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Abstract

Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light
and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest
otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet
oxygen (1O2) generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-
oxidation and necro-apoptotic cell death. UVA (355 nm) and visible (532 nm) light photosensitize 1O2 with similar yields,
and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can
protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg-
and Endo III-sensitive modifications); these DNA lesions may be mutagenic and may cause photoaging, as well as other
health problems, such as skin cancer.
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Introduction

Humans and other animals produce melanin mainly for

protection against exposure to ultraviolet B (UVB) radiation [1].

In contrast to UVB radiation, which is directly absorbed by DNA,

UVA radiation acts essentially through photosensitization, which

generates a triplet species, 1O2, and subsequently generates other

radical species that can damage both DNA and other epithelial

cell biomolecules [2–4]. UVA penetrates deeper in the dermis

than does UVB, and it is the major UV source responsible for skin

photoaging and the development of several types of skin cancer

[5].

However, the visible portion of the spectra has garnered much

less attention, despite several scientific reports that have described

the effect of visible and IR irradiation on the skin [6,7]. Kielbassa

and co-workers [8] and Kvam and Tyrrel [9] showed that

irradiating Chinese hamster cells and dermal fibroblasts, respec-

tively, with UVA and visible light induced oxidative damage in

DNA. More recent studies showed that visible light disturbs the

epidermal barrier, and this disturbance induces pigmentation and

inflammatory responses [10,11]. However, a great deal of

controversy remains concerning the effect of visible light on the

skin, most likely because of the lack of a mechanism that explains

the observed effects [12].

It has been shown that, in addition to UV [13], visible light also

induces pigmentation in certain skin types. Mahmoud and co-

workers [11] showed that visible light induces skin darkening in

people with skin types IV and V but not in individuals with type II

skin. The darkening induced by visible light depended on the pre-

irradiation melanin content of the skin, suggesting that melanin

may directly damage skin cells upon exposure to visible light.

The literature describes both protective and damaging roles for

melanin [14,15]. Two independent studies using Xiphophorus,
which is a fish that is highly susceptible to melanoma, showed that

the action spectra for both melanoma induction [16] and the

photo-induced generation of reactive species [17] extend to visible

wavelengths and that the shapes of the action spectra correspond

to the shape of the melanin absorption spectrum. Despite the lack

of a mechanistic explanation for the observations, these articles

highlight the importance of understanding the role of the excited

species that are generated after melanin is excited by visible light.

In an earlier publication, we showed that melanin can act as a

photosensitizer, leading to 1O2 generation after excitation with

visible light [18]. Singlet oxygen can react with proteins, nucleic

acids and membranes [19] (Figure S1); consequently, melanin

photosensitization is likely involved in the phototoxicity of visible

light, which is the main hypothesis that we aim to demonstrate

herein.
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Methods

Reagents
All solvents were spectroscopic grade. Water was distilled from

an all-glass apparatus and further purified via a Millipore Milli-Q

system. D2O (99%), tyrosine (Tyr), ammonium chloride (NH4Cl),

the enzymes Fpg and Endo III, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), KCl, Na2EDTA, HEPES

and BSA from Sigma-Aldrich (either USA or Germany) were used

as received. All other materials were the best analytical grade

available. NaOD was prepared using three cycles of dissolution

and evaporation of the initial NaOH solid (1 g) with D2O (10 g).

The naphthalene derivative endoperoxide (DHPNO2) was syn-

thesized by photosensitizing the precursor N, N9-di(2,3-dihydrox-

ypropyl)-1,4-naphthalenedipropanamide (DHPN) with methylene

blue as described by C. Pierlot et al [20]. The endoperoxide

concentration was determined for each aliquot after the final

filtration. The solutions were obtained at concentrations between

170 to 190 mmol/L with a purity of approximately 84%. This

purity value refers to the amount of DHPNO2 obtained relative to

the total amount of (DHPNO2+DHPN).

