaction of Leishmania with potential host cells 

[19]. The saliva from Lutzomyia longipalpis and Maxadilan 

alone decrease TNF-α, IL-10, and increase IL-6, IL-8, and 

IL-12 production in LPS stimulated human macrophages 

[20]. Maxadilan diminishes DTH responses in mice and 

inhibits T cell activation [20–22], and Phlebotomus saliva 

up-regulates Th2 responses and down-regulates Th1 

responses in L. major infection [23]. The saliva of Phle-

botomus papatasi down-regulates NO production in LPS- 

or IFN-g-activated macrophages [23, 24]. Repeat exposure 

of hosts to sand fly saliva induced antibody formation and 

cell-mediated responses to saliva proteins. Interestingly, 

pre-exposure to sand fly saliva has been shown to be pro-

tective to subsequent Leishmania infection [25, 26], bring-

ing forth the possibility is using saliva components as a 

vaccine [27–31]. Work is ongoing in order to understand 

how the responses to saliva protect against leishmaniasis 

or if the results of these studies in mice are applicable to 

humans [32]. 

Keratinocytes are epithelial cells in the skin that form 

an important initial barrier between the host and the envi-

ronment. The cellular interaction between keratinocytes 

and Leishmania is critical in delivering the initial triggers 

for Th-cell differentiation, although these are not target 

cells for parasite entry. Moreover, early cytokine expres-

sion of IL-1β, osteopontin, IL-12, IL-4, and IL-6 occurs in 

the keratinocytes of parasite-resistant mice strains follow-

ing inoculation of Leishmania promastigotes. Among these 

cytokines, IL-6 and IL-4 from epidermal keratinocytes are 

essential for resistance and generation of protective Th1 

immunity [33]. On the other hand, DCs present in the epi-

dermis are highly motile and capable of crawling between 

interstitial tissue spaces serving as efficient pathogen sen-

sors [34]. These cells internalize Leishmania and transport 

them to lymph nodes for priming of Leishmania specific T 

cells [35]. Interestingly, mice depleted of epidermal DCs 

had smaller lesions and reduced number of disease promot-

ing T regulatory cells highlighting the role of DCs in pro-

moting host susceptibility [36].

Mediated uptake by neutrophils

Neutrophils are the first cells to arrive at the site of infec-

tion within a few minutes of a sand fly bite [37]. This early 

recruitment of neutrophils might depend on specific cues 

provided by the release of alarmins (signal for tissue dam-

age), chemokines and cytokines [38, 39]. Neutrophils are 

crucial cells for early defense against infections as they 

can kill obligate intracellular pathogens via reactive oxy-

gen species (ROS) [40, 41], neutrophil elastase (NE), or 

neutrophil extracellular traps (NET) [42]. However, once 

phagocytic killing has been evaded or silenced, neutrophils 

can serve as host cells for Leishmania promastigotes [37]. 

Human neutrophils can readily phagocytose L. major pro-

mastigotes but amastigote recognition or uptake has not 

been detected by extracellular neutrophils [43]. Lipopho-

shoglycan and tartrate-resistant acid phosphatase present 

on the cell surface of Leishmania promastigotes inhibits 

lysosome fusion and the respiratory burst and superoxide 

anion production in neutrophils [44–46]. Leishmania pro-

mastigotes release chemotactic lipid Leishmania chemotac-

tic factor (LCF), which attracts neutrophils [47] and inter-

acts with Lipoxin A4 receptors (ALX), which deactivates 

the neutrophil oxidative burst [48]. Neutral elastase, a ser-

ine peptidase released by neutrophils, is deactivated by an 

inhibitor of serine peptidase present in Leishmania, which 

is crucial for intracellular parasite survival [49]. Moreover, 

virulent inoculum of Leishmania promastigotes contains a 

large subpopulation of apoptotic parasites, which bind to 

host annexin A5, which induces TGF-β and consequently 

mediates the silencing of phagocytes and survival of the 

viable subpopulation [50, 51].

Promastigotes can effectively modulate the short lifes-

pan of neutrophils by delaying or accelerating apoptosis to 

their advantage. Neutrophils from human blood or murine 

peritoneal cavity have delayed apoptosis upon Leishma-

nia infection [50–52]. On the contrary, neutrophils from 

infected dermis exhibit a marked increase in apoptosis, 

indicated by the enhanced expression of phosphatidylser-

ine (PS). Interestingly, this increase in PS expression marks 

the infected neutrophils to be phagocytosed by dermal DCs 

[53]. Similarly, infected neutrophils are also phagocytosed 
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by macrophages indirectly delivering promastigotes form-

ing the basis for the Trojan horse model of macrophage 

infection [51]. However, recent in vivo studies have shown 

that neutrophils do not directly transfer their parasites to 

the macrophages. Instead, the apoptotic neutrophils lyse 

releasing the apoptotic and viable promastigotes, which are 

then engulfed by the macrophages [37, 53].

Mediated uptake by macrophages

Macrophages serve as one of the critical host cells 

for Leishmania parasites and it is therein where para-

sites undergo amastigotes transformation and replicate 

and deactivate the microbicidal machinery of the host 

cell. The C3bi (generated by C3b proteolysis by gp63) 

opsonized metacyclic promastigotes bind to macrophage 

receptor CR3 facilitating silent entry into the mac-

rophages [13, 54]. Additionally, gp63 binds directly to 

fibronectin receptors through at least two domains [55, 

56] and may also utilize this receptor by forming a bridge 

between gp63-bound fibronectin [57]. High-mannose type 

glycans on the surface of promastigotes also facilitate 

parasite binding through mannose-fucose receptors [58]. 

