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Abstract

Pharmaceutical residues in the environment have the potential to harm wildlife. A population’s fragility or an
animal’s secretive nature may preclude capture and the use of invasive/destructive sampling techniques that are
typically used in a risk assessment. Conventionally favoured matrices gathered opportunistically from carcasses
have a finite lifespan, thereby limiting the detection window. This multidisciplinary paper aims to promote the use of
non-invasive approaches and optimize use of even the most degraded carcasses. We highlight a selection of
promising alternative, unconventional and underutilized sample types that could be applied in environmental
monitoring efforts and wildlife forensic investigations. With a focus on non-steroidal anti-inflammatory drugs
(NSAIDs), now under increasing scrutiny in the freshwater and terrestrial environment, we first illustrate current
sampling practices and gaps in knowledge by summarizing exposure of: 1) aquatic organisms to urban effluent
discharged into waterways, and, 2) scavenging species to veterinary residues in livestock and other carrion. We
then consider the merits and limitations of a range of alternative environmentally robust sample options that offer a
broader detection interval for NSAIDs, with emphasis on hair, wool and feathers. The viability of eyes/ocular
material, bone matter, fecal matter, injection sites, ingesta/pellets and scavenging/coprophagous insects are also
discussed.

Keywords: Noninvasive monitoring; Environmental monitoring;
Wildlife forensics; Environmental forensics; NSAID detection in
wildlife; Sentinel species; Old World vultures; River otter; American
mink; Eyes/ocular material; Bone matter; Fecal matter; Injection sites;
Pellets; Scavenging insects; Coprophagous insects

Introduction
Certain species are routinely (or selectively) screened for exposure

to contaminants, often as part of broader environmental monitoring
efforts, to detect relevant patterns over time [1-9]. Basu et al. [10] have
outlined characteristics that define a sentinel species, including high
trophic status, restricted home range, widespread distribution and
ability to bio-accumulate pollutants. A focus on such species makes it
possible to obtain a snapshot of trophic and ecosystem health which
may reveal chronic and acute exposure patterns. Such monitoring also
provides archived resources that can be utilized to develop new, and
improve upon existing, sampling strategies and analytical methods to
maximize data gained [8]. Results can in turn be drawn from to detect,
and therefore potentially mitigate against, future threats to wildlife and

their habitats. While the application of wildlife forensics in this context
tends to be viewed as a largely reactive process, conducted after a
wildlife mortality event following exposure to an acute toxicant/toxin,
the breadth of forensic techniques available (most drawn from the
human realm), may further enable preventive measures and broaden
enforcement options. Effectively two sides of the same coin, forensic
methodologies and principles can be incorporated to strengthen
wildlife and environmental monitoring efforts.

Two factors may impact the quality and/or quantity of samples
recovered from wildlife for contaminant analysis: the degree of
invasiveness inherent in obtaining a given sample type and its
‘lifespan’. The use of invasive or destructive forms of contaminant
monitoring may be restricted or even forbidden if the focal species is
imperilled [11,12]. Sampling from a fragile population or attempting
to monitor elusive, secretive species will impose further constraints
[13-17]. Numerous ethical considerations regarding study designs/
sampling protocols and potential ramifications to individuals while
investigating a given population or species, are discussed elsewhere
[18,19]. A case study, with recommendations for partnership with

Journal of Forensic Research Richards NL, J Forensic Res 2014, 5:3 
DOI: 10.4172/2157-7145.1000228

Review Article Open Access

J Forensic Res
ISSN:2157-7145 JFR, an open access journal

Volume 5 • Issue 3 • 1000228

Jo
ur

na
l o

f Forensic Research

ISSN: 2157-7145

mailto:ngaio@workingdogsforconservation.org
mailto:ngaio.richards56@gmail.com


hunters and native communities in order to collect tissue samples and
monitor wildlife, is provided in Brook et al. [20]. Such opportunistic
approaches aside, it is our view that, on largely ethical grounds, non-
invasive and non-destructive approaches should be favoured whenever
possible, regardless of whether the focal species is threatened or
ubiquitous. Fortunately the breadth of non-invasive monitoring tools
available continues to expand. As we will discuss, their role in
generating relevant, comparable and high quality information is
progressively being recognized, as is the fact that non-invasive
approaches often increase sample sizes, and hence sample power,
relative to those obtained by conventional means, and they allow
monitoring of species not typically ‘accessible’ via other methods.

Where sampling entails opportunistic recovery of fresh carcasses,
soft tissue samples (e.g., kidney or liver), liquid samples (e.g., blood) or
ingesta (e.g., gastrointestinal tract, oesophageal or stomach contents)
are preferentially recovered for toxicological analysis [21-23]. When
acutely toxic compounds are ingested, recovery of the oesophageal
passage or stomach contents is especially important, since death is
generally so rapid that residues may not have had time to distribute
elsewhere [24]. The presence of toxic compounds in these samples also
provides tangible evidence of direct exposure, as when seeds coated
with a pesticide (and a repellent) were found in the crops of various
birds during field trials designed to test the repelling agent’s efficacy
[25]. While soft tissues and liquid samples are considered optimal, the
window of recovery and detection in these samples is often narrowed
by environmental conditions (e.g., by extreme heat and humidity
causing decay/desiccation), and by scavenger and insect activity, which
may hasten decomposition of both the samples themselves and the
residues incorporated therein [21]. Several authors of this paper (and
many of our colleagues) have repeatedly experienced the frustration of
being called to the scene of a mass wildlife mortality, painstakingly
collecting carcasses/samples for submission to a laboratory, but
obtaining only inconclusive toxicological results due to the level of
deterioration of the sample. When wildlife practitioners nonetheless
suspect exposure to a toxicant, or supplemental information comes to
light suggesting involvement of a different agent than initially
suspected, having the option of recovering additional, equally
representative samples for follow-up analyses is invaluable. In fact, this
can make the difference in terms of positively identifying cause of
death, and potentially securing a conviction or penalty. 

This review focuses largely on exposure to, and incorporation of,
non-steroidal anti-inflammatory drugs (NSAIDs), which are
increasingly sought and/or detected in the aquatic and terrestrial
environment, and at their interface [26-35]. However, the principles
discussed with respect to NSAIDs also apply to numerous other
common therapeutic agents including antimicrobials such as
antibiotics. Our aim is to highlight the tools and approaches currently
available and to improve the versatility and robustness of wildlife/
environmental monitoring and wildlife forensic investigations. Hence,
a review was conducted to identify promising and minimally explored
sample types:

In which NSAID (and other applicable) residues are rapidly
incorporated and remain stable;

That, in living animals, can be non-invasively and readily recovered;

That are more stable/resistant to environmental degradation, thus
increasing the number of truly ‘useable’ opportunistically recovered
carcasses.

