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Abstract

Interstrand DNA crosslinks (ICLs) are the link between Watson-Crick strands of DNAs with the covalent bond and
prevent separation of DNA strands. Since the ICL lesion affects both strands of the DNA, the ICL repair is not simple.
So far, nucleotide excision repair (NER), structure-specific endonucleases, translesion DNA synthesis (TLS),
homologous recombination (HR), and factors responsible for Fanconi anemia (FA) are identified to be involved in
ICL repair. Since the presence of ICL lesions causes severe defects in transcription and DNA replication, mutations in
these DNA repair pathways give rise to a various hereditary disorders. NER plays an important role for the ICL
recognition and removal in quiescent cells, and defects of NER causes congential progeria syndrome, such as
xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. On the other hand, the ICL repair in S
phase requires more complicated orchestration of multiple factors, including structure-specific endonucleases, and
TLS, and HR. Disturbed this ICL repair orchestration in S phase causes genome instability resulting a cancer prone
disease, Fanconi anemia. So far more than 30 factors in ICL repair have already identified. Recently, a new factor,
UHRF1, was discovered as a sensor of ICLs. In addition to this, numbers of nucleases that are involved in the first
incision, also called unhooking, of ICL lesions have also been identified. Here we summarize the recent studies of
ICL associated disorders and repair mechanism, with emphasis in the first incision of ICLs.
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Background
Interstrand DNA crosslinks (ICLs) are lesions that are a
covalent linkage between opposite strands of double-
stranded DNA. They are formed in the presence of bi-
functional alkylating agents [1–4]. Organisms are exposed
to bifunctional alkylating agents, also called ICL-causing
agents, as a result of endogenous metabolic processes as
well as by exogenous stresses from environmental muta-
gens [3–5]. ICLs are extremely cytotoxic, as even a single
ICL in the genome can cause severe defects in a variety of
vital DNA metabolic processes, such as transcription and
DNA replication [6, 7]. Particularly, the selective inhibi-
tory effect of ICL agents on DNA replication—crucial for
proliferation and cell survival—is used in both chemother-
apy and phototherapy to treat various cancers and skin
diseases [8]. On the other hand, the defect of ICL repair
causes chromosome instability syndromes, such as

Fanconi anemia. Recently, many new factors involved in
ICL repair were identified from genetic studies of Fanconi
anemia, and these studies suggested that ICL repair is per-
formed in quite complicated mechanisms. In this review,
we briefly summarize the recent studies of ICL associated
disorders and repair mechanism, with emphasis in the first
incision of ICLs.

Typical ICL lesions
Chemical structures of ICL lesions have been compre-
hensively reviewed by Guainazzi and Schärer, and by
Legerski [2, 3] and will not be discussed in detail in this
review. Cisplatin and its derivatives, carboplatin and
oxaliplatin, are widely used in clinical applications and
can be applied to a wide variety of cancers. Cisplatin tar-
gets guanine bases in DNA, and ICLs occur at 5 -GC-
3 sites in double-stranded DNA. The ICL formed by
cisplatin shows the largest distortion of the DNA
strands, compared to other ICL formed by agents de-
scribed below, and it distortion is 45° of bending and 79°
of unwinding [9]. Cisplatin creates not only ICL but also
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an intra-strand crosslink at 5′-GG-3′ sites. Similar to
other bulky adducts which affect only one strand of the
double-helix structures, intra-strand crosslinks caused
by cisplatin are repaired by NER.
Nitrogen mustard and its derivatives also react with

guanine bases, and ICL formation occurs at 5 -GNC-
3 sites in double-stranded DNA [10]. Historically, ni-
trogen mustard was the first DNA damaging agent used
for chemotherapy [11]. ICLs formed by nitrogen mus-
tard show strand distortions with 14° of bending [10].
As ICL formation by nitrogen mustard is rapid (it occurs
within 20 minutes of treatment), nitrogen mustard can
be used in ICL repair studies in yeast [12]. Psoralen and
its derivatives can form ICLs following activation with
long wavelength ultraviolet radiation. Psoralen was iso-
lated from Ammi majus. In Egypt, Ammi majus would
be used in phototherapy during several millennia for
treatment of psoriasis and leukoderma vulgaris [13].
Psoralen reacts with thymine bases, and ICLs occur at
both 5 -AT-3 and 5 -TA-3 sites in double-
stranded DNA. The ICL formed by psoralen induces 25°
of unwinding and a minor local distortion of helical
structure [14, 15]. As ICLs formed by psoralen are rela-
tively stable in solution, it is often used in biochemical
and cell biological studies. Mitomycin C is widely used
for cell biological studies of ICL repair. Mitomycin C re-
acts with the guanine base in the minor groove of
double-stranded DNA, and ICL formation occurs at
5 -CG-3 sites. The ICL formed by mitomycin C does
not significantly distort the double helix [16, 17].

