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Abstract - Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new 
inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. 
MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that 
MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, 
antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. 
Keywords: MgO nanoparticles; Synthesis; Antibacterial activity; Antibacterial Mechanism. 

 
 
 

INTRODUCTION 
 

Bacterial contamination continues to draw public 
attention. It is estimated that approximately 48 mil-
lion cases of pathogenic diseases occur in the United 
States (Morris 2011; Jin and He, 2011). Therefore, in 
order to solve this problem, it is highly necessary to 
develop effective antimicrobial agents to control the 
bacterial population (Kumar et al., 2008; Li et al., 
2006). Generally, antibacterial agents can be catego-
rized as organic or inorganic antibacterial agents. 
Organic antibacterial agents such as organic acids, 
essential oils, bacteriocins and enzymes have been 
widely studied. However, they have some shortcom-
ings, such as low resistance to processing conditions, 
which limit their applications. As a result, inorganic 
antibacterial agents have attracted much interest for 
bacterial control (Fang et al., 2006; Jung et al., 2008). 
The main advantages of inorganic antibacterial agents, 
compared to organic antibacterial agents, are the im-
proved stability under harsh processing conditions 
(Hewitt et al., 2001; Makhluf et al., 2005). Presently, 
some of the inorganic antibacterial materials, in 

particular inorganic metal oxides such as TiO2, ZnO, 
MgO and CaO, have been studied (Huang et al., 
2000; Sawai et al., 1995, 1998, 1999, 2000; Sawai, 
2003). Among the studied inorganic metal oxides, 
ZnO, MgO and CaO are of particular interest because 
they are not only stable under harsh process condi-
tions, but also generally regarded as safe materials to 
human beings (Stiomenov et al., 2002; Sundrarajan 
et al., 2012). Additionally, they have antimicrobial 
activity without photo-activation, compared to TiO2 
that requires photo-activation (Stiomenov et al., 2002; 
Fang et al., 2006; Jones et al., 2008; Roselli et al., 2003; 
Manna, 2012). 

Recently, nanosciences and nanotechnology has 
been leading to a technological revolution in the world, 
which is concerned with materials with significantly 
novel and improved physical, chemical and biological 
properties (Wani and Shah, 2012; Sundrarajan et al., 
2012). In this regard, nanoparticles are recognized as 
antibacterial agents due to their size, structure, and 
surface properties (Raghupathi et al., 2011). Thus, 
nanotechnology offers a way to improve the activity 
of inorganic antibacterial agents. Metal oxide nano-
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particles such as ZnO, MgO and CaO have been 
investigated as inorganic antibacterial agents (Roselli 
et al., 2003; Stoimenov et al., 2002; Shi et al., 2012; 
Tang et al., 2012).  

MgO is an important inorganic material with a 
wide band-gap (Al-Gaashani et al., 2012). It has been 
used in many applications such as catalysis, catalyst 
supports, toxic waste remediation, refractory materi-
als and adsorbents, additive in heavy fuel oils, re-
flecting and anti-reflecting coatings, superconducting 
and ferroelectric thin films as the substrate, super-
conductors and lithium ion batteries, etc (Ouraipryvan 
et al., 2009; Mirzaei and Davoodnia, 2012). In medi-
cine, MgO is used for the relief of heartburn, sore 
stomach, and for bone regeneration (Bertinetti et al., 
2009; Boubeta et al., 2010). Recently, MgO nano-
particles have shown promise for application in tumor 
treatment (Di et al., 2012). MgO nanoparticles also 
have considerable potential as an antibacterial agent. 
Therefore, in this review, the main synthesis meth-
ods, antibacterial activity and antibacterial mecha-
nisms of MgO nanoparticles are discussed. 
 
 

PREPARATION OF MgO NANOPARTICLES 
 

Many methods, including sol-gel method, hydro-
thermal method, mechanochemical method, vapor 
phase method, microemulsion method etc., have been 
used for the preparation of MgO nanoparticles. The 
morphology and sizes of MgO nanoparticles can be 
controlled by adjusting the processing conditions 
(Kumar and Kumar, 2008; Selvam et al., 2011). In 
this section, three methods, including the sol-gel 
method, hydrothermal method and microemulsion 
method, are mainly discussed. Some examples of the 
preparation of MgO nanoparticles are shown in 
Table 1. 
 