Gp63 may also bind directly to CR3 to promote invasion 

[59]. After initial attachment, Leishmania promastigotes 

initiate caveolae-dependent phagocytosis for entering 

host macrophages [43]. Leishmania LPG is inserted into 

phagosome cholesterol-rich lipid microdomains, which 

causes exclusion of the exocytosis regulator, synaptotag-

min V, which prevents the acquisition of cathepsin D and 

the vesicular proton-ATPase, in the newly formed Leish-

mania-containing vacuoles (Fig. 1). This creates an intra-

cellular phagosomal niche that fails to acidify and trigger 

microbicidal machinery, providing sufficient time for pro-

mastigotes to differentiate into amastigotes [60]. Further-

more, vacuoles containing promastigotes interact poorly 

with late endosomes and lysosomes, as observed by the 

delayed recruitment of LAMP-1 and Rab7. These events 

result in the delay of phagosome maturation, which inter-

feres with the recruitment of signal transducers and vesi-

cle trafficking to developing phagosomes [61, 62]. This is 

characterized by the formation of F-actin coat around the 

phagosome due to LPG-mediated deactivation of protein 

kinase C (PKC)α [63] and abnormal retention of actin 

polymerization machinery (Arp2/3,Wiskott Aldrich Syn-

drome Protein, myosin and α-actinin) and Cdc42 [64]. 

This also leads to the LPG-dependent exclusion of nico-

tinamide adenine dinucleotide phosphate (NADPH) oxi-

dase cytosolic components, p47phoxand p67phox, from the 

promastigote containing phagosome resulting in deactiva-

tion of ROS generation [65]. As promastigotes transform 

into amastigotes, the parasitophorous vacuoles become 

acidic (pH 4.7–5.2) [66, 67] and acquire lysosomal 

hydrolases and late endosomal/lysosomal proteins such 

as Rab7 and LAMP-1 [67]. Amastigotes multiply within 

these phagolysosomes until being released from ruptured 

macrophages and then enter neighboring macrophages 

through a non-caveolae pathway after ligating Fc-γ and 

PS receptors [1]. Amastigotes survive in phagolysosomes 

using several strategies that include: (1) deactivation of 

the ROS generation machinery [68, 69]; (2) attenuation 

of the PKC activity [70]; (3) suppression of STAT1 sign-

aling [71]; (4) dysregulation of JAK/STAT signaling by 

depleting membrane cholesterol [72]; (5) activation of 

Leishmania specific ecto-protein phosphatases, cysteine 

proteinases or host cellular phosphotyrosine phosphatases 

or by inducing ceramide generation [73–77] (6) interfer-

ence with the strength of CD40 cross-linking [78, 79]; 

(7) inhibition of mTOR complex 1 along with concomi-

tant activation of translational repressor 4E-BP1, which 

promotes Leishmania proliferation [80]. In addition, the 

phagolysosomes containing Leishmania are enlarged due 

to increased expression of lysosomal trafficking regulator 

gene (LYST/Beige) that protects the parasites from oxida-

tive damage by diluting the microbicidal effects of nitric 

oxide [81].

Furthermore, Leishmania also interferes with the 

strength of CD40 cross-linking or reciprocally activates 

MAPK phosphatases (MKP), MKP-1, and MKP-3 result-

ing in antagonistic regulation of ERK1/2 and p38MAPK, 

which governs the production of IL-10 and IL-12 by Leish-

mania-infected macrophages [78, 79].

Therapeutic considerations

The current anti-leishmanial drugs antimonials, ampho-

tericin B, pentamidine, and miltefosine have limited thera-

peutic application due to toxicity and increasing multiple 

drug resistance. Novel therapeutic approaches are needed 

and those based on thwarting the mechanisms crucial 

for cellular invasion by Leishmania may hold promis-

ing results. Targeting MAPK signaling pathway using the 

specific MKP-1 inhibitor, triptolide, could be an effec-

tive therapeutic option for controlling L. major infection 

[79]. Similarly, AS-605240, a PI3Kγ inhibitor, is another 

promising therapeutic candidate as it confers resistance 

against L. mexicana infection and showed similar protec-

tion as sodium stibogluconate [82]. Furthermore, cysteine 

proteases, important for intracellular survival of Leishma-

nia amastigotes, are targeted by cystatin, a natural cysteine 

protease inhibitor, for curing experimental VL and could be 

developed as potential therapeutic candidate [83, 84]. Since 

Leishmania depletes membrane cholesterol and disrupts 

lipid rafts in host macrophages, therapies based on resto-

ration of cholesterol levels [72, 85, 86] and raft-associated 

proteins [87, 88] are other promising strategies.
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Mechanisms of host-cell invasion by Trypanosoma cruzi

Introduction

The lifecycle of Trypanosoma cruzi was first described 

in the early 1900s by the Brazilian physician Carlos Cha-

gas, who while working on malaria, suspected that insects 

infesting local rural dwellings transmitted human dis-

ease. Upon dissection he found motile flagellated para-

sites within the gastrointestinal tracts of these triatomine 

insects (family Reduviidae). He named the parasite after 

his mentor Prof. Oswaldo Cruz and determined that these 

were infective to mammals through experimental infec-

tion of monkeys, and further established they caused 

human disease by finding the parasite in the blood and tis-

sues of acutely and chronically infected patients. In doing 

so, Chagas has been the only scientist that has completely 

described the epidemiology, clinical syndrome, etiology, 

vector and complete lifecycle of a microbial agent. Named 

after him, Chagas disease (also known as American trypa-

nosomiasis), describes the clinical syndromes caused by 

infection with T. cruzi [89].