ICL removal in quiescent G0/G1 phase cells
Understanding the molecular mechanisms of ICL repair
is exceptionally challenging because an ICL lesion affects
both DNA strands. When a DNA lesion is located on
only one DNA strand, the DNA fragment with lesion is
excised by the introduction of two single-stranded
breaks on either side of the lesion. This principle is com-
mon among various excision repair pathways, including
nucleotide excision repair (NER), base excision repair
(BER), and mismatch repair (MMR). However, in the
case of ICLs, repair mechanisms involving a simple exci-
sion followed by template resynthesis are not sufficient
[18]. In quiescent cells (cells in G0/G1 phase), HR is not
essential for ICL repair [19]. Therefore, in all eukaryotes
from Saccharomyces cerevisiae to humans, both the first
and second rounds of ICL incisions occur by NER
(Fig. 1a) [19, 20]. The ICL lesion with the oligonucleo-
tide on the single-stranded gap produced by the first
round of NER is bypassed with translesion DNA poly-
merases, such as DNA polymerases η, ι, κ, and ζ, and
REV1 (Fig. 1) [19, 21–23]. In particular, DNA polymer-
ases κ, and ζ, and REV1 seem to be important for this
step [19, 21, 22, 24].

ICL recognition in proliferating S phase cells
The process of ICL repair in S phase is quite compli-
cated. Many studies have observed that treatment with
ICL-causing agents introduces double-stranded DNA
breaks (DSBs) in S phase cells [7, 25, 26]. One curious
phenomenon about ICL-induced DSBs is that they are
repaired by HR and not by non-homologous end joining
(NHEJ) [12, 25]. Such phenomena strongly indicate that
ICL-induced DSBs are associated with DNA replication
forks. In S. cerevisiae, ICLs are mostly recognized by
NER and complete NER function is responsible for the
incisions. Therefore, all NER-mutants show hyper sensi-
tive to ICL agents [25, 27]. In contrast, only XPF- and
ERCC1-deficient cells are extremely hypersensitive to
ICL agents, such as mitomycin C and nitrogen mustard
in mammalian cells [25, 27]. The gene products of XPF
and ERCC1 form a hetero-dimeric endonuclease that
specifically recognizes and cleaves single-stranded
branched structures [28]. Interestingly, the homologous
structure-specific endonucleases MUS81-EME1 and
XPF-ERCC1, are also involved in the repair process of
ICL removal [7, 29]. MUS81-EME1 preferentially binds
double-stranded branched structures, 3 -flaps, and
Holliday junctions [30]. Both XPF-ERCC1 and MUS81-
EME1 are involved in ICL-induced DSB formation.
However, further investigation is required to confirm
whether DSB formation is directly involved in the re-
moval of ICLs (Fig. 1b) [7, 31]. As many nucleases in-
volved in the incision of ICLs have been recently
identified, understanding the mechanisms of ICL inci-
sion is relevant for DNA repair. Here, we summarise our
current understanding of ICL repair mechanisms in S
phase. DSBs induced by ICLs in S phase are repaired by
HR. In S. cerevisiae, hypersensitivity to ICL-causing
agents is observed in rad51, rad52, rad54, rad59, and
mre11 mutants, but not in yku70 mutants, and the
hypersensitivity of rad52 yku70 double mutants to ICLs
is comparable to that of rad52 mutants [12]. In fact, in-
creased accumulation of DSBs after treatment with ICL-
causing agents and defects in DSB repair are observed in
HR-deficient strains, suggesting that NHEJ is not re-
quired for the repair of DSBs induced by ICLs [12]. A
similar phenomenon is observed in mammalian cells
[25]. Hypersensitivity to ICLs is seen in HR-deficient
cells, such as cells carrying mutations in RAD51 para-
logs, RAD54, RAD54B, and BRCA2, but not in NHEJ-
deficient cells [32–34]. It is likely that HR plays a role in
not only repairing DSBs but also in restarting stalled
DNA replication forks [7, 35]. In higher eukaryotes,
genes responsible for Fanconi anemia (FA) play import-
ant roles in ICL repair. Although the biological roles of
FA gene products are not entirely characterized [36],
they are known to control HR at DNA replication forks
[4]. We will describe the roles of FA gene products in
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the next section, emphasizing the regulation of HR at
stalled DNA replication forks.

