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Metabolic-related gene pairs
signature analysis identifies
ABCA1 expression levels on
tumor-associated macrophages
as a prognostic biomarker in
primary IDHWT glioblastoma

Shiqun Wang1,2†, Lu Li3†, Shuguang Zuo4†, Lingkai Kong1†,
Jiwu Wei1* and Jie Dong1*

1Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu,
China, 2The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),
Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,
3Department of Nephrology, Affiliated Children’s Hospital of Zhejiang University, Hangzhou, Zhejiang,
China, 4Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Key Laboratory of Molecular Diagnosis
and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
Background: Although isocitrate dehydrogenase (IDH) mutation serves as a

prognostic signature for routine clinical management of glioma, nearly 90% of

glioblastomas (GBM) patients have a wild-type IDH genotype (IDHWT) and lack

reliable signatures to identify distinct entities.

Methods: To develop a robust prognostic signature for IDHWT GBM patients, we

retrospectively analyzed 4 public datasets of 377 primary frozen tumor tissue

transcriptome profiling and clinical follow-up data. Samples were divided into a

training dataset (204 samples) and a validation (173 samples) dataset. A prognostic

signature consisting of 21 metabolism-related gene pairs (MRGPs) was developed

based on the relative ranking of single-sample gene expression levels. GSEA and

immune subtype analyses were performed to reveal differences in biological

processes between MRGP risk groups. The single-cell RNA-seq dataset was used

to examine the expression distribution of each MRG constituting the signature in

tumor tissue subsets. Finally, the association of MRGs with tumor progression was

biologically validated in orthotopic GBM models.

Results: The metabolic signature remained an independent prognostic factor

(hazard ratio, 5.71 [3.542-9.218], P < 0.001) for stratifying patients into high- and

low-risk levels in terms of overall survival across subgroups with MGMTp

methylation statuses, expression subtypes, and chemo/ratio therapies.

Immune-related biological processes were significantly different between

MRGP risk groups. Compared with the low-risk group, the high-risk group
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was significantly enriched in humoral immune responses and phagocytosis

processes, and had more monocyte infiltration and less activated DC, NK, and

gd T cell infiltration. scRNA-seq dataset analysis identified that the expression

levels of 5 MRGs (ABCA1, HMOX1, MTHFD2, PIM1, and PTPRE) in TAMs increased

with metabolic risk. With tumor progression, the expression level of ABCA1 in

TAMs was positively correlated with the population of TAMs in tumor tissue.

Downregulation of ABCA1 levels can promote TAM polarization towards an

inflammatory phenotype and control tumor growth.

Conclusions: The metabolic signature is expected to be used in the

individualized management of primary IDHWT GBM patients.
KEYWORDS

primary glioblastoma, wild-type isocitrate dehydrogenase, metabolic-related gene
pairs, prognosis, tumor-associated macrophages, ABCA1
Highlights
1. The metabolic signature can individually assess the

prognosis of primary IDHWT GBM patients.

2. Immune and metabolic processes were integrated into the

molecular profiling descriptions of different GBM

entities.
Introduction

Since the WHO Classification of Central Nervous System

tumors was revised in 2016, the diagnosis of glioma has

developed into a new paradigm integrating molecular and

histological features (1, 2). The mutation status of isocitrate

dehydrogenase (IDH) is the primary biomarker for classifying

distinct glioma entities. More than 90% of glioblastoma (GBM,

WHO IV) patients have a wild-type IDH genotype (IDHWT),

however, they currently lack robust prognostic biomarkers to

further determine whether they benefit from chemoradiation

(3). Therefore, the identification of prognostic factors in IDHWT

GBM patients is needed.

Despite ongoing efforts to define the prognostic molecular

features of these patients (4–7), no biomarkers have been

incorporated into routine clinical practice to date. Limitations

are attributed to the lack of effective validation and overfitting of

small discovery datasets; or the difficulty of multiple datasets

merging to effectively eliminate batch effects from different

techniques, laboratories, and samples (8). However, the
02
elimination of batch effects is crucial for the robustness of the

prognostic signature. Recently, a few studies have proposed new

methods based on the relative ranking of gene expression levels

to eliminate the biological variability of merging multiple

datasets (9, 10).

Metabolic reprogramming is considered an emerging

hallmark of cancer (11). Alterations in metabolism-related

genes, such as IDH1 mutation, O6-methylguanine-DNA

methyltransferase gene (MGMT) promoter methylation, or

epidermal growth factor receptor (EGFR) amplification, are

frequent in glioma patients and are closely related to prognosis

(12–15). However, the prognostic performance of metabolic

features in IDHWT GBMs has not been adequately described.

Therefore, extracting tumor hallmarks helps to outline the

molecular features of patients and minimize data redundancy

for pairwise ranking of full-size gene sets.

In this study, we integrated gene expression profiles of tumor

tissue samples from multiple IDHWT GBM datasets, and

constructed and validated an individualized prognostic

signature based on their metabolism-related genes.
Materials and methods

In silico study and public datasets

In this study, we retrospectively analyzed the gene

expression profiles of tumor tissue samples from four public

glioblastoma (GBM) datasets, including one microarray dataset

from the Chinese Glioma Genome Atlas (CGGA), two RNA-seq

datasets from CGGA, and one RNA-seq dataset from The
frontiersin.org
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Cancer Genome Atlas (TCGA, Table S1). Only patients who met

the following criteria were included: a) histologically confirmed

grade IV glioma according to the WHO classification; b) fresh

frozen tissue sample; c) no history of neoadjuvant therapy or

other preoperative treatment; d) availability of isocitrate

dehydrogenase (IDH) mutation status; and e) availability of

data on overall survival, clinical annotation, genetics, and

treatment information (16–18). Patients in CGGA_301 that

overlapped with CGGA_325 and CGGA_693 (n = 24) were

removed. Overall, a total of 377 patients were selected and

divided into a training dataset (n = 204) and a validation

dataset (n = 173). Further clinical characteristics of patients in

each dataset are shown in Table S2. Details about the

preprocessing of gene expression profiles and sample
Frontiers in Immunology 03
preparation used to obtain these datasets can be found in the