Life cycle of Trypanosoma cruzi

The life cycle of T. cruzi is complex and interesting. Trans-

mission of T. cruzi occurs mainly by deposition of infec-

tive metacyclic trypomastigotes (MT) present in the urine 

and feces of hematophagous bugs from the family Redu-

viidae, of the genera Triatoma, Rhodnius, and Panstrongy-

lus. The development of replicative non-infective epimas-

tigote forms into infective MTs during their transit in the 

insect gastrointestinal tract is essential to the transmission 

to human hosts. Once MTs are deposited in the feeding 

wound they can invade nucleated hosts cells or be engulfed 

by professional phagocytes (macrophages and DCs) [90]. 

Human infection by the oral ingestion also occurs through 

the stomach epithelial invasion of MTs present in insect 

contaminated preparations of fruit juice [91–95]. After 

MT host-cell infection, parasites are initially housed in 

parasitophorous vacuoles but then escape into the host-cell 

cytoplasm and differentiate into aflagellated amastigotes. 

Amastigotes replicate in the cytoplasm until they are trig-

gered to differentiate into motile flagellated trypomastig-

otes, which escape host cells and disseminate in the blood 

and lymph. The triggers for intracellular differentiation 

of amastigotes into trypomastigotes are unknown. Blood-

stream trypomastigotes lead to further infection by binding 

to and invading nucleated non-phagocytic cells and are also 

phagocytized by macrophages, both similar to the initia-

tion of infection that occurs by insect-derived MTs. Amas-

tigotes are also infective and can disseminate in infected 

hosts. The life cycle is complete when trypomastigotes or 

amastigotes are ingested by reduviid bugs feeding on mam-

malian hosts, wherein they differentiate back into replica-

tive epimastigotes. The mechanisms by which T. cruzi life 

cycle forms invade human cells are discussed in more detail 

below. While insect transmission is the primary mode of 

parasite acquisition, oral and transplacental routes can also 

occur and infection through transplanted blood and tissue 

from chronically infected individuals is increasing world-

wide and has prompted expansion of screening practices of 

donated products [96, 97].

Mechanisms of host-cell invasion

T. cruzi can actively invade multiple non-phagocytic cells. 

The MTs and bloodstream trypomastigotes (also termed 

tissue-culture derived trypomastigotes, or TCT, produced in 

vitro by cultivation of parasites in tissue culture and pro-

vide a model of bloodstream forms) are the main infective 

forms of the parasite and will be referred to as trypomastig-

otes collectively throughout the rest of this review unless 

otherwise specified. Infection by amastigotes can also lead 

to productive infection although the mode of infection by 

these forms is not entirely understood. Epimastigotes are 

also infective in vitro but are not widely thought to con-

tribute significantly to natural infection. The process of 

invasion by trypomastigotes is complex and dynamic and 

involves the interplay of multiple parasite and host factors. 

The bulk of studies looking at invasion have been done in 

vitro with a variety of different host-cell systems. This is 

complicated by the fact that different parasite strains infect 

cells by different mechanisms. Parasites can also infect 

macrophages by phagocytosis or through parasite invasion, 

as they do in non-phagocytic cells. There is controversy 

as to which of these is the main mode of parasite entry, 

however both are operative simultaneously. The informa-

tion below provides a general overview of the main con-

cepts concerning T. cruzi host-cell invasion. The readers 

may want to refer to several excellent and comprehensive 

reviews by pioneers in this field for further information 

[98–101].

Non-phagocytic cell infection

In vitro analysis of parasite invasion of non-phagocytic 

cells has resulted in the definition of several distinct steps 

(Fig. 2). Trypomastigotes initiate infection by interact-

ing with the host-cell surface membrane by way of sev-

eral parasite surface-membrane protein ligands. The host-

cell receptors for many of these ligands have not yet been 

identified. Many members (gp82, gp90, gp85/TS, gp30) 

of the gp85/trans-sialidase (TS) super-family are impli-

cated in the initiation of infection by trypomastigotes [102, 

103]. Gp82, and the related gp30, are MT-specific surface 
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proteins that upon engagement of an unknown receptor(s) 

mediate bidirectional Ca2+ release in both the parasite and 

host cell [104–106]. On the parasite side, this interaction 

triggers phospholipase C (PLC) activation generating dia-

cylglycerol (DAG) and inositol triphosphate (IP3), which 

further activates protein kinase C and release of Ca2+ 

from the endoplasmic reticulum. In host-cell targets, PLC 

is activated, which ultimately release Ca2+ from intracel-

lular stores via IP3-signaling. Recent data indicates that 

phosphatidylinositol 3-kinase (PI3K) and the mammalian 

target of rapamycin (mTOR) are also triggered during this 

process, however the downstream events beyond this are 

not well elucidated [106]. In some parasite strains, which 

express gp33/50, a mucin-related protein, host-cell Ca2+ 

release is triggered leading to invasion similar to but not as 

robustly as that mediated by gp82 [107]. Gp90 expressed 

in MTs of some parasite strains is a negative regulator 

of cell invasion and does not trigger Ca2+ mobilization 

or intracellular signaling [107, 108]. Gp82, −30, −90, 

and −35/50 are expressed to different degrees in various  

T. cruzi strains, which underscores the complex hetero-

geneity of the mechanisms of parasite invasion [109]. 