Initially, two case studies are provided to highlight conventional
and novel monitoring/detection research that has assessed exposure in
two upper trophic level, sentinel organisms: river otters and vultures.
A discussion regarding alternative/unconventional matrices and
sampling strategies as they apply to these and other wildlife species
then follows.

Case Study 1: Chronic exposure of river otters to NSAIDs in
freshwater systems

Pharmaceutical compounds and their bioactive metabolites are
continually introduced into waterways and aquatic environments as
complex mixtures in human waste, via treated and untreated
municipal wastewater [36-39]. For example, hospital effluent
contributes heavily to the load that sewage treatment facilities
routinely discharge into rivers, and often reaches sewage networks
without preliminary treatment [40,41]. Numerous water treatment
systems and facilities are not designed for, and consequently do not
effectively filter/remove, many of the unanticipated combinations of
pharmaceutical compounds that continually flow through them
[33,37,42-45].

In rural environments, pharmaceuticals administered to poultry
and livestock may also contaminate groundwater [43] or enter surface
water directly [45] and through runoff, following application of treated
manure or slurry to land [46,47]. The broader issue of NSAID
administration to livestock as this pertains to aquatic ecosystem
contamination in rural/agricultural sectors and to wildlife exposure
risk is, however, outside the scope of this paper. Whether prescribed or
purchased over the counter, NSAIDs (e.g., diclofenac, ibuprofen,
ketoprofen, naproxen and salicylic acid) are among the primary agents
used to treat a range of animal and/or human musculoskeletal
ailments [29,33,48-52]. For over a decade, diclofenac and ibuprofen
have been amongst the most frequently detected pharmaceutically
active compounds in waterways worldwide [28,30,33, 53-56].

The uptake and metabolism of NSAIDs (primarily diclofenac, but
also ibuprofen) and potential repercussions (e.g., renal, respiratory and
reproductive) have already been described in numerous fish species
[33,57-62]. While acute exposure/toxicity appears unlikely in wild
populations [62], both chronic and ‘total mixture’ effects may instead
be significant [30,33,45,53,60]. There still remains a genuine dearth of
available studies regarding exposure of wildlife, especially piscivorous
species and other higher level predators, to NSAIDs. As top level
piscivorous predators, osprey (Pandion haliaetus), otter (Lutra sp.)
and mink are generally considered to be representative barometers of
aquatic/semi-aquatic ecosystem health [10, 64-71]. Interestingly, the
use of mink and otter as sentinels/bio-indicators or related sample
types, as both pertain to factors such as contaminant body burden,
have been called into question [72,73]. However, by and large, such
species are still considered to offer relevant information on local
contamination [63], especially when prior levels have not yet been
established (i.e., presence/absence). Other such concerns can largely be
remedied by awareness of inherent bias and potential confounding
effects during study design [74]. Careful consideration of differences
in tolerance and physiological responses across taxa (e.g., fish, birds
and mammals; [75] will also ensure that the extent and nature of
exposure observed in sentinel species can be inferred for their prey and
more vulnerable species.

For almost two decades, Simpson (and colleagues) have
opportunistically collected and necropsied the carcasses of river otters
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struck by vehicles in the United Kingdom as part of species-specific
and environmental monitoring efforts [70,76,77]. Based on their
assessment of renal lesions observed, these authors have suggested that
future studies investigating renal disease in otters should consider
exposure to nephrotoxic agents, such as NSAIDs [78]. This
recommendation was also based on a concurrent exploratory study
that investigated the viability of using hair to determine exposure to
diclofenac and ibuprofen in river otters [79]. In this study, hair was
opportunistically collected from a subset of the dead otters (n=28)
recovered for necropsy, and both NSAIDs were qualitatively detected.
Diclofenac was present on the external surface of 5 of the otter hair
samples, signifying passive exposure. After extraction of the hair,
diclofenac was also detected in 15 (54%) of the samples and ibuprofen
in 2 (7%), indicating historic ingestion. These findings, which suggest
external/dermal exposure within the aquatic medium, and, ingestive
exposure via the food chain and through drinking, warrant follow-up
investigation regarding the chronic exposure of otters and other
aquatic organisms (e.g., mink Mustela sp.) to NSAIDs and other
pharmaceuticals in waterways.

Like many mustelids, otters are notoriously elusive and in some
places their protected status prohibits or restricts capture and invasive
sampling (e.g., for blood collection [11]). This reinforces the case for
adopting innovative, non-invasive sampling and monitoring
techniques and strategies. While it is straightforward to collect a given
volume of hair from a carcass in-hand (e.g., 50 mg; [79]) minimally
invasive devices such as hair snares/traps may require a significant
investment of time for a relatively low yield of hair [11,17]. By
contrast, fecal matter can be recovered completely non-invasively and
with comparative ease [18]. Indeed, the fecal matter of otters (though
not, to our knowledge, of mink) has previously been analyzed for a
variety of environmental toxicants [68,81,82]. These samples also
contain genetic material which can be used to determine exposure on a
finer, i.e., individual, scale in relation to territory and habitat usage
[12,82]. The viability of fecal matter as a sample and a discussion of the
contaminants/toxicants previously analyzed therein are further
discussed later on. Additional and complimentary methods, such as
the use of specially trained detection dogs to optimize the recovery of
fecal samples, are also outlined there.

Case Study 2: Chronic and acute exposure of Old World
vultures to NSAIDs and related therapeutic agents in
livestock and other carrion

Well-recognized for their ability to dispose of potentially diseased
carcasses without themselves serving as propagating agents, vultures
perform a virtually irreplaceable ecosystem service in certain global
regions [83], i.e., in Africa and Asia. Interestingly, in a human and
wildlife forensic context, the signature markings left by vultures on
bones during feeding and the characteristic manner they disarticulate
cadaver/carcass limbs are increasingly being scrutinized [84,85]. Such
information is also useful when assessing the prior risk posed by a
carcass subsequently found to have been contaminated by a toxicant,
where ‘expected casualties’ (e.g., scavengers such as vultures) may,
however, be absent.