Eumelanin and pheomelanin were synthesized as described by

Haywood et al with modifications [21]. Eumelanin was prepared

from L-tyrosine (2.5 mg/mL) in pH 7.4 phosphate buffer (50 mM)

and mushroom tyrosinase (150 U/mL) in bovine serum albumin

(BSA) solution (5 mg/mL). Pheomelanin was synthesized from L-

dopa (0.5 mg/mL) and L-cysteine (1.5 mg/mL) in pH 7.4

phosphate buffer (50 mM) and mushroom tyrosinase (100 U/

mL). The reactions were performed at room temperature with

stirring for 24 h. We also used eumelanin and pheomelanin

samples that were kindly provided by Dr. S. Ito [22]. The samples

from our lab and those from Dr. Ito’s lab behaved identically with

regard to 1O2 generation.

Equipment
The visible and UV light irradiator (Novatecnica, Brazil)

included temperature and humidity sensors. Both variables were

maintained during the experiments. The irradiation (mW/cm2)

was measured at eight different areas in this irradiator using a

dosimeter (VLX-3W, France). The irradiances of the light source

were 3.0 mW.cm22 and 3.3 mW.cm22 in the UVB and visible

regions, respectively. For UVB, 25 min of irradiation provided

4.5 J.cm22. For the visible region, 30 min of irradiation provided

6 J.cm22, 180 min of irradiation provided 36 J.cm22, and

360 min of irradiation provided 72 J.cm22.

Cell absorption/emission was quantified using a plate reader

(Tecan Infinite 200M USA). The 1O2 measurements were

performed in a specially designed instrument [18,19,23] consisting

of a Surelite III laser (355 nm and 532 nm, 5-ns pulses, 10 pulses/

s, 1 mJ/pulse; Continuum Lasers), cuvette holder, silicon filter,

monochromator, liquid-nitrogen-cooled near infrared photomul-

tiplier tube (NIR-PMT R5509) from Hamamatsu (Hamamatsu

Co., Bridgewater, NJ, USA) and a fast multiscaler analyzer card

with a resolution of 5 ns/channel (MSA-300; Becker & Hickl,

Berlin, Germany). The signal was acquired either from a cell

cuvette or directly under a fluorescence microscope (Nikon Eclipse

Ti, USA). Fluorescence/transmission microscopy images were

acquired from an Axiovert 200 microscope or an LSM 510 laser

confocal microscope (Zeiss, Germany). The comet assay images

were obtained using fluorescence microscopy (Olympus BH-2,

USA). ImageJ Launcher was used for the confocal image analyses

(National Institutes of Health, Bethesda).

Cell culture
Several cell lines, which are available commercially, were

received as gift: B16–F10 [24]; HaCaT [25]; J774 [26] and SK-

mel 28 [27]. B16-F10, HaCaT and Hela cells were cultivated in

Dulbecco’s Eagle (DMEM) culture medium (Sigma-Aldrich). J774

and SK-mel cells were cultivated in RPMI 1640 culture medium

(Sigma-Aldrich). Both media were supplemented with 10% SFB

(Gibco/BRL Life Technologies), 4 mM L-glutamine (Sigma

USA), 100 U/mL penicillin (Sigma USA) and 100 mg/mL of

streptomycin (Nissui Seiyaku) and incubated at 5% CO2 and

37uC. Primary skin cell cultures (melanocytes) were obtained from

the foreskins of University Hospital (Hospital Universitário – HU-

USP) patients [28]. The project was reviewed and approved by the

Research Ethics Committee of the University Hospital (Av. Prof.

Lineu Prestes, 2.565-Cidade Universitária-CEP 05508-000; +

(5511)30919200, São Paulo, Brazil) (protocol# 943/09). The

experiments were performed with each subject’s understanding

and written consent, and the study methodologies conformed to

the standards set by the Declaration of Helsinki. The melanocytes

were maintained in 254CF medium (SKU# M-500-254CF;

Cascade Biologics, USA) with human melanocyte growth supple-

ment (HMGS – SKU# S-002-5; Cascade Biologics, USA).