Bloodstream trypomastigotes appear to invade cells in a 

similar fashion but through a different set of interactions. 

Host-cell PLC activation occurs through triggering of the 

host bradykinin receptor, in an interesting mechanism 

in which parasite secrete cruzipain, a cysteine protease, 

which cleaves host kininogen to liberate bradykinin [110, 

111]. Similar to MT invasion, PLC activation generates 

IP3, which triggers downstream release of host Ca2+. Ca2+ 

release is also mediated by action of a proteolytic cleav-

age product generated by oligopeptidase B activity on an 

unknown parasite protein substrate [112–114]. Parasite 

surface-membrane trans-sialidase (TS) promotes invasion 

of bloodstream forms through transfer of host surface sialic 

acid residues onto various parasite mucins-proteins, which 

are a large family of heavily glycosylated GPI-linked sur-

face proteins [115–117]. Engagement of these sialylated 

parasite proteins trigger host-cell signaling via activation 

in a number of different ways including PI3K/Akt-, MAP-

kinase and ERK- pathways [118–120]. 

Parasite binding of extracellular matrix proteins (ECM) 

(fibronectin, laminin and collagen) and proteoglycans 

(heparin, heparin sulfate) is also implicated in invasion 
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[121–124]. The gp85/TS superfamily of proteins been 

shown to bind multiple ECM components [123]. Also nota-

ble is a 60-kDa surface protein, termed Penetrin, which 

binds heparin and heparin sulfate in a sialic acid-independ-

ent manner that promotes invasion [125, 126], and may also 

associate with ECM components. Recently, homologs of 

the leishmanial surface protease, gp63, have been described 

in T. cruzi, and it appears as they may be involved in par-

asite–host cell binding [127, 128], however is it unclear if 

they are molecularly distinct from Penetrin.

Binding and invasion of host cells by parasites trigger 

several different, yet overlapping parasite entry pathways. 

Exploitation each of these is how by T. cruzi is such a suc-

cessful pathogen at infecting multiple cell types. Each of 

these pathways, which culminate in the encasement of par-

asites within lysosomal-membrane-based vacuoles, which 

are necessary for subsequent events leading to productive 

infection [129].

In the “lysosomal-dependent pathway”, lysosomes are 

recruited to the site of parasite binding in a Ca2+-dependent 

manner. The exocytosis of lysosomes occurs by their fusion 

with the surface membrane abutting the parasite, which 

causes release of acid sphingomyelinase that generates 

ceramide through cleavage of membrane sphingomyelin 

[130]. The formation of ceramide in the outer leaflet of the 

membrane induces endocytosis of the wounded membrane. 

Parasites take advantage of this by becoming internalized 

in these lysosomal-based endosomes. This process may 

require the Ca2+-binding protein synaptotagmin VI and is 

probably powered by kinesin movement on microtubules 

that requires Ca2+-calmodulin [131, 132], both correlat-

ing with the necessary role of Ca2+ in this process. In the 

“lysosomal-independent pathway” parasites are initially 

housed in surface-membrane containing phosphoinositides, 

which eventually fuse with the lysosomes at later times 

post-infection [133, 134]. The protein dynamin, a GTPase, 

which associates with PI3K, may be involved in forma-

tion and dynamics of vacuole maturation [135, 136]. Prior 

to lysosomal fusion parasite entry into cells is reversible 

and parasites can escape the host cell. Thus fusion of these 

plasma membrane-derived vacuoles with lysosomes is a 

key step that leads to productive infection [137].

A third pathway has been proposed in which para-

sites exploit the autophagocytic pathway, which is opera-

tive under starvation conditions [138–140]. In this path-

way, parasites invade cells and are initially housed in 

autophagocytic vacuoles, which eventually fuse with lys-

osomes to create an acidic autophagolysosomal compart-

ment. These vacuoles are thought to be rich in nutrients 

for parasite survival and polyamines, which promote dif-

ferentiation of trypomastigotes into amastigotes [141]. 

Overall, this last model is probably a modified version of 

the lysosomal-independent pathway specialized for condi-

tions of starvation. The functional significance of actin and 

whether it is required or deleterious to parasite invasion in 

these pathways is likely a function of the ligands utilized 

for entry by different parasite forms [142].

Extracellular amastigotes are also infective to both 

phagocytic and non-phagocytic cells. Amastigotes of dif-

ferent strains appear to actively invade non-phagocytic 

host cells through recruitment of actin at the site of para-

site attachment [142–144]. T. cruzi infection also occurs 

through the oral route where is has been responsible for 

several outbreaks [91, 95]. This occurs through parasite 

contamination of fruit juice (e.g., acai and guava fruit) 

from crushing of parasite-laden triatomines present on ber-

ries during processing. Consumption of contaminated juice 

delivers MTs into the stomach and duodenum where they 

invade the gastric mucosal lining. Parasite gp82 is a chief 

ligand for invasion and the proteolytic degradation of the 

anti-invasive ligand gp90 further facilitates parasite entry 

[145–147]. Parasite strains not expressing gp82 invade via 

the related gp30, which also triggers Ca2+ signaling. Para-

site strains expressing gastric protease-susceptible gp90 

are relatively more infective via the oral route than those 

expressing protease-resistant gp90 [148].