Ecologically speaking, vultures are broadly grouped as New World
(Cathartidae, found in the Americas) or Old World (Accipitridae, in
Europe, Asia and Africa). These two groups are not considered to
share close genetic ties, instead their similarities are attributed to
convergent evolution. Most Old World vulture species (e.g., Gyps and
Gypaetus) are currently listed as ‘Threatened’, some as ‘Critically

Endangered’ by the IUCN. The recent, almost complete collapse of
several globally significant Asian Gyps populations has now been
convincingly linked to residue exposure, through livestock carcasses,
to the NSAID diclofenac [86-88]. In contrast, in Africa, any current
veterinary or human NSAID usage and any potential repercussions of
this for vulture populations is likely masked, by deliberate and
secondary poisoning via pesticides and others [89,90]. Here, we
consider the status of Old World vulture populations in Asia and
Europe, where NSAID usage is known or suspected (respectively) to
have had adverse effects on populations. We also briefly discuss the
circumstances that led to observed vulture declines, as they pertain to
the prediction and identification of future threats, ongoing monitoring
and conservation efforts in both locations.

The situation on the Asian subcontinent
The role of the NSAID diclofenac in reducing populations of three

Gyps vulture species on the Indian subcontinent from many tens of
millions to <1-2 % of their original levels – the ‘Asian vulture crisis’,
has been extensively documented and discussed elsewhere [91]. In
summary, vultures were widely exposed to residues of diclofenac when
they fed on livestock carcasses disposed of in carcass dumps; a
common historical practice that artificially inflated Gyps populations,
especially in parts of Asia dominated by Hinduism, which considers
the cow as sacred and does not permit beef consumption. Vulture
consumption of contaminated tissues triggered the onset of fatal
visceral gout and, as vulture populations rapidly collapsed, the
ecological balance quickly shifted. Far less effective, vector-carrying
scavengers (e.g., feral dogs, rats) moved in to take their place. The
situation has been deemed so dire for vultures in Asia that small
groups of wild individuals have now been captured and housed at
special breeding facilities. These individuals will now act as the ‘last
resort’ genetic pool, should wild populations become essentially
extinct, and will hopefully be used to re-populate affected regions and
‘vulture safe zones’, if/when the risk of diclofenac (and other toxic
NSAID) exposure is eliminated, a long-term challenge. For further
details, see http://www.save-vultures.org/.

Diclofenac was considered the therapeutic agent of choice for
livestock owners until the onset of the vulture crisis (discovered in
2004), because of its rapid effects, low cost and widespread availability.
However, once conclusively implicated in the extensive vulture
mortality, measures were taken (in 2006) to withdraw it from use
within the veterinary sector and to identify an effective replacement
that would not harm vultures. Rigorous safety trials identified
meloxicam as a suitable alternative [92,93] and a campaign was then
mounted to work with government authorities and pharmaceutical
manufacturers. Banned (in India, Nepal and Pakistan) for veterinary
use since 2006, the perception of diclofenac’s efficacy nonetheless
persists. A 2011 survey regarding the effectiveness of the ban across
India highlighted that the drug could still be obtained – for human use
- from many pharmacies and was being illegally used on animals
[94,95]. Be that as it may, veterinary use of diclofenac appears to have
halved since 2006, and surveys conducted across India and Nepal
indicate that vulture populations seem to be stabilizing [88,94,95].
Further measures to remove human formulations of diclofenac from
the market, or restrict their availability, are ongoing and clearly
essential going forward.

The collection and analysis of tissues from carcasses available to
vultures across Asia - to determine compliance with the diclofenac ban
and assess the persisting exposure risk from diclofenac and other
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NSAIDs – is an integral ongoing activity [96-99]. In a series of
widespread surveys undertaken since 2005 across India [94,96,97,99]
detectable residues of diclofenac in cow/buffalo carcass liver tissues
have been found in 1 in 10 (decreasing to 1 in 20 more recently)
samples tested. In a controlled study to examine the half-life and body
clearance rate of a ‘normal’ veterinary dose (i.e., 1000 mg/kg by body
weight) of diclofenac in Indian cow and goat (Bos indicus and Capra
hircus) [96], residues of the drug were not detected in tissues (i.e.,
kidney, liver and intestine) after 7 days and 26 hours, respectively,
post-administration of a single intramuscular injection. Consequently,
livestock animals purchased for vulture restaurants and captive
facilities are now commonly held for at least one week prior to
slaughter to ensure that complete elimination of any existing tissue
diclofenac residues occurs [100]. The International SAVE (Saving
Asia’s Vultures from Extinction) research and conservation
consortium now hopes that several regions in Asia will be entirely free
of diclofenac soon (at the time of writing), and that vulture release
from captive stock could therefore commence by 2016 (http://
www.rspb.org.uk/supporting/campaigns/impact/vulture/nearlysaved.aspx).

The situation in the European union
In contrast to the previously described scenario regarding Gyps

populations on the Asian subcontinent, the situation within the
European Union (EU) is far more nuanced. Here - at least at the time
of writing - certain species appeared robust whereas others, such as the
bearded vulture (Gyps barbaetus) and Egyptian vulture (Neophron
percnopterus), are currently under threat [101,102]. It is noteworthy
that, whilst this review was being finalized, the precarious situation of
the Egyptian vulture was emerging, with possible remedial action
plans under discussion. Furthermore - again around the time of
finalizing the review - diclofenac was 'newly' registered for veterinary
use in some European countries (e.g., Spain and Italy). Regardless,
even if the presence and availability of veterinary agents including
NSAIDs in livestock carcasses were incidental in the EU, any
repercussions arising from exposure could place an additional,
unsustainable strain on such faltering populations.

A longstanding history of deliberate (and illegal) poisoning of
predators in hunting and farming districts lies at the heart of the
majority of vulture population declines across their European ranges
[103]. However, changes to both food resource availability and quality
are also relevant factors [104,105]. In 2000, a severe outbreak of BSE
(bovine spongiform encephalitis, or ‘mad cow disease’) forced the EU
to enact carcass control measures (regulation 1774/2002; [106,107] in
essence stipulating that fallen stock must be immediately (and ‘safely’)
disposed of. In Spain, which is a European stronghold for vultures, the
measures were not strictly adhered to in many rural areas partly due to
the remoteness and distances of these areas [106]. Livestock carcasses
are also managed by local Spanish authorities, in ‘muladares’ or
traditional carcass dumps/feeding stations, and there is concern that
these may be causing vultures to modify their feeding and foraging
behavior by serving as a focal feeding point [108].

The dual concern is that these sites likely predispose vultures to a
diet of intensively reared – and hence – heavily medicated stock, as
was the case on the Indian subcontinent, but the absolute safety of
these carcasses to vultures has not yet been satisfactorily confirmed,
either in Spain or other parts of Europe. Several studies [109-111],
now all retracted from publication, have suggested the occurrence of
widespread exposure of vultures to NSAIDs (e.g., flunixin and aspirin)

antimicrobials (e.g., enrofloxacin) at carcass dumps/feeding stations in
Spain.