Melanogenesis, irradiation and viability
The cells were plated (26104 cells.mL21) and, after 24 h, were

treated with 0.5 mM Tyr (Sigma-Aldrich, Germany) and 10 mM

NH4Cl (Labsynth, Brazil) for 48 h. This protocol increases the

melanin production of melanocytes, and the resulting melanocytes

and are referred to as M++++ herein; the control cells are referred

to as CT. The cells were irradiated in PBS (8 g/L NaCl, 0.20 g/L

KCl, 1.15 g/L Na2HPO4, and 0.2 g/L KH2PO4). We applied

4.5 J.cm22 of UVB irradiation and 36 J.cm22 and 72 J.cm22 of

visible irradiation. The cell density was evaluated using acridine

orange fluorescence (excitation 488 nm, emission 515 nm). The

cell viability was evaluated using MTT colorimetric and crystal

violet assays [29]. Damage to the cytoplasmic membrane was

quantified using propidium iodide incorporation. Apoptotic cell

death was characterized using caspase-3 activation (Cell Signaling

Technology, USA).

B16-F10 cell viability after 24 h of a DHPNO2 treatment
The B16-F10 cells (CT and M++++) were treated with a

solution containing RPMI and 10 mM DHPNO2 in the absence

of serum for 2 h. In control assays, the cells were treated with a

solution containing RPMI and 10 mM DHPN (decomposition

product of DHPNO2) in the absence of serum for the same time

period. After this period, the cell medium was changed to a normal

culture medium (RPMI 1640 (Cultilab) supplemented with fetal

calf serum (7.5%) from Gibco and with sodium bicarbonate

(0.8 mM), HEPES (20 mM), and gentamicin (50 ng/mL) from

Sigma-Aldrich. Cell viability was determined using an MTT assay

24 h after the DHPNO2 treatment.

Melanin quantification
The melanin content was quantified as previously described

[30]. The B16-F10 cells were seeded in 96-well plates (16104

cells.mL21), and after 24 h, they were treated with 0.5 mM Tyr

(Sigma-Aldrich Germany) and 10 mM NH4Cl (Labsynth Brazil)

for 48 h. After incubation, a portion of the cells was centrifuged

and suspended in 1 M NaOH (Labsynth Brazil). The other

portion was maintained in PBS (8 g/L NaCl, 0.20 g/L KCl,

1.15 g/L Na2HPO4, and 0.2 g/L KH2PO4) for protein quanti-

fication. Both aliquots were lysed in a Branson Sonifier 450 (USA)
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at 20 W for 30 sec. The melanin was quantified by measuring the

absorption at 470 nm in a Tecan Infinite 200M plate reader using

a standard curve for commercial melanin (Sigma Aldrich

Germany) [30]. The total protein content was determined using

the Bradford method [31]. Melanin is expressed as mg of melanin/

mg of protein.

Comet assay
Comet assays were performed according to optimized protocols

[32,33]. B16-F10 cells were plated at 16105 cells.mL21 in culture

medium. Twenty-four hours after seeding, the cells were treated

with 0.5 mM Tyr (Sigma-Aldrich, Germany) and 10 mM NH4Cl

(Labsynth, Brazil) for 48 h. After incubation, the cells were

irradiated in PBS (8 g/L NaCl, 0.20 g/L KCl, 1.15 g/L

Na2HPO4, and 0.2 g/L KH2PO4) using 36 J.cm22 or 6 J.cm22

of visible light. We mixed 30 ml of a 16105 cell suspension with

100 ml of agarose (Sigma USA) (0.5% concentration in PBS) and

distributed the mixture on slides that were pre-coated with agarose

(Sigma USA) (1.5% concentration in PBS) and incubated on ice.

After solidifying, the cells were lysed in the dark using a high-salt

alkaline buffer (0.5 M NaCl, 0.1 M EDTA, 0.01 M Tris, and 1%

Triton X-100, pH 10). For samples irradiated with 36 J.cm22 or 6

J.cm22, the slides were placed in electrophoresis buffer (0.3 M

NaOH and 1 mM EDTA, pH 13, cooled in a refrigerator) in the

dark for 30 min. Electrophoresis was performed in a cold-storage

room, in the dark, using a power supply (ESP 301; GE USA) with

the same buffer for 30 min at 25 V. After electrophoresis, the

slides were neutralized using 0.4 M Tris at pH 7.5 and fixed in

ethanol. In the protocol used to evaluate the direct DNA damage

from melanin photosensitization, the cells were treated with

6 J.cm22 of visible light, and before electrophoresis, the slides were

treated with 0.2 U of Fpg or Endo III enzymes (Sigma-Aldrich,

USA) in buffer (0.1 M KCl, 0.5 mM Na2EDTA, 40 mM HEPES

and 0.2 mg/mL BSA at pH 8.0) for 30 minutes at 37uC.