Sol-Gel Method 
 

For the sol-gel process method, a magnesium 
alkoxide Mg(OR)2 is hydrolyzed in an alcohol sol-
vent to yield the hydroxide, which is followed by 
hydrolysis, condensation, polymerization reactions 

and thermal dehydration (Lopez et al., 1998; Stark  
et al., 1996; Znaidi et al., 1996; Koper et al., 1997). 
The use of magnesium alkoxides such as magnesium 
methoxide and magnesium ethoxide has been dis-
cussed in a few reports (Bokhimi, 1995; Portillo et 
al., 1996; Jung et al., 2003 a, b; Stengl et al., 2003). 
Many factors such as temperature, time, pH, catalytic 
agent for gel formation, and the environmental con-
ditions can significantly affect the characteristics of 
the nanoparticles (Klabunde et al., 1996; Bokhimi   
et al., 1995). The advantages of the sol–gel method 
are simplicity, cost effectiveness, high yield of nano-
particles, and low reaction temperature (Jiu et al., 
2003; Bokhimi et al., 1999; Subramania et al., 2007).  

Stengl et al. (2004) described the preparation of 
magnesium hydroxide aerogels on the basis of the 
hydrolysis and condensation reactions of the alkox-
ide. Magnesium oxide aerogels with surface areas of 
~ 537 m2/g were obtained. Kim et al. (2005) studied 
the effect of acetic acid on the stability of the precur-
sor magnesium methoxide and crystallization behav-
ior of sol-gel-derived MgO nanoparticles. Kumar and 
Kumar (2008) synthesized MgO nanoparticles using 
magnesium nitrate and oxalic acid as precursors. This 
process involved gel formation, dehydration of 
magnesium oxalate, and decomposition of magne-
sium oxalate at different temperatures (500-1000 °C). 
MgO nanoparticles with average size 6.5-73.5 nm 
were obtained. 

However, the sol-gel method can usually cause 
the agglomeration of MgO nanoparticles, which 
hinders its wide application (Zhou et al., 2011; 
Ouraipryvan et al., 2009). Therefore, it is required to 
develop a surfactant-mediated synthesis method to 
overcome this limitation. Many polymeric surfactants 
have been used in the sol-gel method (Esmaeili et al., 
2009; Zhou et al., 2011; Meshkani and Rezaei, 2009, 
2010; Jin et al., 2009). Mastuli et al. (2012) prepared 
MgO nanoparticles using the sol-gel route assisted 
with cetyltrimethylammonium bromide (CTAB) as a 
surfactant to reduce the agglomeration of the parti-
cles. The results showed that the use of CTAB in the 
sol-gel method gave MgO nanoparticles with less 
agglomeration. CTAB could provide a good control 
of the morphology and size of MgO nanoparticles. 

 
Table 1: Examples of the preparation of MgO nanoparticles. 

 
Preparation method Precursors Particle Size/nm References 

Hydrothermal NH3.H2O, Mg(NO3)2 50-100 Jiu et al. (2001) 
Hydrothermal Na2CO3, Mg(NO3)2 30 Zhang (1999) 
Hydrothermal NH3.H2O, MgCl2 62 Zhu et al. (2001) 
Hydrothermal MgCl2, NaOH 15 Suzuki et al. (1992) 
Hydrothermal Urea, MgCl2 15-20 Chen et al. (2002) 

Sol-gel Mg(OC2H6)2, H2O 30 Alvarado et al. (2000) 
Sol-gel Mg(NO3)2, stearic acid 20-50 Xu (2006) 
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Hydrothermal Method 
 

Generally, the hydrothermal method may be one 
of the simplest methods to prepare MgO nanoparti-
cles. Typically, the magnesium salts and base solu-
tion are prepared in water. Afterwards, the magne-
sium salt solution is mixed with base solution by 
varying the molecular ratio of Mg2+/OH-. Finally, the 
precipitate is washed and calcined in an oven. Factors 
such as magnesium precursors, reactant solvents and 
reaction conditions play an important role in control-
ling the morphology and size of MgO nanoparticles 
(Sutradhar et al., 2011; Mel’gunov et al., 2003; Reddy 
et al., 2010; Fedorov et al., 2007). 

Huang et al. (2005) studied the controllable prepa-
ration of MgO nanoparticles by the hydrothermal 
method. The results showed that the particle size in-
creased with the increase of calcination temperature. 
Through adjusting the concentration of Mg(NO3)2, 
reaction temperature and calcination conditions, MgO 
nanoparticles with different particle sizes were ob-
tained. Camtakan et al. (2012) synthesized MgO 
nanoparticles by the hydrothermal method using 
MgCl2 and NaOH as precursors. The results revealed 
that the as-prepared MgO nanoparticles had an aver-
age diameter of about 24 nm. Recently, Sundrarajan 
et al. (2012) prepared MgO nanoparticles by the 
hydrothermal method using magnesium nitrate and 
sodium hydroxide as precursors and soluble starch as 
a stabilizing agent. MgO nanoparticles with different 
sizes could be obtained by controlling different calci-
nation temperature. Calcination temperature could 
significantly affect the morphology and size of MgO 
nanoparticles. Similarly, Krishnamoorthy et al. (2012) 
prepared MgO nanoparticles using magnesium nitrate 
and sodium hydroxide as precursors and cellulose as 
a stabilizing agent. The size of the as-prepared MgO 
nanoparticles was in the range from 10 to 30 nm.  