ICL repair genes and human disorders
Proteins implicated in the repair of ICLs have a critical
role in the pathophysiology of several hereditary disor-
ders, known as FA, xeroderma pigmentosum (XP),
Cockayne syndrome (CS), cerebro-oculo-facio-skeletal
syndrome (COFS), and trichothyodistrophy (TTD,
Table 1) [37]. FA is a genetic disorder characterized by

aplastic anaemia, bone marrow failure, and cancers (typ-
ically acute myelogenous leukemia) [38, 39]. Mutations
in one of the FANC genes cause severe sensitivity to ICL
agents and genomic instability [38]. So far, at least 18
genes have been implicated in FA, and all the genes
products act on the ICLs repair in S phase [4, 40]. On
the other side, defects in NER pathways, which have a
role in G0/G1 phase, result in also rare autosomal-
recessive diseases, XP, CS, COFS syndrome, and TTD
[41]. Mutations in eleven genes have been associated

Fig. 1 Models of ICL repair. a Model of ICL repair in quiescent cells (G0/G1 phase). An ICL on DNA is recognized by NER machinery. In the case of
ICL-blocked transcription, two specific factors for transcription-coupled NER, CSA and CSB, are required to load the incision complex. In contrast, for ICLs in
non-transcribed regions, the XPC-HHR23B complex is responsible for loading of incision complex of NER. The first incision is introduced by the incision
complex composed of XPA-RPA, TFIIH, XPF-ERCC1 and XPG. After the first incision, the ICL lesion with the oligonucleotide is bypassed by a TLS polymerase
such as DNA polymerase κ, DNA polymerase ζ, or REV1. The second incision is the introduced by another NER incision complex. b Model of ICL repair in S
phase. ICL lesions cause stalling of DNA replication forks. The FANCM-FAAP24-MHF complex binds to a stalled replication fork and recruits both the FA core
complex and the BLM-TOP3α-RMI1 complex. Activated FA core complex mono-ubiquitinates both FANCD2 and FANCI, which permits incisions of the ICL
using structure-specific endonucleases such as XPF/FANCQ-ERCC1, SLX4/FANCP-SLX1, MUS81-EME1 and FAN1. The incision introduces a DSB which is
repaired by. HR. Both RAD51 paralogs (RAD51B, RAD51C/FANCO, RAD51D, XRCC2 and XRCC3) and BRCA complexes (BRCA1, BRCA2/FANCD1, PALB2/
FANCN, and BRIP1/FANCJ) are required for the formation of RAD51 filaments at damage sites. c Models of ICL incisions. An ICL lesion causes a stalled DNA
replication fork that must be resolved by ICL incision. Three models for this process have been suggested. One model suggests that the first incision
involves cleavage of the leading strand at a single stalled replication fork. The second model suggests that the first incision involves cleavage of the lagging
strand at a single stalled replication fork. The third model suggests cleavage at two converged replication forks. After incision, the oligonucleotide with an
ICL lesion is bypassed by a TLS polymerase, such as DNA polymerase κ, DNA polymerase ζ, or REV1, The DSB end is subsequently repaired by
homologous recombination
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with these NER disorders [41]. Characteristics of XP in-
clude a photosensitivity, pigmentation, and frequent skin
cancers. CS is an inherited syndrome characterized by
short stature, mental deficiency, photosensitivity, dispro-
portionately large hands, feet, and ears, ocular defects,
and extensive demyelination [37]. CS has wide spectrum
clinical features, and the most severely affected patients
are included in a category of COFS syndrome [42]. TTD
has a distinct sulfur-deficient brittle hair and neuroecto-
dermal symptoms [41, 43, 44]. These NER disorders are
distinguished from each other by these physical charac-
teristics, including cutaneous malignancies (Table 2).
Interestingly only ERCC1 and XPF gene products play a
role in both S phase and G0/G1 phase pathways.
Given the established role of DNA repair factors as a

genome keeper against a mutagenesis, it is not surprising

that some of ICL genes have a strong linkage with can-
cer. Recent next-generation sequencing revealed the her-
editary breast and/or ovary cancer syndrome (HBOC)
related genes, and BRCA1, BRCA2, BRIP1, PALB2, and
RAD51C genes are associated with HBOC in ICL repair
pathways [4]. From the view of preventive medicine,