The fact that these studies were all retracted after scrutiny is
unfortunate, but it does not invalidate this line of inquiry. In many
parts of western Europe (e.g., Spain, Portugal and France), a permit
can be obtained to provide cattle, goat, sheep, pig and horse carcasses
to both wild and captive vultures, at breeding and rehabilitation
facilities. Yet within the EU there is a concerning absence of clarity
regarding the prevalence of veterinary agents (NSAIDs and others) in
the animal carcasses provided for scavengers. Likewise, the potential
risks posed to vultures and other scavenging species, including
ecologically important insect assemblages remains virtually unstudied.
Generally speaking, far more information is urgently needed regarding
NSAIDs known or suspected to cause gout-related mortality (e.g.
carprofen, ibuprofen, ketoprofen, flunixin, phenylbutazone)
[112-114], no less so now that diclofenac has been registered for
veterinary use in some parts of Europe, especially Spain. This will
entail assessing the disposition of these agents in a relevant suite of
agricultural animals, conducting safety trials with vultures (or a
vulture cell line) and actively monitoring for residue levels in livestock
carcasses.

Two simultaneously important monitoring goals/actions will be to:

identify the agents/compounds of concern and create a targeted
screening list;

routinely screen intact livestock carcasses and partial components
(i.e., bait material) for presence/absence of veterinary agent residues
which may pose a risk to scavengers (whether or not other, more
‘prominent’ compounds are detected).

These efforts would be facilitated by the availability of a suitable
suite of analytical approaches and through the greater utilization of
novel, unconventional samples in which presence/absence of agents of
concern can be assessed. This would also strengthen datasets by
increasing sample size through the capacity to recover residues from
carcasses that would previously have been considered too degraded. By
carrying out such work, improved risk assessment tailored to multiple
scavenging species could be achieved, as discussed in Richards et al.
[80]. Relevant, environmentally robust samples, in which residues may
be ‘locked in’ once an individual is exposed to an agent (e.g., hair and
ocular material) are further discussed later on.

Sample Matrices for further Consideration in Wildlife
Monitoring and Wildlife Forensic Investigations

The previous section discussed two wildlife monitoring case studies,
and considered the use of primarily conventional strategies and more
novel approaches. In turn, we outlined certain priorities for further
research in these cases. In this section, several promising,
environmentally robust sample types are highlighted for further
consideration in wildlife monitoring and forensic efforts. This includes
a discussion of both the advantages and limitations of each proposed
sample matrix. The primary focus is on the incorporation of NSAIDs
into animal hair (or pelage), wool and feathers, which also have the
advantage that they can, in most cases, be collected non-invasively.
Fecal matter (often referred to as ‘scat’ in wildlife monitoring circles),
is also discussed as a non-invasive and, in some realms,
unconventional sample. This is followed by a brief discussion of other
matrices that have come to our attention in this context: ocular
material, bone matter, injection site tissues, cast pellets/ingesta/
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vomitus/gastric contents and scavenging insects. Several of the
aforementioned matrices may also be ingested by scavenging species
which include ecologically important insect assemblages, and as such
may represent an exposure hazard. This possibility is also explored
and discussed as it could be incorporated into a risk assessment when
appropriate.

Principles of growth, exposure and incorporation into
human hair as this applies to animal species

Initiated in the 1960s and 1970s to assess human exposure to heavy
metals [115], the analysis of hair has since gained increasing
acceptance as a viable alternative to that of blood and urine for drug
testing in forensic toxicology [115-117]. It has also been analyzed in
conjunction with pesticide intoxication cases [118,119]. The
fundamentals of hair analysis have been summarized elsewhere [e.g.,
120]. Here, we briefly reiterate the key principles of growth and
incorporation as they directly relate to detecting contaminant/
pharmaceutical exposure in wildlife.

First, hair is only actively growing while the lower follicle is
developing and a hair shaft is being produced (i.e., the anagen phase)
[121]. During this phase, the hair follicle is bathed and nourished by
the bloodstream and compound residues circulating therein can be
incorporated into the hair [122] and effectively locked into its
keratinized structure and along its length as it grows out [123]. The
predominant factors that influence a compound’s incorporation into
hair (e.g., affinity for binding to melanin, quantity and type of melanin
present and lipophilicity) are discussed elsewhere [119,124-126].
However, whilst the basic principles of incorporation apply to both
human and animal hair, some important differences exist. For
example, the color of animal hair varies among species and individuals
[134], to a much greater degree even than is the case with human hair
[125]. Since this factor can affect the uniformity and distribution of
incorporated residues, it should be fully factored into any quantitative
or even qualitative analyses conducted.

Once formed, hair is highly resistant to environmental degradation
[117]. For this reason, compounds that incorporate into hair can be
detected in this sample well after they would cease to be detected in
tissue, plasma and urine [115,123,127,128]. This is shown in Table 1,
which summarizes (in increasing order), the timeframe of detection
for drugs of abuse in selected human sample matrices.

Matrix Detection timeframe in hours or
daysa, b

Saliva 1 – 36 hrs

Blood / plasma 1 – 2

Urine 1 – 7

Sweat 1 – 14

Hair (cut) 7 – > 100

Hair (plucked) 1 – > 100

aBoumba et al. [116]
bDolan et al. [230]

Table 1: Typical timeframe of detection for drugs of abuse and their
metabolites in human biological samples.

As previously discussed, wildlife species may be exposed to acute
and/or chronic levels of NSAIDs (or other agents) in the environment
– either passively or via consumption of dosed or exposed prey/
carrion. In theory, residues could be incorporated into hair as early as
several hours after exposure [129]. However, that portion of the hair
may not reach the surface of the skin for days or weeks [130,131].
Plucking even a minimal sample of hair (e.g., equivalent to 10 mg)
right to the roots is only really feasible in the deceased because of the
level of discomfort involved and the strain this can place on the hair
itself. In summary, while hair may often be an unsuitable, impractical
or sub-optimal sample for identification of acute exposure to a
toxicant particularly if other conventional samples are available – it is
a particularly useful matrix for evaluating chronic exposure to
therapeutic levels of compounds (e.g., a veterinary profile) [132,133].

Applications of animal pelage
Three principal types of hair are found on domestic animals: 1)

guard, 2) fleece and 3) tactile hairs or vibrissae [134]. Guard hairs (e.g.,
mane and tail hair of horses, bristles of pigs) form the smooth outer
coat. Sheep’s wool, or fleece, lacks guard hairs and instead is made up
of long, fine hairs that are also soft and curly [135]. Tactile hairs,
which are thicker and usually longer than guard hairs, are most
commonly found on the face, around the lips and the eyes [135], and
have only been sampled on occasion [136]. Used as probes or ‘feelers’,
these long, stiff hairs with specialised innervations are sometimes
called ‘sinus hairs’ because a large, blood-filled sinus surrounds the
deeper portions of the follicle [135]. This connection to the
bloodstream suggests that residues would be incorporated into tactile
hairs, making them potentially suitable for residue analysis. However,
from an animal welfare perspective, these samples should only be
collected from carcasses.