Supplemental Methods or previous studies (19–21). The overall

design of this study is shown in Figure 1A. The diagnostic

accuracy study was based on the STARD guidelines and

approved by the Institutional Review Committee of

Nanjing University.
Development of a prognostic signature
based on single-sample MRGPs

To eliminate batch effects from different biological samples,

we performed a pairing operation on 802 common metabolism-
B

C

D

E

A

FIGURE 1

Construction and Evaluation of an Individualized Prognostic MRGPs Signature. (A)Overview of the study design. Four datasets were collected in the
study, including one TCGA GBM dataset and three CGGA GBM datasets. The transformed gene expressionmatrix and clinical characteristics that
removed nonconditional factors were integrated into a meta dataset and randomly divided into a training dataset (204 samples) and a validation
dataset (173 samples). A total of 802 metabolism-related genes shared in the training and validation datasets were extracted for pairwise ranking in a
single primary IDHWT GBM sample. A total of 135,026 gene pairs were generated for each sample to construct an individualized MRGP prognostic
model. Principal component analysis (B)was performed to evaluate batch effects of different pairwise transformed datasets. Each color represents a
dataset, and every point comes from a sample. LASSO regression was performed to construct a prognostic model based onMRGPs. (C) 10,000-fold
cross-validation for LASSO variable selection was plotted. Each red point indicates a l value. The vertical line on the left represents the minimum error,
and the vertical line on the right represents the maximum value of l. (D) LASSO coefficients of prognostic MRGPs. (E) The 1-year time-dependent ROC
curve for the MRGP signature in the training dataset. AUC represents the area under the curve.
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related genes (MRGs) for each sample. A new matrix of 135,026

MRG pairs (MRGPs) for 377 samples was generated. Details can

be found in the Supplemental Methods or previous studies (9,

10). Principal component analysis (PCA) was further used to

evaluate the platform or biological variability across

different datasets.

In the training dataset, prognostic MRGPs were identified by

using univariate Cox regression analysis to evaluate the

association between each MRGP and patients’ overall survival

(P < 0.001). A total of 581 prognostic MRGPs were selected to

build a prognostic model by using the Lasso Cox proportional

hazards regression model with 10-fold cross-validation (glmnet

package, version: 3.0-2) (22). Robustness assessment of the

metabolic signature against 1,000 randomizations of the

training dataset can be found in the Supplemental Methods. A

prognostic model including 21 MRGPs was constructed and

used to calculate the risk score for each patient. Details of the 21

MRGPs can be obtained in Table S4. The formula of the risk

score is as follows:

Risk score =o
n

i=1
Coefficienti �  Valuei

Finally, we defined the optimum cut-off value for stratifying

high- or low-risk groups by using a 1-year time-dependent

receiver operating characteristic (ROC) curve (survival ROC

package, version: 1.0.3).
Evaluation and validation of the single-
sample MRGPs signature

To determine whether the metabolic signature can be used as

an independent prognostic factor in the management of IDHWT

GBM, we performed uni- and multivariate Cox proportional

hazards analyses on patients in the training and validation

datasets (Table S5). Age, gender, MGMTp methylation status,

and risk were coded as continuous variables (e.g., female was

coded as 0, male as coded as 1; MGMTp methylation was coded

as 0, MGMTp unmethylation was coded as 1).

Furthermore, we evaluated the prognostic accuracy of our

MRGPs signature and one existing 9-gene IDHWT GBM

signature in a continuous form by using the concordance

index (C-index). Details about the C-index comparison can be

found in the Supplemental Methods. Kaplan–Meier curve

analysis was used to validate the overall survival stratification

of our MRGPs signature and 9-gene signature in the training

and validation datasets.

In the training and validation datasets, we utilized a Pearson

correlation heatmap (pheatmap, version: 1.0.12) to explore the

expression correlation of 38 MRGs that make up the prognostic

signature. Considering that the main population of tumor tissues

was tumor cells, we performed real-time PCR to identify the
Frontiers in Immunology 04
expression profile of 38 MRGs of two human IDHWT GBM cell

lines (U87-MG and U251-MG) and three human control cell

lines (HeLa S3, HEK293, and HA1800) and to mimic risk

decisions based on the metabolic risk score. Details about cell

lines, RNA isolation, PCR, and identification of IDH1 mutations

can be found in the Supplemental Methods.
Functional annotation and enrichment
analyses

To reveal the biological significance of the MRGPs signature,

we conducted Gene Ontology (GO) functional annotation

analysis of its component MRGs with the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

Bioinformatics Resources database (https://david.ncifcrf.gov/).

Significant GO biological processes (P < 0.05) were detected

(Table S6). In addition, the meta dataset was divided into high-

and low-risk groups according to MRGPs, and gene set

enrichment analysis (GSEA) was performed on these groups

(fgsea package, version: 1.12.0; C5.bp.v7.1; 10,000

permutations). Significantly enriched biological processes (P

value < 0.05) were examined.
Tumor purity and immune infiltration
analyses

Tumor purity possesses important clinical implications in

glioma classification (23). Estimation of STromal and Immune

cells in MAlignant Tumor tissues using Expression data

(ESTIMATE) analysis was performed to estimate differences in

tumor purity between MRGP risk groups in the meta dataset

(estimate package, version: 1.0.13). The ESTIMATE score was

considered to be negatively correlated with tumor purity.