Table 1 Molecular function of ICL repair factors linked to human disorders

Gene (also known as) Biochemical functions Disorders References

FANCA FA core complex FA [57]

FANCB FA core complex FA [58]

FANCC FA core complex FA [59]

FANCD1 (BRCA2) HR FA, HBOC [60]

FANCD2 FAN1 recruitment FA [61]

FANCE FA core complex FA [62, 63]

FANCF FA core complex FA [64]

FANCG FA core complex FA [65]

FANCI FAN1 recruitment FA [66, 67]

FANCJ (BRIP1) HR, Chromatin remodeling factor FA, HBOC [68, 69]

FANCL Ubiquitin ligase FA [70]

FANCN (PALB2) HR FA, HBOC [71, 72]

FANCO (RAD51C) HR FA, HBOC [73, 74]

FANCP (SLX4) Structure-specific endonuclease FA [75]

FANCQ (XPF) NER, Structure-specific endonuclease FA, XP, CS, COFS [76–78]

FANCS (BRCA1) HR, Chromatin remodeling factor FA, HBOC [79]

FANCT (UBE2T) E2 ubiquitin conjugating enzyme FA [80]

ERCC1 NER, Structure-specific endonuclease COFS [81]

XPA NER XP [82]

XPB NER, Helicase in TFIIH XP, CS, TTD [83–85]

XPC NER XP [86]

XPD NER, Helicase in TFIIH XP, CS, TTD, COFS [87–89]

XPE NER XP [90]

XPG NER XP, CS [91, 92]

CSA NER CS [93]

CSB NER CS, COFS [94]

TTDA (p8) NER, a component of TFIIH TTD [95]

HR factor in homologous recombination, NER factor in nucleotide excision repair
HBOC Hereditary breast and/or ovary cancer syndrome
FA Fanconi anemia, COFS Cerebro-oculo-facio-skeletal syndrome
XP Xeroderma pigmentosum, CS Cockayne syndrome, TTD Trichothiodystropy

Table 2 Clinical features of FA, XP, CS, and TTD

Clinical features FA XP CS TTD

Cancer + + - -

Skin pigmentation + + - ±

Developmental delay + - + +

Neurological defects ± ± + +

+ represents that this symptoms appears on almost all patients
- represents that this symptoms hardly recognized
± represents that this symptom is occasionally recognized
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early detection strategy is required in the social frame-
work. Especially in the patients having the mutations in
BRCA1 and BRCA2 genes, reasonable interventions are
strongly recommended.
Many DNA cross-liker agents, such as cisplatin, psor-

alen, mitomycin C, and so on, were investigated in the
long history of ICL repair fields. However none of these
agents are produced in mammal internal organs. What
is the pathophysiological accelerator of ICL repair
defected patients? Recent study suggested the interesting
story that aldehyde, one of the endogenous reactive me-
tabolites, at least partially leads to genotoxic of FA pa-
tients [45]. Of course it is forbidden to forget that
careful choice of medicine could prevent the incidental
adverse event on these patients, who are apt to be given
an anti cancer agents, such as cisplatin.

ICL incisions at stalled DNA replication sites
As an ICL lesion inhibits the unwinding of DNA
strands, the progression of replicative DNA helicases are
completely blocked at the site of the lesion. Previously,
two distinct models of incision were proposed to explain
stalling of a single replication fork [26]. One model sug-
gests that the first incision cleaves the leading strand
[46]. In this case, cleavage of either the 3 -end of
splayed arms or the 3 -flap structure is required and
XPF-ERCC1 and MUS81-EME1 are potentially involved
in the process (Fig. 1c) [31]. The major shortcoming of
this mechanism is the loss of MCM proteins that act as
replicative DNA helicases. Another model is that the
first incision occurs on the lagging strand [46]. This also
requires cleavage of either the 3 -end of splayed arms
or the 3 -flap structure. SLX1 and FAN1 may be the
endonucleases involved in this process (Fig. 1c). This
cleavage requires reloading of RNA primase-DNA polα
complexes to restart DNA replication. Loading of
MCM2-7 and RNA primase-DNA polα complexes at or-
igins of DNA replication is strictly regulated in
eukaryotic cells. Although it was suggested that MCM8-
9 is involved in ICL repair to promote HR, the mechan-
ism through which the complete DNA replication ma-
chinery is reconstructed at the recombination sites has
not yet been characterized [47].
Recently, a dual fork convergence model was proposed

based on biochemical studies of Xenopus egg extracts
[48–51]. In this case, even if a single fork collapses be-
cause of ICLs, the stalled replication fork remains at the
lesion site until another replication fork reaches the ICL
from the other side. As the incision occurs at the DNA
replication termination site, reloading of the complete
DNA replication machinery is not required after inci-
sion. SLX4 is involved in the selection of structure-
specific endonucleases and introduces incisions in one
strand of the DNA on both sides of the ICL lesion

(Fig. 1c). For cleavage of ICLs, it seems that XPF-ERCC1
and SLX1 are preferentially selected, but all the compo-
nents of the entire incision complex have not been
identified.