Phagocytic cell infection

Macrophages are also targets for parasite infection, espe-

cially at the initiation of infection when MTs are deposited 

in the tissue by insects. In addition, amastigotes released 

from infected cells also infect macrophages. Both stages 

are taken up by phagocytosis, initially housed in parasito-

phorous vacuoles, where they can be killed by generation 

of nitric oxide and peroxynitrite [149–151]. The maturation 

of parasitophorous vacuoles into phagolysosomes is impor-

tant for parasite survival, which is required for entry into 

the host cytoplasm where they avoid exposure from micro-

bicidal radicals. In the cytoplasm parasite differentiate and 

replicate as they do in non-phagocytic cells. The initial 

entry of parasites into macrophages is probably by way of 

both an actin-dependent phagocytic process and an active 

invasion process similar as those described above in non-

phagocytic cells. Recent studies indicate that the integrity 

of membrane rafts composed of cholesterol, ganglioside 

GM, flotillin and caveolins are important in trypomastigote 

and amastigote infection of macrophages [152–154]. It is 

unclear whether, in the case of macrophages, this affects 

only active-invasion and/or the phagocytic parasite path-

way. However, lipid membrane raft disruption diminishes 

infection of non-phagocytic cell invasion by trypomastig-

otes probably by disaggregation of proteins important for 

signaling pathways that initiate the invasion process.
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Therapeutic considerations

The drugs currently used to treat Chagas disease include 

the nitroheterocyclics compounds benznidazole and nifur-

timox, which are indicated in acute and intermediate stage 

T. cruzi infection. The mechanism of action of nifurtimox 

is not completely understood but is probably due to the 

induction of oxidative radical formation within the para-

site and/or lowering of thiol levels through the production 

of nitroso-intermediate due to reduction of the nitro-group 

of the compound by the parasite [155–157]. The action of 

benznidazole is thought to act by reduction of macromol-

ecule production through interactions of its nitro-group 

[158, 159]. The efficacy of these drugs in chronic Chagas 

disease is somewhat controversial and trials are underway 

to determine if there is any benefit of treatment at this late 

stage [160–162]. These drugs are significantly toxic, yet 

are the mainstay of anti-parasitic therapy because there are 

no other alternatives approved for human use at present. 

Inhibitors of cruzipain, an important cysteine protease of 

T. cruzi, are promising candidates for future therapy [163–

165]. This protease is essential for viability of all stages of 

T. cruzi and is important as several key steps in the life-

cycle, including parasite invasion (see above), cell division 

and differentiation [166]. Preliminary studies indicate that 

the vinyl sulfone inhibitor, K11777, is a therapeutic can-

didate and that other compounds that inhibit this enzyme 

may find there way into the pipeline of new investigational 

drugs.

Mechanisms of host-cell invasion by apicomplexan 

parasites

Introduction

Apicomplexan parasites are a unique group of protists 

united by the presence of an organelle called the apico-

plast as well as the apical complex, a structure specifically 

involved in host-cell invasion. Although there are many 

organisms that fall under the phylum Apicomplexa, this 

section of the review will focus primarily on Plasmodium 

falciparum, the causative agent of cerebral malaria, with 

additional discussion of Toxoplasma gondii invasion, the 

causative agent of Toxoplasmosis.

Malaria is an infectious disease that has plagued man for 

millennia. Despite enormous struggles at prevention and 

treatment, currently over 250 million cases occur annually, 

resulting in an estimated 700,000 deaths, mostly African 

children [167]. Humans get infected with P. falciparum 

when bit by an infected mosquito, as this is the definitive 

host. The impact of this disease on the at-risk population 

is staggering and new, targeted approaches to prevent and 

cure it are desperately needed. T. gondii can infect any 

mammal, with humans being an accidental host. T. gon-

dii can only sexually reproduce in the intestines of cats, 

the parasite’s definitive host, making every other host an 

intermediate host. In the United States over 60 million peo-

ple carry the parasite but generally only those with com-

promised immune systems and pregnant women develop 

symptoms of disease [168]. Humans get infected by ingest-

ing parasite-contaminated food or water or by ingesting 

infected and undercooked meat.

Although we understand a great deal regarding the 

biology of the parasites responsible for malaria and toxo-

plasmosis, it is only relatively recently that many of the 

molecular mechanisms by which the parasite recognizes 

and invades or traverses through host cells have been elu-

cidated. There is a striking complexity of cellular traversal 

and invasion mechanisms utilized by Apicomplexa para-

sites for entry into the host cell. For Plasmodium, we focus 

on the two mammalian cell types into which the parasites 

invade, namely the liver hepatocyte and the erythrocyte. 

Toxoplasma is known to invade all nucleated cells, both 

non-phagocytic and phagocytic cells. For both species, we 

discuss notable parasite proteins and organelles involved 

in each of these invasion processes and highlight the host 

molecules known to be involved. As these processes rep-

resent critical events in the parasite’s life cycle, we finish 

with a brief section describing a number of ongoing efforts 

to target invasion in an attempt to combat these menacing 

diseases.

As this is meant to be a general review of Apicomplexan 

invasion, we regrettably have had to limit the depth of our 

description. Many excellent reviews exist that are more 

focused on various aspects of this topic and we direct the 

reader to these [169–175].