Pearson correlation analysis was used to determine the

correlation between tumor purity and the expression levels of

38 MRGs in risk groups in the meta dataset.

We further explored the immune infiltration status of the

metabolic high- and low-risk groups by using xCell (https://xcell.

ucsf.edu/) and Cell-type Identification by Estimating Relative

Subsets of RNA Transcripts (CIBERSORT package, version:

1.03). Specifically, the normalized gene expression matrix in

the meta dataset was divided into high- and low-risk groups

based on the MRGPs signature. The relative abundances of

immune cells between MRGP risk groups were identified

(matrix at 1,000 permutations). The profile of immune

infiltration of different risk groups was displayed by the radar

chart (fmsb package, version: 0.7.1). Pearson correlation analysis

was used to determine the correlation between the relative

abundances of immune cells and the expression levels of 38

MRGs in risk groups in the meta dataset.
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Expression distribution of the 38 MRGs in
the single-cell RNA-seq dataset

A single-cell RNA-seq dataset for IDHWT GBM (GEO:

GSE131928) was downloaded from the Single Cell Portal

(https://singlecell.broadinstitute.org/). Data processing as

previously described (24). Briefly, use with arguments “-q –

phred33-quals -n 1 -e 99999999 -l 25 -I 1 -X 2000 -a -m 15 -S -p

6”. Expression values were calculated by RSEM v1.2.3 in paired-

end mode, using the parameter “–estimate-rspd –paired end

-sam -p 6”, from which TPM values for each gene were

extracted. For cells annotations treated with 10X, we used

CellRanger with default parameters. The dataset included

24131 cell sequencing data points from 28 tumor samples

(24). Scaled mean expression data (robust z score) were used

to identify the expression levels of 38 MRGs in 28 samples.

Furthermore, the risk level of each single-cell sequencing sample

was defined by our MRGP model (Figure S8). Four main cell

populations were found in all single cells, including

macrophages, malignancies, oligodendrocytes, and T cells. t-

distributed stochastic neighbor embedding (tSNE) was

performed to plot the expression distribution of all 38 MRGs

in the four populations. A heatmap was generated to show

changes in the expression levels of 38 MRGs from low risk to

high risk in the four populations.
MRGPs risk coefficient connection and
protein–protein interaction network

The Search Tool for the Retrival of Interacting Genes/

Proteins (STRING, https://www.string-db.org/) database was

used to identify the direct interaction network between 38

proteins. To reveal the inherent association of the metabolic

signature, we used Cytoscape (version 3.7.2) to draw a network

diagram for these MRGs.
Cell lines

The human glioblastoma (GBM) cell lines (U87-MG and

U251-MG), the human cervical carcinoma cell line (HeLa S3),

the human embryonic kidney cells 293 (HEK293), and human

normal astrocyte cell line (HA1800) were purchased from

ATCC, tested for mycoplasma contamination, and

authenticated by short tandem repeat (STR) analysis. The

murine GBM cell line GL261 was purchased from the China

Center for Type Culture Collection. TAMs were isolated by anti-

mouse F4/80 MicroBeads UltraPure (Miltenyi Biotec, 130-110-

443) from GL261 tumors. Bone marrow-derived macrophages

(BMDMs) were obtained by in vitro M-CSF differentiation of

C57 mouse bone marrow cells. All GBM cells were cultured in

DMEM/F12 medium (D8437, Sigma); HeLa S3, HEK293, and
Frontiers in Immunology 05
HA1800 cells were cultured in DMEM containing 4.5 g/L

glucose (Cat No. 11965-092, Gibco) supplemented with 10%

fetal bovine serum (Cat No. 10099-141, Gibco), 100 U/mL

penicillin, and 100 mg/mL streptomycin (Cat No. 15140-122,

Gibco). All cells were maintained at 37°C in a humidified

incubator with 5% CO2.
Animal studies

Animal care and handling procedures were carried out

following the NIH Guide for the Care and Use of Laboratory

Animals and were approved by the Institutional Review Board of

Nanjing University. For the intracranial GBM model, 6- to 8-

week-old male C57BL/6 mice and NOD-Prkdcscid Il2rgnull

(NCG) mice were purchased from Nanjing University Model

Animal Institute. As described in a previous study, the mice were

anesthetized, and dissociated GBM cells were implanted into

2.0 mm depth to the skull 1.0 mm anterior and 2.0 mm lateral to

bregma by using a stereotactic apparatus (25). GL261IDH-WT

cells (2 x 105 cells/2 ml PBS) were intracranially inoculated into

the caudate nucleus of C57BL/6 mice. U87-MGIDH-WT cells (5 x

105 cells/4 ml PBS) were injected into NCG mice. The survival

and neurological symptoms of the mice were monitored every

other day. To assess the mRNA expression levels of the 5 MRGs

of TAMs during tumor progression, orthotopic GL261IDH-WT-

bearing mice were sacrificed on days 7, 14, and 21, and tumor

tissues were collected for magnetic bead sorting of TAMs. The

isolated TAMs were further extracted for total RNA and the

expression of these genes was performed by qPCR. To assess the

expression levels of ABCA1 on TAMs during tumor progression,

orthotopic GL261IDH-WT- or U87-MGIDH-WT-bearing mice were

sacrificed on days 7, 14, and 21, and tumor tissues were collected

for FCM analysis. To assess the association between cholesterol

metabolism and ABCA1 expression levels in macrophages,

differentiated BMDMs were ex vivo treated with vehicle, 1 ug/

ml and 10 ug/ml cholesterol (Sigma, C4951) for 24 hours for

FCM analysis; orthotopic GL261IDH-WT-bearing mice were

sacrificed on days 17 to isolate TAMs, and these sorted TAMs

were ex vivo treated with vehicle (DMSO), 2 uM and 5 uM

lovastatin (Sigma, 75330-75-5) for 24 hours for FCM analysis.