It is also important to consider the rate at which hair grows. This
can vary among different animal breeds and on different parts of the
body [137,138]. In domestic animals, the duration of the anagen phase
is genetically determined for each hair type in a given species [139].
There is also evidence that hair growth varies with season [139,140].
Most adult fur-bearing animals have two seasoned molts per year
[135], where the light coat worn in the summer is replaced by a heavier
winter coat [134]. Cattle usually shed their coats twice a year and
individual follicles produce two or three hairs per year with a resting
stage between each [135]. Hair follicle activity, which influences
growth rate, is highest in summer and lowest in winter which suggests
that maximal sensitivity for drug detection should be in summer,
when incorporation would be most effective. Popot et al. (2001) [140]
recommend sampling hair from the neck and back of horses in the
autumn whilst pre-winter growth occurs to detect drugs administered
one month previously. It must also be noted, however, that hair is
replaced more frequently in animals that are housed outside [131].

Regardless of type or growth rate, animal hair can also be sampled
when an agent is known to have been administered topically. For
example, the organophosphorus insecticide, famphur, topically
applied to livestock to treat against ecto- and endo-parasites, persisted
on the hair of cattle for up to 100 days after treatment, and magpies
(Pica pica) were then poisoned when they ingested it [141]. Similar
incidents have been reported for eagles and other birds of prey that
have scavenged on livestock topically treated with other
organophosphorus insecticides [142]. Numerous NSAIDs and
veterinary agents are administered as a topical gel, though to our
knowledge the possibility that scavenging wildlife could be exposed via
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this route has not yet been explored. Species that come into contact
with pelage orally, either when collecting it for nesting purposes, or
when feeding on a carcass, may be exposed to residues of topically
applied agents. Similarly, our opportunistic analysis of otter hair
showed the viability of analyzing surface hair washes to identify
dermal exposure and refine the information obtained regarding
ongoing exposure to compounds of interest within a given
environment [79].

Sheep’s wool: atypical growth, incorporation and exposure
determination

Wool is considered an atypical sample matrix because it remains in
continuous anagen phase, in contrast to other types of animal pelage
[135]. External washes of sheep’s wool are routinely screened for
residues of veterinary agents as part of quality control, consumer
protection measures and the assessment of possible environmental
contamination [143,144]. Residues of potentially harmful compounds
may therefore be detected in wool long after they have been cleared
from the body. Sheep are administered a range of anti-nociceptive
compounds (e.g., the NSAID flunixin), antibiotics, anthelmintics and
endectocides (e.g., avermectins such as ivermectin), among others. For
practical reasons, sheep reared extensively (that is to say allowed to
roam and graze freely in generally remote locations), may be
administered control-release capsules (e.g., of ivermectin), which emit
a given amount on a daily basis [145]. Knowing when sheep were last
sheared (i.e., the first point at which new wool could begin
incorporating subsequent residues), would enable more accurate
estimation of whether and when a compound of interest was
administered.

Untreated wool has an oily feel due to the presence of lanolin. Also
known as wool ‘grease’ or wool ‘wax’, lanolin is a product of cutaneous
sebaceous glands [134]. Residues may be extruded onto the wool’s
surface in lanolin, where they are likely to remain unless washed off.
As such, oral contact with/consumption of wool may pose a risk to
species that use wool to line their nests. For this reason, a qualitative
analysis of wool was conducted by [80] and the NSAID flunixin was
detected on the exterior of the wool (through ‘washing’) and in
extracts of the wool itself. These results have also led to follow-up work
utilising quantitative analysis targeting NSAIDs and other compounds
of conservation concern (e.g., antimicrobials) of sheep’s wool
recovered from bearded vulture nests in Spain (Greeves et al.,
unpublished data).

Feathers: growth, exposure and incorporation, with an
emphasis on vultures and condors

The analysis of feathers during forensic investigations has primarily
consisted of physical examination in suspected cases of illegal
trafficking, possession of protected species/feathers, and following
wildlife mortality/debilitation events (http://www.fws.gov/lab/featheratlas/
index.php). This section focuses on how feather analysis offers relevant
information regarding the presence of contaminants in both the
terrestrial and aquatic environment. Like human hair, feather analysis
techniques were pioneered in the 1960s to investigate avian exposure
to heavy metals [146]. There is evidence that birds reduce their body
burden of heavy metals by offloading or excreting metals into their
growing feathers, particularly the primary and secondary feathers
[147,148]. A number of heavy metals have been detected in the
feathers of living and deceased raptor, seabird/shorebird and passerine
species [147,149-156]. Exposure to heavy metals can be direct, namely

through ingestion of contaminated material [147], or passive - via
atmospheric deposition onto the feathers [154]. For example, elevated
concentrations of lead have been detected in the feathers of vultures
and condors [157] and it was surmised that an observed interruption
in flight feather shedding (by turkey vultures (Cathartes aura)) over a
one year period may have been due to lead poisoning [158].

Feathers are inert epidermal structures, composed primarily of
keratin with formations resembling human hair. Arranged in a
complex pattern of tracts over the body of the bird [159], each feather
is unique in color, shape, size and pattern [157]. Like hair, the feather
cycle has a growth (or anagen) phase, which spans several days or
months, and the resting (or telogen) phase may span a few days to
approximately 14 months, depending upon the species and,
potentially, the feather type [160]. Feathers grow out of follicles
derived from the epithelial and dermal layers of the skin. At the base of
the feather follicle is the pulp, which is rich in blood vessels. A central
axial artery and numerous vessels and capillaries surround the
developing feather. As such, mature feathers are richly connected with
muscles, nerves and blood vessels in the dermis [160]. Residues of
ingested compounds are incorporated in much the same manner as
they are into hair: i.e., from the lower portion of the feather (the
calamus) during the growth phase, while the feather is connected to
the bloodstream through small blood vessels [146,161]. After the
feather is fully formed these vessels atrophy and residues cease to be
incorporated (the catagen phase) [162]. The feather then remains
attached to the follicle as an inert appendage, until it is shed.