Plasmodium life cycle

Five species of Apicomplexan parasites of the genus Plas-

modium infect humans to cause malaria and, like many 

parasites, they develop through discrete stages, each par-

ticularly adapted to one of its two hosts (the human and 

the female anopheline mosquito). These include P. falci-

parum, P. vivax, P. malariae, P. ovale and, shown recently 

to infect humans, P. knowlesi [176]. A striking feature of 

these parasites is their ability to invade a wide variety of 

cell types during this complex life cycle. This cycle can 

be broken down into eight steps: (1) In the midgut of an 

infected female mosquito, the definitive host, diploid 

zygotes migrate through the chitinous, cell-free peri-

trophic matrix and penetrate the midgut epithelium, tak-

ing up residence between the epithelium and the midgut 

basal lamina; (2) The zygotes then develops into oocysts 

that mature and release motile sporozoites that travel 



1253Mechanisms of cellular invasion

1 3

through the mosquito’s hemocoel, attaching to and travers-

ing through salivary gland cells to access the interior of 

the gland; (3) Upon the female mosquito taking a blood 

meal from the mammalian host, sporozoites are deposited 

in dermal tissue and use gliding motility to reach dermal 

vessels, crossing the endothelium into the bloodstream; (4) 

Sporozoites then rapidly (within minutes) migrate to and 

cross the sinusoids of the liver by traversal through resi-

dent macrophages, called Kupffer cells. Once in the liver 

parenchyma, sporozoites trans-migrate through a number 

of hepatocytes by a membrane wounding process, after 

which they eventually invade a hepatocyte through invagi-

nation of the hepatocyte membrane; (5) Within the hepato-

cyte, sporozoites develop into exoerythrocytic forms that 

differentiate and replicate to produce haploid merozoites, 

which are then released into the peripheral bloodstream; 

(6) Merozoites invade erythrocytes, initiating the eryth-

rocytic cycle of infection. During the erythrocytic stages, 

parasites replicate and progress through the following 

developmental stages within erythrocytes: ring, trophozo-

ite and schizont. Merozoites egress from the erythrocyte 

and re-invade uninfected erythrocytes in a 48–72-h cycle, 

dependent on the species; (7) During this cycle of develop-

ment and re-invasion of erythrocytes, some parasites trans-

form into sexual gametes; (8) Gametocytes are taken up by 

a mosquito, and fertilize to become zygotes, thus complet-

ing the life cycle [176].

Plasmodium invasion of the hepatocyte

Invasion of a liver hepatocyte is perhaps best thought of 

as an ordered process of both extracellular and intracel-

lular steps with the inhibition of any of these resulting 

in a block in infection. After traversing the dermal epi-

thelium and entry to the bloodstream, sporozoites are 

carried to the liver where they arrest and undergo glid-

ing motility on the surface of the sinusoids that form 

the reticuloendothelial system. This is proposed to be 

mediated through a multivalent interaction of the para-

site’s surface-expressed circumsporozoite protein (CSP) 

and thrombospondin-related adhesive protein (TRAP) 

with sulfated heparin sulfate proteoglycans (HSPGs), 

secreted by liver stellate cells, which protrude through 

the endothelial fenestrae into the sinusoidal lumen. This 

interaction and arrest in the liver sinusoid explains why 

circulating sporozoites are virtually undetectable within 

minutes of infection, discovered by intravenously infect-

ing rats with P. berghei sporozoites [177]. Traversal 

of the liver endothelium in rats does not appear to be 

through the liver endothelial cells, rather it involves a 

membrane invagination process (with formation of a 

parasitophorous vacuole) of the Kupffer cells present in 

the endothelial lining by P. berghei and P. yoelii [178]. 

Functional studies to block the activity of these phago-

cytic cells, either by heat killing or by specific inhibi-

tors, suggested their involvement in sporozoite traversal, 

with a smaller percentage of traversal explained by a 

biologically active process [179]. Stronger evidence is 

from mouse experiments in which macrophage-colony-

stimulating factor 1 (CSF-1) was knocked out, leading 

to greatly reduced numbers of Kupffer cells. These mice 

were significantly less susceptible to P. yoelii infection, 

indicating the necessary role of Kupffer in access to the 

liver parenchyma [180]. Once in the parenchyma of the 

liver, sporozoites traverse a number of hepatocytes in a 

non-invasive, membrane-wounding manner before finally 

invading a host hepatocyte through invagination and for-

mation of a parasitophorous vacuole.

Plasmodium invasion of the erythrocyte

The merozoites released into the bloodstream from the 

liver exoerythrocytic cycle are small (~1 µm) and some-

what pear-shaped. At their apical end is located a spe-

cialized structure known as the apical complex in which 

reside specialized secretory organelles called rhoptries 

and micronemes that contain proteins necessary for inva-

sion (Fig. 3). The limited tropism of merozoites is due to 

specific ligand-receptor interactions between the parasites 

and the erythrocytes. Initial interactions occur through pro-

teins covering the surface of the merozoite, followed by a 

reorientation and formation of a tight junction between the 

erythrocyte and the apical end of the parasite. One of the 

best described proteins important in this initial interaction 

is the GPI-anchored protein, merozoite surface protein-1 

(MSP-1), which has been suggested to interact with two 

nonglycosylated extracellular regions of Band 3 protein 

on the surface of the erythrocyte [181]. Orientation of the 

parasite to its apical end approximating the erythrocyte 

membrane then occurs followed by tight junction forma-

tion through high-affinity interactions between parasite 

ligands and erythrocyte receptors. Two families of pro-

teins, the erythrocyte-binding-like (EBLs) protein and the 

reticulocyte-binding-like (RBLs or P. falciparum Rhs) pro-

teins, have been well recognized as major parasite ligands 

responsible for binding and invasion and have been shown 

to play a cooperative role in invasion, as functional loss of 

the former leads to the increased transcription of the lat-

ter [182]. Both are localized to apical organelles and are 

released onto the parasite surface during invasion. EBLs 

and RBLs both appear to have specific receptors on the 

surface of erythrocytes, such as EBL-175 binding predomi-

nantly to glycophorin A [183]. In P. falciparum five EBLs 

and six RBLs have been described. With the exception of 

PfRh1, all the PfRhs bind in a sialic acid-independent man-

ner and only PfRh4 has an identified receptor, complement 
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receptor 1. Both families are present throughout Plasmo-