To assess the therapeutic activity of modulating ABCA1

expression, GL261IDH-WT-Luc cells (2 x 105 cells/2 ml PBS) were
intracranially inoculated into the caudate nucleus of C57BL/6

mice. On day 7 after tumor inoculation, mice were given oral

gavage with vehicle (0.5% methylcellulose, 2% Tween-80 in

water) or 10 mg/kg lovastatin (NJDULY, A0157) daily for 14

days. At the end of dosing, tumor growth was examined by an In

Vivo Imaging System (IVIS, LB 983 NC100). To assess TAMs

polarization following modulation of ABCA1 expression, FCM

analysis of TAMs inflammatory factor expression was

performed in lovastatin-treated GL261IDH-WT-Luc tumors for

14 days as previously described.
frontiersin.org

https://singlecell.broadinstitute.org/
https://www.string-db.org/
https://doi.org/10.3389/fimmu.2022.869061
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.869061
Flow cytometry

For in vivo macrophage analysis, tumor tissue was collected

at set time points after tumor cell engraftment, digested, and

filtered through a 70 mm strainer. Dissociated cells were further

incubated with the following antibodies: anti-mouse CD16/CD32

(Multi Sciences, clone 2.4G2, Cat No. AM016-100), IgG2a, k
isotype ctrl (Biolegend, clone MOPC-173, Cat No. 400233),

anti-mouse ABCA1 (BIO-RAD, clone 5A1-1422, Cat No.

MCA2681), anti-mouse F4/80 (Biolegend, clone BM8, Cat No.

123110), anti-mouse\human CD11b CM1/70, Cat No. 101229),

anti-mouse CD86 (Biolegend, clone GL-1, Cat No. 105005),

anti-mouse CD206 (Biolegend, clone C068C2, Cat No.

141715), anti-mouse TNF-a (Biolegend, clone MP6-XT22, Cat

No. 506303), anti-mouse IFN-g (Biolegend, clone XMG1.2,

Cat No. 506303), anti-mouse Arginase 1 (Abbexa, Polyclonal,

Cat No. abx319179), and anti-mouse CD45 (Biolegend, clone 30-

F11, Cat No. 103112). Intracellular staining was done using

Fixation/Permeabilization kit (BD, 554722). Samples were

subjected to FCM by using BD FACS Calibur, BD Aria I, and

Beackman CytoFLEx. Data were analyzed with FlowJo (vX.0.7).
Statistical analysis

Statistical analyses were performed by using R software

(version: 3.6.3; https://www.r-project.org/) or GraphPad Prism

(v. 8.0.1). Continuous variables were compared by using

Student’s t test, the Mann–Whitney test, or the Wilcoxon

rank-sum test. Cumulative survival analyses were performed

using the Kaplan–Meier method, and the survival differences

were analyzed using the log-rank test (survival package, version:

3.1-12). In the univariate and multivariate analyses, the Wald

test was used to assess the association of the MRGP and

clinicopathologic factors with overall survival. Pearson

correlation tests were performed to assess the correlation of

MRGs with tumor purity or immune cell abundances (corrplot

package, version: 0.84).
Results

Development and definition of MRGPs
signature based on single IDHWT

GBM samples

In this retrospective study, a total of 377 IDHWT GBM

patients (236 female, 141 male) were selected from the TCGA

and CGGA databases according to the criteria shown in

Figure 1A. Patients were further randomly assigned to the

training dataset (n = 204) and validation dataset (n = 173). No

significant differences in clinical characteristics between the

training and validation datasets were observed (Table S2).
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Among the 3,679 MRGs we obtained in the KEGG database, a

total of 802 MRGs shared with all datasets were identified, and

135,026 MRGPs were further constructed for each sample.

Details about the elimination of platform bias and biological

variability can be found in the Supplementary Methods. The

PCA plot (Figure 1B) indicated that four datasets had no

significant clustering after normalization and pairing.

In the training dataset, we evaluated and obtained 581

MRGPs related to overall survival (OS). Then, on the basis of

these prognostic MRGPs, we performed Lasso Cox proportional

hazard regression to construct a prognostic signature consisting

of 21 MRGPs (Figures 1C, D). The 21 MRGPs signature was

composed of 38 unique MRGs. The coefficient values of 13

MRGPs out of 21 MRGPs (62%) were > 0.05 or < -0.05,

indicating higher prognostic power (Table S4). We further

assessed the robustness of the MRGPs signature, and its

frequency was significantly higher than the frequency obtained

by 1000 randomizations (P < 0.001, Supplemental Results). The

optimum cut-off value for MRGPs risk stratification was

identified to be -0.211 by using a 1-year time-dependent ROC

curve analysis (area under the curve [AUC] = 0.801; Figure 1E).
Validation of the MRGPs signature as an
independent prognostic factor

Next, we conducted a comprehensive evaluation of the

prognostic power of the MRGPs signature. The MRGP

signature significantly stratified patients into high- and low-

risk groups in terms of OS in the training and validation datasets

(Figures 2A, B), their four original datasets [TCGA (Figure 2C),

CGGA_693 (Figure 2D), CGGA_325 (Figure 2E), and

CGGA_301 (Figure 2F)], and an external independent

validation dataset [GSE7696 (Figure S1)]. We also found that

the survival of high-risk patients with upper quartile risk scores

was worse than that of low-risk patients with lower quartiles in

the training dataset (P < 0.001, Figure S2). Univariate Cox

proportional hazards analysis demonstrated that the metabolic

signature was a high-risk factor in the prognosis of patients

(hazard ratio [HR] ranged from 5.921 [95% CI, 3.703-9.470; P <

0.001] to 6.676 [95% CI, 4.526-9.849; P < 0.001]; Table S5). After

adjusting for clinical factors such as age, gender, and MGMTp

methylation status, we further determined that the metabolic

signature was an independent prognostic factor in multivariate

analysis. The HR ranged from 5.714 [95% CI, 3.542-9.218; P <

0.001] to 6.698 [95% CI, 4.478-10.018; P < 0.001]; Table S5).