There are five major types of feather: 1) contour/veined; 2) down/
body; 3) powder; 4) semiplumes; and 5) bristles. Contour or veined
feathers include the major flight feathers of the wing and of the tail as
well as those on the trunk [163]. Down feathers are radially symmetric,
fluffy, and mostly present on the ventral trunk to insulate the body
[163]. Powder feathers, which grow continuously and are never
molted [159], also provide insulation. Semiplumes are found beneath
contour feathers, and, like down feathers, are fluffy, lack interlocking
barbules and barbicels and may contribute to insulation [164]. Bristles,
which are stiff whisker-like projections, perform a number of
functions, including funnelling insects into the mouth [159]. In this
regard they can be compared to tactile hairs. The colors displayed in
avian plumage are due to structural adaptations in the feathers and to
the presence of a variety of pigments, including melanins [162]. This is
an important consideration when evaluating which feathers to analyze
quantitatively because compounds of interest may bind in different
amounts based on the concentration and type of these pigments. For a
detailed discussion of the principal pigments found in bird feathers see
Proctor and Lynch [159].

The rhythm of molt and rate of feather growth are species specific
traits, rapid for some and protracted for others. They can also vary
depending on whether a species or population is migratory or
sedentary [165]. The viability of feather analysis in determining
presence/absence of a given compound or substance in any particular
species must be assessed relative to these factors. When feathers are
rapidly replaced, there is a narrower timeframe during which growth
and exposure to a given compound may overlap. If this is the case,
analysis of feathers might not reveal that any (recent) exposure has in
fact taken place. However for other species, molt can be a more drawn
out process, with feather growth continuing over much of the year.
This is the pattern typical of larger and longer-lived species such as
seabirds and birds of prey, which are often (but not always) those most
vulnerable to environmental contaminations. For example, the growth
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of a single California condor (Gymnogyps californianus) feather may
take up to 4 months [157]. Snyder and colleagues (1987) [231] found
that the primary feathers of the California condor grew for a period of
between 105 and 120 days, corresponding to a growth rate of 4.5 to 6.0
mm/day. Houston (1975) [166] observed a vulture feather growth rate
of 4.7 mm/day in, which is much greater than the 0.23 mm/day
estimated for calf hair (Table 2).

It is not known whether a more elevated rate of growth is
accompanied by a correspondingly lower level of contaminant
incorporation; however, work conducted by Furness and colleagues
[152] suggests that this may indeed be the case. And for example, we
note that residue levels of methamphetamine (ng/mg) detected in
(comparatively slow-growing) human pubic hair were more than
double those in head hair [167].

Given the lengthy duration of their growth phase, both primary and
secondary feathers should be ideal samples to analyze for residues of a
number of compounds in vultures. However, obtaining a permit to
remove feathers from an imperilled species may not be allowed. In any
case, removing primary or secondary feathers in living birds is
unacceptable from an animal welfare perspective. By contrast, use of
body feathers is relatively non-invasive, does not disrupt flight, and
allows for collection from several locations on the body [157,159,162].
Powder feathers, which grow continuously and are never molted
[159], should also be investigated as potentially suitable for detecting
compounds of concern. Table 2 compares the growth rate of selected
vulture feathers, human and animal hair (and human nails, for
comparison).

Sample Species Monthly growth rate in mm / day

Primary feather California condor 4.5 – 6a

   

Primary feather Oriental white-backed vulture 4.7b

 

Hair (mane)

 

Horse
0.59c

0.77 – 0.8d

0.72e
 

Hair (flank) Calf 0.21 - 0.25f

Hair (shoulder) Domestic dog 0.49 – 0.96g

Hair Human 0.36h,i

Nail Human 0.10j

aSnyder et al. [231]
bHouston [166]
cWhittem et al. [232]
dPopot et al. [140]
eTracey et al. [233]
fGaillard et al. [131]
gGunaratram and Wilkinson [137]
hSachs and Raff [234]
iWennig [235]
jLin et al. [128]

Table 2: Monthly growth of selected keratinous matrices in various species

The use of any veterinary agent to augment body mass, or whose
consumption poses a risk to human health (e.g., anabolic steroids, β-
agonists and nitrofuran antibiotics) must be carefully monitored
[168,169]. Poultry feathers are routinely monitored as part of human
food safety testing procedures. Recently, residues of antimicrobials,
pharmaceuticals and arsenic were detected in (poultry) feather meal,
often sold as fertilizer and animal feed [170,171]. Relative to other
sampled tissues (e.g., plasma, fat, muscle and kidney), β-agonist
growth promoters such as clenbuterol and salbutamol were detected in
significantly higher concentrations in chicken feathers. They were also
detectable 43 days after withdrawal, leading the authors to recommend
the use of this matrix for detection of illegal administration [169].
Theoretically, the presence of an acutely toxic compound can be

detected in the feathers of wildlife species. The recovered feather(s)
must have been in the growth phase at the time of exposure, and a
sufficient interval must have passed between exposure and death for
residues to reach the bloodstream then be incorporated in the highly
vascularised pulp. For example, the growth period of primary and
secondary feathers of vultures is on the order of months, which greatly
exceeds the period during which toxic effects are normally manifested
to diclofenac (e.g., 36 - 58 hours between exposure of Gyps vultures to
diclofenac and death; [87]). That being the case, residues would
potentially be integrated at the root end of a growing feather. As this
remains unproven, it therefore remains necessary to establish the
timeframe between exposure and incorporation into feathers on a
compound-by-compound basis. Another difficulty lies in being able to
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identify the feathers where growth coincided with exposure in order to
harvest them for analysis. In some cases, feathers in growth phase can
be visibly distinguished [166], which means they could be
preferentially selected from carcasses for analysis and assessment of
recent exposure. Discarded vulture feathers have also been noted
around carcass remains [84,166].

Analysis of fecal matter
In a forensic/regulatory context, the fecal matter of food and racing

animals has been analyzed for a number of potentially harmful/illicitly
used compounds [172-175], including NSAIDs [176]. Residues of
veterinary drugs and pharmaceutical agents are increasingly being
sought in fecal matter as part of environmental and wildlife
monitoring efforts. In the aquatic environment, inputs of fecal matter
(e.g., as effluent from cattle feedlots) have been associated with
endocrine disruption and reproductive repercussions to fish species
[47]. From a terrestrial monitoring perspective, widespread use of
manuring (from human and animal biosolids) in agricultural systems
may be contributing to the spread of antibiotic resistance in wildlife
[177], and to an increase in heavy metal soil burdens in, and
bioavailability to, micro-organisms and plants [178] among others.