dium spp. It is notable that P. falciparum appears to use 

multiple and alternative ligand-receptor interactions and is 

capable of switching invasion mechanisms between sialic 

acid dependent and sialic acid independent pathways, dem-

onstrated using neuraminidase and trypsin treatments on 

erythrocytes [184, 185]. In different regions of India and 

Gambia, field isolates were tested and it was found that the 

majority of parasites invade by the EBL-175/glycophorin A 

pathway [186, 187]. However, in Brazil only a minority of 

field isolates used this pathway [188]. This is evidence that 

there is variation of invasion mechanisms in filed isolates 

from different regions of the world. 

Another well known binding interaction necessary for 

invasion occurs between the Duffy antigen and the Duffy 

Binding Protein (DBP) of P. vivax. The Duffy antigen, 

expressed on human erythrocytes, is the binding receptor 

for a cysteine rich domain of DBP [189]. Duffy negative 

[Fy(a-b-)] individuals, most commonly found in Western 

Africa, are naturally resistant to P. vivax infection [190]. 

The Duffy antigen has also been shown vital for P. knowlesi 

binding in vitro [191, 192]. The cysteine rich domain in  

P. knowlesi DBP is found to bind to Duffy antigen but with 

different specificity than that of P. vivax [189].

Toxoplasma gondii Life cycle

T. gondii invades a wide variety of cell types in a life cycle 

that can be described in four steps: (1) Tachyzoites are the 

fast-growing form that causing acute infection in humans 

and other animals. These infect nucleated host cells, rep-

licating into a large number of progeny and egress by lys-

ing the host cell; (2) Under immune pressure from the host, 

the parasite can differentiate into a slow-growing form, 

termed bradyzoites. This occurs in long-living tissue types 

such as muscle or neuronal cells; (3) Ingestion of animal 

tissue bradyzoites, by cats or humans releases parasites in 

the intestinal tract. In cats this results in sexual develop-

ment and subsequent shedding of oocysts into the environ-

ment and in humans it can lead to disseminated infection; 

(4) Shed oocysts from cats develop into haploid sporozoites 

in the environment. The oral ingestion of these sporozoites 

leads to differentiation into tachyzoites and acute infection 

by humans or other mammals [193].
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Fig. 3  Mechanisms of host-cell invasion by apicomplexan parasites
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Toxoplasma gondii invasion of host cells

T. gondii tachyzoites use gliding motility, a mechanism not 

expanded upon in this review, to facilitate movement and 

interaction with host cells. Like a Plasmodium merozoite, 

surface antigens aid in the interaction between the tachy-

zoite and the host cell. One antigen known to have mem-

brane-binding activity is Perforin-like Protein 1 (PLP-1), 

forming pores in the host-cell membrane after binding and 

as well as playing a role in egress [194]. The parasite then 

re-orients its position such that the apical end has contact 

with the host cell. T. gondii secretes proteins needed for 

invasion from micronemes, rhoptries and dense granules. 

The contents of the micronemes are secreted first during 

the initial contact with the host cell, including the full-

length cellular form of microneme protein 2 (MIC2), which 

binds specifically to the host cell [195]. MIC2, along with 

MIC1, MIC4, MIC6 and MIC8, is involved the interaction 

between the parasite and the host cell [196, 197]. As the 

parasite invades the target cell these microneme proteins 

are proteolytically cleaved from the surface of the parasite. 

The rhoptries then secrete rhoptry neck proteins (RON). 

RON2 is inserted into the host-cell membrane of the host 

cell being invaded, while RON4, 5, 8, 9, and 10 form a 

complex at membrane surface of the membrane [198–201]. 

Tachyzoites then actively invade similar to Plasmodium 

merozoites, with the formation of the moving junction and 

a motor complex described below.

Process of apicomplexan invasion

The process of active invasion is so similar in Plasmodium 

and T. gondii that this section summarizes this invasion 

process used by both species of parasites with differences 

or unique mechanisms specifically noted.

Following tight junction formation between the parasite 

and the host-cell surface, parasites forcibly enter through 

invagination of the host-cell membrane, eventually forming 

and residing within parasitophorous vacuoles. The process 

involves a tight junction “motor” termed a moving junc-

tion (MJ) (Fig. 3). This junction can be thought of a “ring 

of contact” between the invading merozoite and the erythro-

cyte and is used by the parasite to “pull” itself into the cell. 

Once the parasite is completely inside the host cell, the MJ 

disappears as the parasitophorous vacuole resolves. No host 

proteins have been identified in the MJ although studies sug-

gest host cytoskeleton components are involved [202, 203]. 