Subsequently, the DNA was stained with ethidium bromide

(10 mg.mL21), excited at 515 nm and observed using a fluores-

cence microscope (Olympus BH-2, USA) [34].

Figure 1. 1O2 generation frommelanin. (A) 1O2 decay from a eumelanin solution (0.04 g.L21) in acetonitrile, pD= 10 with excitation at either 355
or 532 nm. The 1O2 decay lifetimes were the same under both conditions (,17 ms, which is the lifetime expected for a mixture of acetonitrile and
water) [18]. The insert shows the near infrared emission spectra after exciting a eumelanin solution at 532 nm and 355 nm in the absence of azide
(continuous lines) and in the presence of 3 mM azide (dashed flat line); for the excitation pulses at both 355 nm and 532 nm, we used the following
parameters: 5 ns, 10 pulses/s, and 1 mJ/pulse. (B) An integral of the emission spectra from pheomelanin (OD= 1.02) and eumelanin (OD=0.97)
solutions in acetonitrile immediately following dissolution (dark) and after 60 min of irradiation with visible light (light dose of 12 J.cm22). (C)
Absorption as a function of irradiation time for pheomelanin (N) and eumelanin (&) solutions in acetonitrile.
doi:10.1371/journal.pone.0113266.g001
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1O2 generation
The B16-F10 cells were seeded in six-well plates (26105

cells.mL21), and after 24 h, they were treated with 0.5 mM Tyr

(Sigma-Aldrich, Germany) and 10 mM NH4Cl (Labsynth, Brazil)

for 48 h. The cells were washed in PBS (8 g/L NaCl, 0.20 g/L

KCl, 1.15 g/L Na2HPO4, and 0.2 g/L KH2PO4), removed from

the plates using a cell scraper and resuspended in D2O saline

solution. We obtained 1O2 emission spectra by measuring the

emission intensities from 1180 to 1360 nm with 1- to 5-nm steps

using the equipment described above.

Statistical analysis
The experiments were performed with least as three indepen-

dent repetitions. The statistical analyses were assessed using

Student’s t test and Microcal Origin software (version 7.0); P,0.05

was considered statistically significant.

Results

The excitation of melanin with either UVA (355 nm) or visible

(532 nm) light generated the characteristic 1O2 NIR emission

spectra with a maximum centered at 1270 nm, which is a

fingerprint of the O2 (a1Dg) { O2(X
3
Sg2) transition (Fig. 1).

Sodium azide suppression confirmed this assignment (Fig. 1B,

insert) [18,19]. The emission intensity was stronger after melanin

was excited by UVA than after excitation by visible light, but this

difference is due to the greater melanin absorption at 355

compared with that at 532 nm; thus, the 1O2 generation efficiency

does not vary depending on source of irradiation (UVA or visible).

Furthermore, the 1O2 emission from pheomelanin was 30%

more intense than that from eumelanin (Fig. 1B), and visible light

irradiation substantially decreased the absorption (Fig. 1C) and the

generation of 1O2 by eumelanin (Fig. 1B); in contrast, the decrease

(,7%) in 1O2 generation by pheomelanin was substantially

smaller (Fig. 1B). The chemical reaction underlying eumelanin

photobleaching is the addition of 1O2 to the double bond at the C3

of the indole group with the consequent hydroperoxide formation

[18]. This type of photoproduct was not detected from the

pheomelanin photolysis.

To understand the potential effects of melanin photosensitiza-

tion on epithelial cells, we compared the UVB and visible light

photosensitivity using cell lines that express different amounts of

melanin (Fig. 2). The irradiation doses were selected to mimic the

exposure of an individual to ,10 minutes of a sunny day in Brazil.

Notably, the cells expressing more melanin had a higher survival

rate after they were challenged with UVB, which is consistent with

previous results [30]. However, the darker cells suffered from high

phototoxicity from visible irradiation (Fig. 2), providing strong

evidence that the phototoxicity from visible irradiation is related to

the amount of melanin.