Here, although the covariate of MGMTp methylation status in

multivariate analysis was not statistically significant (P = 0.533

[training]; P = 0.681 [validation]), the prognostic accuracy of the

MRGPs signature in the validation dataset was improved for

MGMTp nonmethylated patients (C-index = 0.801 [0.751] -

[0.852]) compared with MGMTp methylated patients (C-index

= 0.648 [0.564] - [0.733]; Figure S3). Furthermore, we also
frontiersin.org

https://www.r-project.org/
https://doi.org/10.3389/fimmu.2022.869061
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.869061
B

C D

E F

G H

A

FIGURE 2

MRGPs Signature Stratifies the Overall Survival of IDHWT GBM With Different MRGP Risks. Kaplan–Meier curves of overall survival in IDHWT GBM
patients in the MRGP risk groups. The overall survival of patients in the training (A) and validation (B) datasets was stratified by the MRGP risk
score. The overall survival of IDHWT GBM in TCGA (C), CGGA_693 (D), CGGA_325 (E), and CGGA_301 (F) datasets was stratified into high- and
low-risk groups based on MRGP risk score (P values are all < 0.001, log-rank test). (G) Identification of IDH1 gene status in human GBM cells. No
mutations were observed at the R132 site in the U87-MG and U251-MG cell lines. (H) Validation of the predictive efficacy of the MRGPI for
human GBM cell lines. RT–PCR assays were performed to identify the expression levels of 38 MRGs relative to GAPDH in GBM cell lines and the
control cell lines (HeLa S3, HEK293, and HA1800). The relative expression data between MRGs were used to calculate the risk level of cell lines
in vitro. The cut-off value is equal to -0.211. GBM cell risk scores were all greater than the cut-off value (U87-MG = 0.284, U251-MG = 0.204),
indicating high risk.
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evaluated the survival stratification efficacy of the MRGPs

signature in classical, mesenchymal, neural, and proneural

GBM subtypes in the training and validation datasets (Figure

S4). In addition to the neurotype subtype (P = 0.041 [training]; P

= 0.865 [validation]; C-index range from 0.500 to 0.650), our

signature achieved significant survival stratification efficiency

and accuracy for the other three subtypes (P ≤ 0.032 in training

and validation datasets; C-index range from 0.699 to 0.793).

Furthermore, we compared our MRGP signature with one

recently developed 9-gene IDHWT GBM biomarker in

continuous form, the C-index, in the training and validation

datasets (Figure S5). Our signature achieved superior

performance to that of the 9-gene signature on both the

training and validation datasets (mean C-index 0.73 vs. 0.57).

Given that malignant tumor cells account for the main

population of the sequenced tumor tissue samples and the

high expression correlation between 38 unique MRGs

composed of the MRGPs signature (Figure S6), we tried to

mimic and validate the reliability and specificity of the

prognostic model at the in vitro cell line level (Figures 2G, H).

Compared with the control cell lines (HeLa S3, HEK293, and

HA1800), our signature showed consistent risk prediction

results in two IDHWT GBM cell lines (risk score = 0.284 [U87-

MG]; risk score = 0.204 [U251-MG]).

Finally, we evaluated the survival stratification efficacy of the

signature on patients with postoperative chemotherapy

(temozolomide) and/or radiotherapy regimens in the

integrated meta dataset (Figure 3). The prognostic accuracy of

the MRGPs signature for patients with radiotherapy and

chemotherapy was superior to that of single treatment (C-

index: 0.767 [chem + radio] vs. 0.738 [chem only] or 0.679

[radio only]). In summary, our MRGP signature could soundly

predict the prognosis of patients with IDHWT GBM.
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Functional annotation of the
MRGPs signature

We conducted a GO annotation analysis on the 38 MRGs

composed of the signature in DAVID (Table S6). Most biological

processes were focused on phosphorylation (red underline) and

lipid metabolic processes (blue underline). Interestingly,

immune-related process macrophage differentiation was also

enriched (green underline). Thus, we further performed GSEA

on MRGPs risk groups in a meta dataset to explore potential

biological differences (Figure 4A). We found that the top 20 GO

biological process terms (P < 0.05) included not only

phosphorylation but also various immune-related processes,

such as humoral immune response and phagocytosis

processes, which was enriched in the high-risk group.
Differentiation of immune infiltrating
subgroups between different risk groups
based on the MRGPs signature