To our knowledge, neither the dung of often highly medicated
livestock nor the fecal matter of vultures – often observed by carcasses
and remains [84,166] - has been collected or analyzed for residues of
NSAIDs. However, ecologically important insect assemblages and
other already vulnerable species may be exposed to such residues, with
as yet unknown consequences (e.g., the Egyptian vulture, which is
coprophagous [179-180] and rapidly declining in some parts of its
range [181,182]. Residues of antiparasitic agents (e.g., endectocides
like ivermectin) in the dung of livestock animals can be harmful to a
number of coprophagous insects [183-186] that perform similar
ecosystem services to vultures, but on a less obvious microscale.
Consequently, the presence of NSAID residues and other relevant
harmful compounds - and their persistence in fecal matter - should be
better established. Sampling, preservation and study protocols
involving feces must reflect that the fecal matter itself and the
incorporated compounds could degrade or be modified over time due
to weathering by rain and temperature-induced degradation, among
other environmental factors [187].

Faced with such constraints, and the need for expediency, the use of
specialized tools such as detection dogs may be invaluable in terms of
rapidly recovering high quality samples for analysis. Detection dogs
are increasingly being used to non-invasively recover wildlife fecal
matter during conservation and monitoring studies – particularly
where rare and elusive species are involved [188,189]. This technique
has steadily gained recognition, especially given its inherent efficiency,
resulting in greater sample sizes [16,190]. In parallel, fecal matter has
become widely accepted as a viable and data rich sample containing a
wealth of genetic, reproductive, dietary and contaminant information
[15,16,18,191,192]. Though primarily utilized in terrestrial
environments, ‘scat dogs’ or ‘conservation detection dogs’ have also
been deployed to search for fecal matter in aquatic ecosystems,
[193,194]. Similarly, detection dogs were dispatched to find the fecal
matter of river otter and mink along riverways to assess presence/
absence of several classes of compounds, including NSAIDs, therein
(Working Dogs for Conservation, unpublished data). With the
exception of NSAIDs and other pharmaceuticals/veterinary agents,
numerous classes of contaminants have previously been sought and
detected in otter fecal matter [12,81,195-198].

Additional unconventional samples for consideration in
environmental, wildlife monitoring and wildlife forensic
investigations

This section considers four additional sample matrices and one
broad sample category that may be useful in wildlife forensic/
environmental monitoring efforts, and which we believe are worthy of
further consideration. In some cases, consumption of these
components may pose a secondary exposure risk to vultures and
possibly other scavenging species. As such, the analysis of these
samples may also provide important information for risk assessments
conducted to steer conservation efforts and mitigation measures.

Analysis of ocular material
Eyes and ocular material are analyzed as part of veterinary and

safety monitoring efforts. The iris, ciliary body, choroid and retinal
layers of the eye all contain melanin [199], identified as the binding
site for drugs in pigmented ocular tissues [200]. The retina has also
been described as a metabolic ‘dead-end’ tissue, where residues of
parent compounds and metabolites accumulate at high concentrations
and are not subject to the higher cellular turnover and clearance rates
of tissues such as the liver [199]. For example, while concentrations of
the ß–agonist clenbuterol decreased in the muscle and plasma of
broiler chickens and were no longer detectable between 24 and 48
hours after withdrawal, eyes (and feathers, as previously discussed)
still contained detectable residues 43 days later [169]. Cooper and
colleagues (2008) [168] also detected residues of nitrofuran in the eyes
(primarily in the retina) of broiler chickens fed a diet consisting of a
sub-therapeutic level of the antibiotic, with ocular concentrations of
the metabolite that were significantly higher than in muscle or liver.
Similarly, Cooper and Kennedy [199] noted that nitrofuran
metabolites accumulated in the retina of pigs fed therapeutic doses, at
concentrations an order of magnitude higher than those seen in edible
tissues (e.g., muscle). They concluded that the elevated retinal
concentrations and long depletion half-lives observed for all four of
the nitrofuran metabolites indicated these would be detectable at the
time of slaughter in the retinas of pigs fed a therapeutic dose at any
point in their lifetime [199]. While nitrofurans apparently show
lengthy depletion half-lives and very elevated residues in the retinas of
food animals, not all ß-agonists accumulate to the same extent [199].
Hence, the incorporation and persistence of different compounds
must be established in ocular material on a case-by-case basis. Given
that elevated retinal concentrations have typically been observed and
that retina is a sparse and difficult matrix to work with, the analysis of
whole eyeballs has also been recommended [199].

In terms of sampling, the eyes may be partially protected from
environmental decay by the eyelids and their recessed encasement
within the skull. However, eyes are frequently scavenged, for example
by Egyptian vultures [201] and by griffon vultures (Infante, Martinez
and Martín, Personal Communication). If, over time, there is delayed
clearance of residues and/or bio-concentration, consumption of this
matrix may prove harmful, particularly if an individual is exposed to
residues via other pathways or sources as well. Analysis of ocular
material could also be used to establish the longer-term veterinary
profile of livestock animals deposited in carcass dumps and at feeding
stations. This could be used to evaluate compliance with regulatory
frameworks and identify illegal administration of therapeutic agents,
even following a significant withdrawal period or after lengthy
exposure to environmental elements. Similarly, the eyes/ocular
material of selected aquatic organisms could be analysed to determine
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which suite of pharmaceutical and veterinary agents they have been
exposed to within waterways. If the analysis of eyes were shown to be
viable, then it would provide an additional sampling matrix to explore
exposure. This may require different sample preparation or analytical
screening methods (an avenue currently being explored collaboratively
by one of the authors of this review).

Analysis of bone, bone marrow and synovial fluid
Very few studies have investigated the presence of pharmaceutical

or veterinary agents in bone [23,202]. Yet numerous illicit drugs have
been detected as part of toxicological and forensic analysis [203-206].
Due to its lipid content and rich vascular supply, compounds present
in the bloodstream should readily diffuse into bone marrow [207],
especially lipophilic compounds such as NSAIDs [208]. Marrow is
housed inside the bone, and as such, any incorporated residues should
have some degree of protection against environmental decomposition
and contamination [202]. Noguchi et al. (1978) [207] analysed dried
bone marrow from a severely decomposed body. Dried lung, muscle
tissue and skeletal matter were the only matrices that remained
suitable for analysis. Similarly, Kojima and colleagues (1986) [209]
were able to detect methamphetamine and amphetamine in femoral
bone marrow from a skeletonised body that had been wrapped and
buried in a blanket for five years. As previously discussed, a number of
pharmaceutical compounds prescribed to treat inflammation –
including diclofenac which is highly protein-bound [210] - can also
come into contact with bone matter through the blood stream or the
synovial fluid. The synovium is a soft membrane that lines the non-
cartilaginous surfaces within the synovial joints. Synovial fluid fills the
cavities within the joints, which reduces friction between the cartilage
and cushions the joints during movement. Inflammation in the joints
increases the protein concentration in the synovial fluid. One would
therefore expect more albumin-bound compounds to be present in the
fluid of an inflamed joint than of a healthy joint. In humans, certain
compounds (e.g., diclofenac) are known to accumulate at the site of
inflammation, where they reach concentrations similar to those
observed in plasma [211]. Although the maximum concentration of
diclofenac in synovial fluid is lower than in plasma, its half-life is three
times greater [212]. As a result, it takes longer for diclofenac to be
cleared from the synovial fluid than from plasma, which means it
surrounds the bone for a longer period [212]. A detailed discussion of
caveats of compound residue incorporation into bones, and their
analysis, has been published [23].