We then tested the visible light toxicity in two melanocompetent

cell lines (B16-F10 and human Caucasian melanocytes) under two

different melanin production regimens (Fig. 3; i.e., basal level or

control (CT) and induced melanogenesis (M++++)) [30]. Melano-

cytes in a culture clearly differ from skin melanocytes; thus, this

system is a well-known, good experimental model for testing the

cellular response to environmental challenges [35].

UVB exposure reduced the viability by 40% in B16-F10 CT

(left), while pigmented cells (M++++, right) showed only a ,9%

reduction (Fig. 3). Therefore, the higher melanin content protect-

ed the pigmented cells from UVB damage, which is consistent with

previous data from the literature [30,36,37]. The effect of visible

light was opposite to the effect observed for UVB irradiation.

Furthermore, upon irradiation with visible light (36 J.cm22), the

control cells for both the Caucasian melanocytes (H36) and the

B16-F10 (M36) cells (left side, Fig. 3B) only showed a ,5%

decrease in cell viability. At 72 J.cm22, the viability decrease was

also small (i.e., 15%; M72, left side, Fig. 3B). However, when the

cells were pigmented and treated with 36 or 72 J.cm22 of visible

light, both cell lines exhibited substantial decreases in viability

(50% for H36, 25% for M36 and 40% for M72), which clearly

demonstrates that the presence of melanin increases visible light

phototoxicity. Moreover, the comet assay showed that the level of

DNA fragmentation was higher in the pigmented cells than in the

CT cells (Fig. 3B-images), which is consistent with increased visible

light phototoxicity for the increased level of intracellular melanin.

The mechanism of cell death was mainly necro-apoptosis;

substantial levels of propidium iodide were incorporated (cyto-

plasmic membrane damage, Fig. 3C), and caspase 3 was activated

(Fig. 3D).

To correlate the visible light phototoxicity with the melanin and
1O2 contents, we quantified the amount of 1O2 generated in cells by

measuring the near-infrared emission spectrum (1270 nm) after

excitationwith visible light (532 nm) [18] (Fig. 4A). The control cells

only exhibited background signals (Fig. 4A, insert). However, the

pigmented B16-F10 cells (M++++) showed the characteristic 1O2

spectra with a maximum intensity at approximately 1270 nm (the

darker line in the Fig. 4A insert). Thus, the higher intracellular

melanin content in the pigmented cells corresponded to more 1O2

generation and higher phototoxicity in response to visible irradiation

compared with those for the control cells. To establish a definitive

relationship between the 1O2 level and the cell toxicity, we also

generated this species in the intracellular environment using a clean
1O2 source (i.e., thermal decomposition of DHPNO2). As shown in

Fig. 4B, the cells treated with DHPNO2 exhibited a substantial

decrease inviability (,50%)comparedwith theviabilityofboth types

of control (cells without treatment and cells challengedwithDHPN),

which demonstrates that 1O2 plays a role in the reduced cell viability

(Fig. 4B). Furthermore, the generation of 1O2 slightly reduced the

viability of CT cells (49.7%) compared with that of M++++ cells

(53.3%). This difference was not statistically significant, possibly

because melanin can suppress 1O2. As reported earlier, melanin can

exertsboth typesof effects, but in thepresenceof sufficient visible light

illumination,melaninwill stimulate thegenerationof 1O2 [14,18,38].

The excitation of melanin using visible light generates 1O2 and,

consequently, the triplet species derived from melanin. Therefore,

cellular damage can occur by both a type I mechanism (direct

reaction between the triplet photosensitizer and biological targets,

typically through an electron transfer reaction) and a type II

mechanism (energy transfer reaction between the triplet photo-

sensitizer and oxygen-forming 1O2) [19]. Depending on the

severity of the damage, cell death will be the main outcome from

visible light exposure. Another potential outcome, which is

potentially more dangerous, is the generation of oxidative DNA

products, which could lead to mutagenic compound accumulation,

genomic instability and cancer [39].