The most widely studied parasite protein involved in MJ 

formation is the apical membrane antigen-1 (AMA1), which 

is highly conserved across Plasmodium sp. [204–207] and 

T. gondii [200, 208]. AMA1 is secreted by micronemes and 

interacts with RON2, RON4 and RON5 [198, 209] as well 

as aldolase, an F-actin binding protein. In T. gondii, MIC6 

also interacts directly with aldolase [196]. The RON pro-

teins are part of a parasite derived protein complex termed 

the RON complex, which is secreted into the host cell upon 

MJ formation. The interaction between AMA1 and the 

RON complex is essential for parasite invasion [209]. In 

fact, antibodies to AMA1 can block invasion [210] and a 

20-residue AMA1 binding peptide also specifically blocks 

invasion [211, 212], providing evidence that AMA-1 could 

be a potential vaccine target. As the MJ progresses around 

the parasite during invasion many proteins are shed from 

the surface of the parasite [213–215], including AMA-1 

[216] and PTRAMP [217], a process required for invasion 

[214, 218, 219]. Recent work in Plasmodium has identified 

a subtilisin-like serine protease, PfSUB2, as the “sheddase” 

responsible for this indispensable event [220]. In addition to 

the role of SUB2 as a sheddase, a number of intramembrane 

proteases called rhomboids (ROM) are also implicated 

[215, 221–223]. In T. gondii, ROM4 is implicated in cleav-

ing surface proteins to produce a gradient of adhesins, these 

including MIC2, AMA1, and MIC3 [224].

Therapeutic considerations for malaria

There are many drugs that treat malaria, the most recently 

developed and effective being multi-drug artemisinin 

therapies. However, to date all current antimalarials have 

encountered resistant parasites [225], highlighting the great 

need for continued drug development. Theoretically, a drug 

or vaccine that targets invasion of either hepatocytes or 

erythrocytes can be a useful preventative measure or treat-

ment for malaria. Recent vaccine strategies are focusing on 

antigens crucial to invasion of hepatocytes, such as CSP, or 

of erythrocytes, such as EBLs and RBLs. Due to functional 

redundancy and antigen switching, multi-antigen vaccine 

strategies are more likely to act synergistically, reduc-

ing the chance of resistance and showing a more effective 

immune response.

Targeting hepatocytes invasion could be a great tool for 

prophylaxis drugs, vaccines or treatments to prevent recur-

rent malaria, as in the case of a P. vivax infection. The 

vaccine RTS,S, which is based on CSP from P. vivax, was 

recently reported in phase 3 clinical trials in Africa to be 

effective at decreasing the malaria rate in young children 

by nearly 50 % [226, 227]. Serum from rabbits treated with 

this P. vivax CSP-based vaccine has shown cross-species 

recognition of P. falciparum and P. berghei sporozoites, 

which is promising for the use of RTS,S against malaria 

caused by the various species of Plasmodium or even 

mixed infections [228].

Targeting erythrocytic invasion proteins could also serve 

as a useful vaccine strategy. Studies of polymorphisms of 

invasion-related ligands PfEBL and PfRh in field isolates 

from Colombia, Peru, and Brazil highlight the importance 
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of understanding the variety of invasion pathways being 

utilized by parasites in different geographical regions 

[229]. This needs to be taken into account by developing 

multi-targeted vaccines, which might overcome “vaccine 

resistance” and be effective against parasites from different 

regions, different species of parasites, or mixed infections. 

As an additional example of this, antibodies against PfRh5 

used in combination with seven other merozoite antigens, 

most notably PfRh4, have been shown to act synergistically 

in inhibiting growth of P. falciparum in culture [230].

Drug-targets include the proteases involved in inva-

sion due to the essentiality of these proteases in egress and 

re-invasion of erythrocytes. Two peptidyl alpha-ketoam-

ides based on the P. falciparum subtilisin-like protease 1 

(SUB1) inhibited orthologues in P. berghei, P. vivax and  

P. knowlesi, suggesting the possibility of “pan-reactive” 

drugs based on this protease [231]. P. falciparum signal 

peptide peptidase, an intramembrane aspartyl protease 

associated with micronemes, is shown to interact with a 

transmembrane receptor on host erythrocytes and antibod-

ies against it block invasion by P. falciparum in vitro [232]. 

Rhomboid proteases may also provide an effective drug tar-

get as they are essential to invasion [233, 234]. And as men-

tioned previously, the AMA1 and RON complex interaction 

is also of interest in vaccine development as antibodies and 

binding peptides to AMA-1 block invasion [210, 211, 220].

Therapeutic considerations for toxoplasmosis

Toxoplasmosis is also a treatable Apicomplexan disease, 

although careful consideration is needed for pregnant 

women and immune-compromised patients like those 

infected with HIV. Most medications target only the tach-

yzoite, leaving the bradyzoite unharmed. Current medi-

cations include pyrimethamine, which is also a malaria 

medication, and sulfadiazine. Vaccine studies using these 

invasion proteins have been relatively successful. A recent 

study has shown that a ROP8 DNA-based vaccine, encod-

ing one of the rhoptry proteins secreted and essential for 

invasion, has induced a protective immune response in mice 

[235]. A DNA vaccine using a fusion protein of PLP-1 and 

MIC6 induced protective immunity in mice [236], as did 

MIC1 and MIC4 [237], indicating that these are promis-

ing candidates for vaccines. It is likely that other targets of 

invasion, as mentioned above for malaria, could also make 

good drug targets for toxoplasmosis.

Overall, invasion and traversal are crucial mechanisms 

for Apicomplexan parasite survival and infectivity. With 

multiple invasion events in multiple cell types, the molecu-

lar components of invasion are attractive targets for multi-

component drugs and/or vaccines, which have the potential 

to both increase protective immune responses in humans 

and decrease chance of parasite resistance.
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