Given that our metabolic signature was closely related to

multiple immune processes, we tried to further discover the

association between risk groups or the corresponding 38 MRGs

and patient immune status. No significant difference in tumor

purity between risk groupswas observed (Figures 4B,C).Therewas

only a low negative correlation between the expression levels of the

6 MRGs and tumor purity in high-risk patients (Figure 4D). We

found a significant difference in the percentage of necrosis between

the risk groups in the bottom sections of the TCGAdataset (Figure

S7). The average level of necrosis in the high-risk groupwas~2-fold

that of the low-risk group (9.9% vs. 5.5%, P < 0.05), suggesting a

change in immune status.
B CA

FIGURE 3

Kaplan–Meier Overall Survival Curve Analysis of the Responses of IDHWT GBM With Different MRGP Risks to Chemotherapy/Radiotherapy.
Patients from the training and validation datasets were integrated into a meta-dataset. Patients receiving chemotherapy only (A), radiotherapy
only (B), and radiotherapy combined with chemotherapy (C) were further divided into high- and low-risk groups based on the MRGP score.
Kaplan–Meier overall survival curves were generated to show the risk stratification of the prognostic model. CI indicates the C-index, which was
used to evaluate the accuracy of the prognostic model in datasets. The performance of the MRGP model in the combination therapy group
(CI = 0.767, P < 0.001) was superior to that in the single therapy groups (Chem, CI = 0.738, P = 0.069; Radio, CI = 0.679, P < 0.001).
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To reveal immune status between risk groups defined by

MRGPs, we performed xCELL and CIBERSORT subtypes

analyses. The results indicated that the MRGPs signature

can profile the abundance of immune cell infiltration in

patients with different risks (Figures 4E, F) and showed that

MRGP-defined high-risk patients had more monocytes and

less activated DC and T cell gamma delta (gd T cell)
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infiltration in the TME (Figure 4G). For example, in

CIBERSORT analysis (Figure 4G lower panel), high-risk

patients had higher monocyte abundance than low-risk

patients (14.4% vs. 7.5% immune cells, P < 0.001). Studies

have shown that the cell density of glioma-infiltrating

microglia/macrophages (GAMs) is related to the degree of

malignancy of gliomas and gradually increases with
B

C

D
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G

A

FIGURE 4

Differences in Immune Infiltration Profiles Between Risk Groups Defined by Metabolic Signature. (A) GSEA of MRGP risk groups in the meta
dataset (P < 0.05). The top 20 GO biological processes are shown. Multiple GO biological processes related to immunology, including
immunoglobulin-mediated responses, were enriched in high-risk patients. (B, C) xCELL (B) and ESTIMATE (C) analyses of tumor purity between
MRGP risk groups in the meta dataset. No significant differences between risk groups were observed (Mann–Whitney test). (D) Pearson
correlation heatmaps of the expression of 38 MRGs and tumor purity in the risk groups of the meta-dataset. Value > 0 indicates that gene
expression is positively correlated with tumor purity, indicating less immune infiltration. *P < 0.05; **P < 0.01. (E) xCell heatmap of the
abundance of 64 immune and stroma cells in IDHWT GBM patients within risk groups in the meta dataset. (F) CIBERSORT analysis of the
abundance of 22 immune cells in IDHWT GBM patients within risk groups in the meta dataset. (G) Immune cell subtypes significantly different
between risk groups. Data is related to (E, F). # indicates the same immune subtype in xCell and CIBERSORT analyses. The difference between
risk groups was calculated by the Mann–Whitney test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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progression (26, 27). Interestingly, our study indicated that

although the macrophage family dominated the population of

infiltrating immune cells, there was no difference in

abundance between the two groups (Figures 4E–G).

To reveal the association of MRGPs signature with immune

subtypes, we performed Pearson correlation analysis on 38

MRGs and 22 immune cells (Figure S8). The heatmap

indicated that the expression level of MRGs had a significant

correlation with the abundance of immune cells. We found that

the MRGPs signature can also characterize the molecular

profile of immune cells with no significant differences in

abundance in different risk groups. For example, in low-risk

patients, M2 macrophage (31.4% vs. 31.7%) abundance was

positively correlated with the expression levels of PLA2G4C,

GALNT10, BDH2, AMT, SLC44A1, HSPA2, and FSTL3

(coefficient > 0.3), while in the high-risk group, there was no

obvious correlation.
Expression distribution of the 38 MRGs in
the single-cell RNA-seq dataset

Above, we determined the association between infiltrating

immune cells and the molecular profile of the MRGPs signature
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in different risk groups. However, their expression distribution

in tumor tissues is not yet clear. Thus, we tried to retrieve the

expression distribution of 38 MRGs in the IDHWT GBM single-

cell sequencing dataset and to calculate the risk score for each

sample according to the risk cut-off (Figure S9). Twenty

samples (71.4%) were defined as high risk. Four main cell

populations in tumor bulks were identified, including

macrophages, malignant cells, oligodendrocytes, and T cells.

The main population of tumor-infiltrating immune cells

shown in scRNA-seq data was consistent with our immune

subtype analysis, in which the main populations of immune

infiltrating cells in patients with IDHWT GBM were monocytes/

macrophages and T-cell families (Figure 4F). More expression

distribution for all 38 MRGs was identified in macrophages,

malignant cells, and oligodendrocytes and less in T cells

(Figure 5A). The distribution of each MRG is shown in

Figure 5B. Furthermore, according to the risk grouping, the

expression changes of 38 MRGs were identified (Figure 5C). In

macrophages, 5 MRGs (ABCA1, HMOX1, MTHFD2, PIM1,

and PTPRE) were identified as having significant expression

differences between the risk groups. The 4 MRGs (NUDT11,

PDGFC, PLOD2, and SLC44A1) in malignant cells. The 3

MRGs (BDH2, PLA2G4C, and PTPRE) in oligodendrocytes.