Todemonstrate thedirect damage tonuclearDNAby themelanin

photosensitization that occurs in response to visible light irradiation,

we performed a comet assay under low-dose conditions (i.e., a light

dose that does not measurably decrease the cell viability for both CT

andM++++ cells (6 J.cm22)). After irradiation, the cells were treated

withendonucleaseenzymes (FpgandEndoIII) thatrecognizespecific

types of oxidative damage in DNA (Fig. 5). Fpg recognizes 8-

oxoguanine, 8-hydroxyguanine and formamidopyrimidine, and

Endo III recognizes strand breaks, abasic sites and additional

oxidative pyrimidine modifications [40]. For a control, the comet

assay was repeated in the absence of endonucleases. As expected,

under this mild condition, both the CT and pigmented cells in the
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Figure 2. The effects of UVB and visible light on cell viability. The cell viability (MTT) of HaCaT, SK-mel and B16-F10 cells maintained in the
dark (control) or irradiated with UVB (4.5 J.cm22) or visible (36 J.cm22) light. The color of the bars indicates the (qualitative) levels of melanin naturally
produced by each cell line. Other cell lines, which are not melanocompetent (Hela, J774), were also tested and behaved similarly to the HaCaT cells
(i.e., exhibited no phototoxicity from visible light at this dose (36 J.cm22)).
doi:10.1371/journal.pone.0113266.g002

Figure 3. The effects of UVB and visible light in B16-F10 and human melanocyte cells. Left side: (no extra pigmentation); right side: cells
subjected to the pigmentation protocol (M++++). (A) Viable cells (%) determined using the acridine orange fluorescence of B16-F10 cells that were
maintained in the dark or with 4.5 J.cm22 of UVB irradiation. The images are confocal optical microscopy images of the B16-F10 cells, CT (left) and
M++++ (right). (B) The viable cells (%) were determined using the MTT colorimetric assay in the dark or with 36 J.cm22 or 72 J.cm22 of visible
irradiation; murine B16-F10 cells are marked as either M36 or M72 depending on the light dose received. The human melanocytes (H36) only received
a light dose of 36 J.cm22. The images on the sides show comet assays performed using the CT and M++++ B16-F10 cells, 180 min after irradiation
with a light dose of 36 J.cm22. (C) Propidium iodide incorporation in B16-F10 CT and M++++ cells in the dark and after treatment with 72 J.cm22 of
visible light. The images on the sides show typical images used for quantifying the PI incorporation. (D) Caspase 3 activation in B16-F10 CT and
M++++ cells in the dark and after exposure to 72 J.cm22 of visible light. The images on the side are typical for quantifying caspase 3 activation. (*) p,
0.001.
doi:10.1371/journal.pone.0113266.g003
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presenceandabsenceofvisible lightdidnotshowdirect strandbreaks,

as indicated by the comet assay (data not shown, except for the

M++++ cells with visible light irradiation, Fig. 5D). The first three

controls (i.e., CT in the presence and absence of light andM++++ in

the absence of light) also showed no DNA fragmentation after

treatment with Fpg and Endo III (Fig. 5A–C). As mentioned above,

theM++++ cells treatedwith light in theabsenceof theseenzymesdid

notshowDNAfragmentation (Fig. 5D).However,whenFpgorEndo

IIIwere applied toM++++ cells,whichwere irradiatedwith 6 J.cm22

of visible light, the comet assay showed a considerable increase in the

number of strand breaks (Fig. 5 graph and images E–F), which were

absent in the controls (Fig. 5A–D). The presence of strand breaks

demonstrated that melanin photosensitization by visible irradiation

inducesdirectoxidativedamage tonuclearDNA.TheratioofFpg- to

Endo III-sensitive modifications indicate that oxidative damage in

DNA ismost likely due to both type II and type Imechanisms [32,33]

(Fig. 5, scheme).

Discussion

Although melanin is biosynthesized to protect against UVB, it

will damage skin cells in the presence of UVA and visible light. At

sufficiently high light doses, melanin causes extensive necro-

apoptotic cell death. The lower light doses were able to mimic the

potential chronic consequences of visible light exposure. Melanin

induces the formation of pre-mutagenic DNA lesions (Fpg- and

Endo III-sensitive modifications) (Fig. 4, scheme). We also showed

that pheomelanin is a more efficient photosensitizer than

eumelanin because it generates more 1O2 and better withstands

photobleaching (i.e., it continuously generates 1O2 for longer

periods than does eumelanin).