A new component that recognizes ICL lesions in
mammalian cells
Recently, two groups independently discovered that a
ubiquitin-like protein with both PHD and RING finger
domains, UHRF1, directly recognizes ICL lesions (Fig. 2)
[52, 53]. UHRF1 recognizes specific forms of histones
and hemi-methylated DNA, and recruits DNMT1 [54,
55]. It is known that UHRF1-deficient ES cells exhibit
hypersensitivity to DNA damaging agents such as ioniz-
ing radiation, UV light, N-methyl-N -nitro-N-nitroso-
guanidine, and hydroxyurea [56]. UHRF1 strongly
responds to ICLs formed by trimethyl psoralen and mi-
tomycin C, and exhibits a weaker response to those
formed by cisplatin [53]. This is because UHRF1 prefer-
entially recognizes ICLs that cause minor distortions of
the DNA helix, such as those formed by either trimethyl
psoralen or mitomycin C. In contrast, ICLs formed by
cisplatin cause a major distortion [2]. Both groups sug-
gested that the likely role of UHRF1 is the recruitment
of structure-specific endonucleases such as XPF-ERCC1
and MUS81-EME1 (Fig. 2) [52, 53]. However, Tian et al.
argued that recruitment of nucleases is required for FA
functions [52], while Liang et al. suggested that recruit-
ment of nucleases by UHRF1 is independent of FA path-
way components [53]. The mechanism of ICL
recognition remains unclear and further investigation is
required to precisely elucidate the mechanism.

Perspective
Recently, many factors involved in ICL repair have been
identified, particularly in mammalian cells. In quiescent
eukaryotic cells from species including yeasts and higher
eukaryotes, both the first and second rounds of ICL inci-
sions are performed by NER. In contrast, not all NER
factors are involved in ICL repair in S phase cells in
higher eukaryotes. Instead, a variety of structure-specific
endonucleases, TLS, HR, and FA pathways are required
for ICL repair in S phase cells. One open question is
whether ICL repair is error-free repair or not. ICL usu-
ally occurs between purine residues, however, it may also
happen between pyrimidine residues. Because of such
complexity, TLS bypass have no grantee to maintain
error-free bypass for all ICL sites. To understand the ac-
curacy of ICL repair requires further investigation.
In addition, very recent studies suggest that UHRF1

recognizes ICL lesions independent of the FA pathway,
which is activated by recognition of stalled DNA replica-
tion forks. In ICL repair, the role of chromatin
reorganization is poorly understood relative to other
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DNA repair pathways. One important phenomenon re-
lated to ICL repair is that NHEJ is not required for the
DSB repair after ICL incision. Single DNA ends, which
are produced by DSB formation at DNA replication
forks, are selectively repaired by HR. In contrast, two
DNA ends are predominantly repaired by NHEJ in
mammalian cells. However, the dual fork incision model
produces two DNA ends. If broken ends produced by
dual fork incision are selectively repaired by HR, chro-
matin structures might be a key factor in selecting a
DSB repair pathway. Certainly, many factors involved in
chromatin reorganization will be identified in the future
as co-factors of UHRF1 that participate in ICL repair.
This will provide an engaging challenge for researchers
in this field.

Conclusions
From human genetic studies, many factors involved in
ICL repair were identified. FA core complex play import-
ant roles to conduct ICL-recognition as well as DSB re-
pair by HR. As unhooking enzymes, several structure-
specific endonucleases, SLX4-SLX1, FAN1, and XPF-
ERCC1, were also identified. Based on these, several
models of ICL repair in S phase were proposed. In this
review, we summarized the resent achievements of ICL

repair. However, to discuss the entire mechanism of ICL
repair, many factors are still missing. Therefore, many
new factors will be discovered in the near future. In
addition, understanding the molecular mechanisms of
ICL repair also contribute to studies of genome instabil-
ities and mutagenesis caused by ICL agents. Studies of
ICL repair will certainly attract attention of researchers
in this field for a while.
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