The 2 MRGs (JAK3 and PIM1) in T cells.
B C

D

A

FIGURE 5

Differences in the Expression Distribution of 38 MRGs Between Risk Groups in the Single-cell RNA-seq IDHWT GBM Dataset. The risk level of
each sample in the single-cell RNA-seq IDHWT GBM dataset (n = 28) was defined based on the relative expression distribution of the 38 MRGs
(Figure S8). The data indicated that four main cell types are present in GBM tissue: macrophages, malignancies, oligodendrocytes, and T cells.
(A) Overall expression distribution of signature genes (all 38 MRGs) in four main cell types. (B) Expression distribution of 38 MRGs in four main
cell types. (C) Expression alterations of 38 MRGs in four main cell types with increased metabolic risk. (D) Protein–protein interaction network of
the 38 MRGs. The thickness of the line indicates the level of the combined score (0.4~1.0). Red indicates MRGs that are differentially expressed
in macrophages between different risk groups (|△ robust z score| > 0.5, (C). Blue indicates the MRG in malignant cells. Green indicates the MRG
in oligodendrocytes. Purple indicates the MRG in T cells.
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The PPI network of the 38 MRGs demonstrated that 19 MRGs

constituted 3 potential interactive modules (Figure 5D). The 19MRGs

included 5 differentially expressed MRGs from macrophages (red

color), 1 MRG from malignant cells (blue color), 1 MRG from
Frontiers in Immunology 11
oligodendrocytes (green color), and 1 MRGs from T cells (purple

color). The in-silico study suggests that MRGPs-based survival

risk stratification is closely related to changes in the abundance and/

or molecular features of the monocyte/macrophage family.
B
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FIGURE 6

The Expression Level of ABCA1 in TAMs Positively Correlated with the Population of TAMs with IDHWT GBM Tumor Progression. (A) Experimental setup
to study the links between MRGs expression in macrophage and tumor progression. (B)Quantitative analysis of mRNA expression levels of 5 MRGs in
TAMs with tumor progression. C57 mice were intracranially inoculated with GL261 cells. On day 7, day 14 and day 21, mice were sacrificed and
collected tumor tissues. TAMs were isolated from tumors by anti-F4/80 microbeads and subjected to qPCR to detect mRNA expression (n = 3).
(C) Immunohistochemical analysis of the expression levels of ABCA1 in mouse tumor and normal brain tissue. (D, E) Representative flow cytometry
plots (D) and quantitative analysis (E) of TAMs and peripherally splenic monocytes/macrophage ABCA1 expression levels with tumor progression.
Orthotopic tumors were collected on days 7, 14 and 21 after tumor inoculation. n = 8. f-g: Quantitative analysis of TAM populations (F) and pearson
correlation analysis of TAM populations and TAM ABCA1 expression levels (G). Data is related to (D, E). The difference between risk groups was
calculated by the Mann–Whitney test (NS, no statistical significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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Biological validation of the correlation
between tumor-associated macrophage
ABCA1 expression and IDHWT

GBM progression

There is abundant clinical and experimental evidence that

strongly links increased numbers of TAMs with poor prognosis

(28). However, metabolism in TAMs and GBM tumorigenesis or

prognosis remain poorly understood. Thus, we performed

further biological validation to determine whether the 5 MRGs

identified in TAMs were associated with the development of

IDHWT GBMs (Figure 6A). We found that the mRNA

expression levels of ABCA1 and MTHFD2 genes in TAMs

increased significantly with tumor progression (Figure 6B).

Given that ABCA1 is among the gene pairs with the highest

risk factor compared to MTHFD2 (Table S4; MRGP-01 = 0.2196

vs. MRGP-07 = 0.0248), we further explored the potential

biological associations between ABCA1 and TAMs. In IHC of

brain tissue from GL261 tumor-bearing mice, we identified that

the expression level of ABCA1 in tumor tissue was higher than

that in normal brain tissue (Figure 6C). Furthermore, in the

distribution analysis of ABCA1 expression on tumor cells and

tumor-infiltrating immune cells, we found that the expression

level of ABCA1 in TAMs was significantly higher than that in

TILs and monocytes (Figure S10). And in two IDHWT GBM

models, we found that both the expression level of ABCA1 on

TAMs and the intratumoral population of TAMs increased with

tumors progression (Figures 6D–F) and showed a high positive

correlation between them (Figure 6G). These results

demonstrate that the expression level of ABCA1 on TAMs was

a risk factor for IDHWT GBMs.

Annotation analysis of MRGs indicated that ABCA1 was

related to lipid metabolism- related processes (Table S6).

ABCA1 uses cholesterol as its substrate to mediate

cholesterol efflux in the cellular lipid removal pathway (29).

Thus, we further investigated whether modulating cellular

cholesterol levels significantly alters ABCA1 expression in

macrophages and whether reducing ABCA1 expression levels

in TAMs affects tumor progression. In vitro cholesterol loading

assay showed that modulating cholesterol levels in

macrophages can significantly affect their ABCA1 levels

(Figure 7A). Lovastatin treatment in vitro and in vivo

reduced ABCA1 levels in TAMs (Figures 7B, D–F) and

shifted TAMs functional specialization from an inhibitory to

a pro-inflammatory phenotype (Figures 7C, G–J). Finally, to

determine whether ABCA1 can be an effective target for the

treatment of IDHWT GBMs, we performed a lovastatin

treatment experiment in the orthotopic GL261IDH1-WT-Luc

model and showed that this modulation of immune

metabolism can significantly control tumor progression

(Figures 7K–M). These results confirm the reliability of our

constructed metabolic signature and indicate a crucial role for
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macrophage lipid-related metabolism in maintaining

malignant progression.
Discussion

Patients with IDHWT GBM are at high risk of recurrence,

even with postoperative chemoradiotherapy. Intratumoral

heterogeneity allows patients to respond differently to the

same intervention (24, 30). Therefore, reliable prognostic

biomarkers are urgently needed to identify patients who may

benefit from additional therapy and who may be at risk of

recurrence. Significant research on prognostic molecular

signatures has led to breakthroughs in the estimation of

survival in GBM patients (4, 31–34), but their accuracy in the

IDHWT subgroup remains limited. In this study, we developed

an individualized prognostic signature of primary IDHWT GBM

based on 21 MRGPs, and validated its prognostic value in

multiple independent datasets. Our metabolic signature can

further stratify patients into distinct survival risk subgroups,

when considering other clinical variables (e.g., clinical care,

MGMTp methylation status, and expression subtypes). In the

combination index comparison, our metabolic signature

exhibited superior accuracy compared with another 9-gene

IDHWT GBM signature (31).