Given that a group of vultures can strip a buffalo-sized carcass
completely, leaving only the skeleton, in a matter of hours [213], bone
may be one of the few samples left to collect for subsequent analysis. In
this regard, it is particularly important to determine how quickly
compound residues can be incorporated into bone, how long they
persist and whether or not they present an exposure threat to species
like the bearded vulture, whose diet consists predominately of bones
[102,214].

Analysis of injection sites for indications of recent exposure
During post-mortem investigation, cadavers are systematically

examined for the presence of irregularities, and tissues around
potential injection sites are routinely sampled for poisons and drug
analysis (http://www.tiaft.org/node/86). Drug residues (e.g., heroin) and
concentrations found in tissues at injection sites have been used to
identify whether rapid versus delayed death occurred and to establish
cause of death and foul play [215,216]. In addition to oral, topical and

rectal routes, NSAIDs may also be administered intramuscularly and
intravenously [217] sometimes to reduce gastric irritation [208]. In
some instances a withdrawal period has been stipulated to ensure safe
human consumption of animal products (e.g., milk/meat). Analysis of
injection sites can provide useful consumer safety information since
numerous compounds can accumulate at such sites, which are a first
and often repeated point of administration [218]. Indeed, almost 30%
of injection sites sampled and analyzed from rendered animals at a
slaughterhouse in Belgium contained residues of a veterinary product
above the established maximum residue limits [219]. Since there are
commonly a limited number of possible injection sites, it should be
relatively straightforward to determine and verify these locations for
sampling (of a field carcass, for example). Following injection,
pharmaceuticals rapidly diffuse to the bloodstream or the lymphatic
capillaries [218] and analysis of injection sites can provide information
about recently administered compounds. Alternatively, where a
carcass has been stripped clean by scavengers and only the hide
remains, likely injection sites can still be identified and a topical skin/
hair analysis can be conducted.

Recommended exploration of ingesta/vomitus/gastric
contents and pellets

Gastric contents are typically examined during post-mortem (http://
www.tiaft.org/node/86) to determine what/where the decedent last ate,
provide a greater sense of relevant activities and whereabouts prior to
death, and sometimes estimate time since death [220,221]. Stomach
contents can also be analyzed for poisons/toxicants [222]. In suspected
wildlife poisoning cases, the decedent’s last meal, and its provenance -
usually established via DNA testing - can be of huge significance.
Indeed, in southern Spain, the stomach contents and vomit of wildlife
have also been routinely analyzed in suspected wildlife poisoning cases
(Consejeria de Medio Ambiente, unpublished data). In wildlife,
regurgitation of ingested matter is often associated with exposure to an
acute poison and is particularly telling when observed in birds of prey
[24]. This fact and this sample matrix are both noteworthy because
debilitation or mortality arising from exposure to an acutely toxic
agent - typically a bait laced with poison - may overshadow the
presence of other relevant residues (e.g., of NSAIDs) in the bait itself
which would indicate chronic use/exposure. As such, we argue that
when available, ingesta/gastric contents (particularly bait material
recovered in the stomach of the deceased) should be routinely
screened for NSAIDs and other veterinary agents of concern, to begin
to gain a sense of local veterinary practices.

Numerous avian species regurgitate pellets (e.g., owls and vultures),
and the viability of this sample in toxicant/contaminant monitoring
should be further explored. For example, in 2006, an adult cinereous
vulture (Aegypius monachus) observed in a debilitated condition was
captured from the wild and submitted to a rehabilitation facility in
Spain. A blood sample revealed cholinesterase inhibition, symptomatic
of exposure to an organophosphorus or carbamate compound [24].
However, more specific information was required to treat the bird and
prepare a case against the offender(s). A pellet recovered with the
vulture tested positive for chlorfenvinphos, and this result helped to
secure a stiff penalty against a gamekeeper, while the vulture recovered
and was eventually released [223]. We therefore recommend
evaluating whether NSAIDs (and other veterinary agents of concern)
can be detected in pellets, particularly as a non-invasive means of
monitoring their presence within the agricultural environment.
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A note about scavenging and coprophagous insects: exposure
risks and viability as samples

As previously discussed, assemblages of scavenging insects perform
a vital ecosystem service by helping to break down carcasses [224].
Their activity affects the rate of carcass/cadaver decomposition, and
hence represents an important factor in estimating time since death
[224-227]. Illicit parent drug and/or metabolites have been detected in
insect larvae recovered from cadavers [21,227] and such exposure has
been shown to slow larval growth [225,227]. Similarly, residues of
carbofuran (and one of its metabolites) have been found in deceased
blue bottle flies (Calliphora vomitoria) recovered from an animal
carcass in Spain (Consejeria de Medio Ambiente, unpublished data).
We are unaware of any studies that have investigated the potential
exposure of scavenging insects to nonsteroidal anti-inflammatory
drugs, or possible secondary exposure/effects to the species that feed
on them. In contrast to scavenging insects, a substantial number of
studies have examined the repercussions of veterinary agents excreted
in livestock animal dung to coprophagous insect species [186,228]
which play a key role in maintaining pasture hygiene [229] and
productivity, and in cycling nutrients [183]. However, to our
knowledge, the potential exposure of these species to NSAIDs has not
yet been evaluated. Given the real possibility that NSAIDs may be
chronically present in livestock carcasses and dung available to
scavenging and coprophagous insects in agricultural/farming sectors,
we strongly recommend further investigation of exposure risks to both
species, in conjunction with dung analysis.

Conclusion
Special emphasis was placed on hair, wool and feathers with

additional consideration given to fecal matter, eyes and ocular
material, bone matter, injection sites, ingesta/gastric/contents/pellets
and scavenging/coprophagous insects. We also highlighted a number
of circumstances where the presence of a potentially chronically toxic
veterinary agent could be missed (e.g., when cause of death arises from
exposure to an acute toxin). Irrespective of cause of death, we
recommend that existing wildlife monitoring archives are more
routinely screened for pharmaceuticals of concern (i.e., NSAIDs) as
they often are for better recognized environmental contaminants (i.e.,
heavy metals, POPs).
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