Therefore, in the presence of melanin, the effects of visible light

irradiation do not differ from those of UVA irradiation;

consequently, it should be considered with care, and further

investigations must be performed to evaluate whether it may be a

class I carcinogen [41]. These data indicate a causal relationship

between visible light irradiation and the development of genome

instability in melanocompetent cells and, consequently, the

development of melanoma [17,18,36] and the higher skin cancer

prevalence in individuals with red hair [15,37]. Other authors

have also concluded that visible light causes effects similar to those

of UVA, such as inflammation and ROS production [6,10,17].

The current beliefs regarding the protection of skin against

photoinduced damage are similar to those from 30 years ago but

with a shift in the problematic wavelength region. In the early

1980 s, photobiologists knew that UVA induced cellular responses

[2,3]. However, people were convinced sunbathing with UVB-

only protection was safe. The consequences of this strategy are felt

today: the resulting deeper skin tumors have a higher prevalence of

DNA mutations than those induced by UVA exposure [5,42].

Clearly, visible light affects skin health, but people are encouraged

to stay under the sun if they use sufficient amounts of ‘‘good

sunscreen’’ (i.e., sunscreens that provide effective protection

against UVA and UVB). This recommendation is clearly a

mistake because it ignores the effects of visible light, which

penetrates more deeply into skin than does UVB and UVA [43],

and because it disregards the effects of other wavelength regions,

such as the infrared region [44].

The toxicity of visible light raises concerns about other

situations in addition to the direct sun phototoxicity to the skin,

e.g., clinical protocols that use visible light, such as blue light

therapy, in jaundiced babies [45]; indoor tanning [46]; the

Figure 4. The effects of singlet oxygen on cells. (A) Phototoxicity and integrated emission spectra of the 1O2 that was generated upon
excitation at 532 nm as a function of intracellular melanin production (in mg melanin/mg of total protein, squares) in B16-F10 CT or M++++ cells.
Insert: 1O2 emission spectra from B16-F10 (CT and M++++) cells. The excitation wavelength was 532 nm 5-ns laser pulses at 10 pulses/s and 1 mJ/
pulse. (B) Chemical generation of 1O2 by thermal degradation of DHPNO2 in CT and M++++ cells. The data are represented as the means6SD of three
independent experiments, and the results are expressed as the percentage of viable cells compared with that in the control group. (*p,0.05 and
***p,0.001).
doi:10.1371/journal.pone.0113266.g004
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exposure of eyes to the toxicity of high levels of visible

environmental light [47].

In the presence of melanin, visible light generates singlet oxygen

and causes direct DNA damage. We hope this information will

guide health professionals and the general population to safer

interactions with the sun and, specifically, with visible light. We

also hope that this information encourages companies to develop

new sunscreen products that also provide protection against visible

radiation.

Supporting Information

Figure S1 Scheme of the melanin photosensitization

mechanisms that generate 1O2. This
1O2 can react with the

following to form several products: lipids mainly through an ene

reaction that forms hydroperoxide, nucleic acids via a guanine

residue to form 8-oxo-guanine, and amino acids (the scheme

shows the amino acids that are most reactive with 1O2). The right

side of the scheme shows the thermal decomposition of DHPNO2,

which is also used to generate 1O2 in the intracellular

environment.
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Figure 5. Melanin photosensitization with visible light damages nuclear DNA. (Left) Comet assay. (A) B16-F10 CT cells in the dark after
treatment with 0.2 U of Fpg (treatment with Endo III yielded the same results); (B) B16-F10 M++++ cells in the dark after treatment with 0.2 U of Fpg
(treatment with Endo III yielded the same results); (C) B16-F10 CT cells exposed to 6 J.cm22 of visible irradiation after treatment with 0.2 U of Fpg
(treatment with Endo III yielded the same results); (D) B16-F10 M++++ cells exposed to 6 J.cm22 of visible irradiation without enzymes; (E, F) the same
as D treated with 0.2 U of Endo III (E) and Fpg (F). The graphic on the left shows the quantification of the DNA fragmentation in B16-F10 cells under
conditions A through E. (Right) A schematic of melanin photosensitization via type I and type II mechanisms, leading to damage in several biological
targets, including the cell membrane and nuclear DNA. The DNA changes are indicated by using the main Fpg and Endo III recognition sites.
doi:10.1371/journal.pone.0113266.g005
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