To identify reliable prognostic biomarkers for IDHWT

GBMs, we integrated gene expression profiles from four

datasets and employed a relative ranking method that is based

on gene expression levels and specifically designed to robustly

eliminate technical and sampling biases (9, 35). As such, our

metabolic signature can individually assess the prognosis of

IDHWT GBM and may be easily translated into the clinic.

Discovery of novel biomarkers associated with metabolic

reprogramming in GBM tumors might have important

implications for identifying potential molecular targets and

developing precision medicine (36–38). He et al. discovered

that glycolysis, gluconeogenesis and oxidative phosphorylation

processes differ significantly among GBM patients with different

prognoses (15). Patients with wild-type or mutant IDH GBMs

have distinct clinical features and survival differences. Under

hypoxic conditions, the IDH gene is highly activated and

mediates reductive glutamine to lipogenesis to maintain cell

proliferation under hypoxia (39, 40). Because the gene

expression profiles used in the study were derived from

IDHWT GBM tumor tissue samples, we did not observe

significant differences in glucose metabolism in the risk groups

defined by MRGPs. Similarly, most genes contained in the

metabolic signature were related to redox, phosphorylation,

and lipid metabolism. Increasing evidence indicates that

metabolic rewiring in the tumor microenvironment may be

responsible for changes in immune cell fate and function (41–

44). Sören et al. (45) discovered that blood-derived TAMs but
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not microglia show altered metabolism and preferentially

express immunosuppressive cytokines, which are associated

with significantly poorer prognosis in glioma patients. In the

present study, our signature also identified significant immune-

related processes, such as phagocytosis regulation. Consistently,

the abundance of monocytes in tumor tissue and the expression

of some MRGs changed significantly with increasing risk levels.

In the analysis of IDHWT GBM single-cell RNA-seq data, we

further determined that macrophage-related MRGs have closer

molecular interactions with other MRGs than other cells, and
Frontiers in Immunology 13
identified 5 MRGs (ABCA1, MTHFD2, HMOX1, PIM1, and

PTPRE) that were significantly changed in TAMs upon

switching from low to high risk. Therefore, our study also

provides a molecular profile integrating diverse biological

processes to characterize the possible prognostic status of

IDHWT GBM patients.

The heterogeneity of TAMs has long been recognized as

plasticity in response to different tumor microenvironments

(46); however, the underlying mechanisms remain unclear. A

recent study suggested that lipid accumulation and metabolism
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FIGURE 7

Pharmacological Inhibition of ABCA1 Enhances the Inflammatory Polarization of TAMs In Vivo.(A): Quantification of ABCA1 expression in
cholesterol-treated BMDMs ex vivo. BMDMs were treated with the indicated concentrations of cholesterol for 24 h. Cells were harvested and
FCM was performed to identify the expression level of ABCA1 (n = 3). (B, C): Quantification of ABCA1 expression (B) and CD86 and CD206
expression (C) in lovastatin-treated TAMs ex vivo. TAMs were treated with the indicated concentrations of lovastatin for 24 h. FCM was
performed to identify these molecular expressions. (D): Experimental setup of lovastatin-treated murine IDHWT GBM model. Eight mice per
group. (E, F): Representative flow cytometry plots (E) and quantification of ABCA1 expression levels in TAMs (F). (G–J): Representative flow
cytometry plots (G) and quantification of TAM functional polarization (H–J). ARG1 (H) were identified as anti-inflammatory macrophage
markers; IFN-g (I) and TNF-a (J) were identified as inflammatory macrophage markers. (K–M): Experimental setup (K) and tumor growth and
survival monitoring (L, M) of lovastatin-treated murine GL261IDH-WT-Luc model. Eight mice per group. The difference between risk groups was
calculated by the Mann–Whitney test and log-rank test (NS, no statistical significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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are required for TAM differentiation and activation (47). Our

study identified that as tumors progressed, the expression of

ABCA1 in TAMs was significantly increased, indicating that

cholesterol metabolism plays a vital role in the functional

polarization of TAMs. This finding is consistent with that of

Goossens et al, who showed that ovarian cancer cells promote

membrane cholesterol efflux in TAMs by upregulating ABCA1/

G1 expression (48). Our and other studies have shown that

cholesterol deletion can repolarize TAMs, promoting M2-to-M1

phenotypic conversion by downregulating ABCA1 expression

(49). These results further confirm the reliability of our

metabolic signature and may provide potential targets for

IDHWT GBM therapy.

Notably, although our findings indicate that the expression

level of ABCA1 on TAMs can serve as a robust biomarker to

assess the prognostic outcomes of GBMs, this study does have

some limitations. In addition to ABCA1, other MRGs whose

expression in TAMs increases significantly with increasing risk,

alone or in combination, may also be more important in IDHWT

GBM development and progression. However, it is very

challenging to characterize the protein expression levels of all

prognostic MRGs in TAMs and to determine the weight of each

MRG in prognostic stratification. Therefore, in this study, we

selected only the highest-risk MRG ABCA1 for a biological

proof-of-concept.

In summary, our MRGPs signature is a promising

prognostic biomarker for individualized management of

primary IDHWT GBMs. Diverse biological processes involving

metabolism and immunity in this study were integrated to

outline a more complete molecular profile of the tumor.
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