At present, in order to reduce reaction time and 
cost, many new processes have been developed for 

preparing MgO nanoparticles. The microwave-assisted 
hydrothermal method has been attracting significant 
attention because it has advantages such as the short 
reaction time, narrow size distribution, high purity of 
the prepared particles, and high yield rate of nano-
particles (Aslan and Geddes, 2009). Moreover, it is 
potentially more cost effective compared to conven-
tional synthesis methods (Nishioka et al., 2011a,b; 
Bhatte et al., 2012). In the microwave-assisted hydro-
thermal method, the precursor solution is irradiated 
by a microwave source. The efficient energy transfer 
results in a rapid heating process (Parida and Parija, 
2006; Moghaddam and Saeisian, 2007). Polyol sol-
vents such as ethylene glycol are extremely suitable 
for this method because of their relatively high 
dipole moment and loss factor. Takahashi (2007) re-
ported the preparation of cubeshaped MgO nanopar-
ticles by the microwave-assisted hydrothermal method. 
Recently, Selvam et al. (2011) synthesized MgO 
nanoparticles from magnesium and urea as precur-
sors by the microwave-assisted route. Compared to 
nanoparticles prepared by the conventional method, 
MgO nanoparticles obtained by the microwave-
assisted method had higher surface area (63.56 m2/g).  

Currently, the sonochemical method has been ex-
tensively used to generate nanoparticles (Gandhi     
et al., 2011). Ultrasonic waves can stimulate certain 
novel chemical processes such as nucleation, growth, 
and collapse of cavitation bubbles formed in the 
liquid through localized hot spots in the liquid of ex-
tremely high temperature (~ 2,700 °C) and pressure 
(~1,000 atm). Gandhi et al. (2011) obtained MgO 
nanoparticles with sizes from 5 to 10 nm through this 
ultrasound-assisted hydrothermal method. In our 
group, MgO nanoparticles were obtained by a soni-
cation-assisted hydrothermal method (Tang et al., 
2012; Tang and Shi, 2008). By controlling calcina-
tion conditions and reaction parameters, MgO nano-
particles with different sizes were obtained (Figs. 1 
and 2). 

 

 
 

Figure 1: Transmission electron microscopy (TEM) image of MgO nanoparticles (Tang et al., 2012) 
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Figure 2: X-Ray diffraction (XRD) of MgO nanoparticles (Tang et al., 2012) 

 
 
Micro-Emulsion Method 
 

There are some reports on the synthesis of MgO 
nanoparticles using surfactants. Khairallah and 
Glisenti (2007) reported that non-ionic surfactants 
like Brij-56 and TX-100 could produce particles with 
surface areas of 22 m2/g and 65 m2/g with crystallite 
sizes 16 and 18 nm, respectively. However, in these 
syntheses the precursor is usually heated along with 
the surfactant to get the oxide, which probably leads 
to the decrease in surface area. In order to solve this 
problem, the micro-emulsion method has been used 
(Ganguli et al., 2010; Eastoe et al., 2006; Ranjan et 
al., 2009; Vaidya et al., 2008). The size of the re-
verse micelles dispersed homogeneously in the micro- 
emulsion is in the nano-regime and thus they can be 
used as nano-reactors to synthesize nanomaterials. The 
morphology and size of the particles can be adjusted 
by the proper choice of the surfactant and a number 
of parameters, which include the concentration of 
water, surfactant, and nature of non-polar phase. 
Ganguly et al. (2011) synthesized MgO nanoparticles 
by the micro-emulsion method. The results showed 
that monodisperse and uniform MgO nanoparticles 
8-10 nm in size with a surface area ~ 108 m2/g were 
obtained. 

ANTIBACTERIAL ACTIVITY OF MgO 
NANOPARTICLES 

 
Many analytical methods have been used to evalu-

ate the antibacterial activity of MgO nanoparticles. 
One of the most used methods is the broth dilution 
method, followed by colony count, which plates 
serial culture broth dilutions containing bacteria and 
MgO nanoparticles incubated at proper conditions in 
suitable agar medium. Many reports have shown that 
the antibacterial activity of MgO nanoparticles is 
size-dependent. Huang et al. (2005) reported that 
antibacterial activity was increased with the decrease 
of the particle size of MgO. A relationship between 
the bactericidal efficacy against B. subtilis ATCC 
9372 and the particle size of nano-MgO was demon-
strated. For particles in the size range ~ 45-70 nm, the 
bactericidal efficacy of nano-MgO increased slowly 
with decreasing particle size. Below ~ 45 nm however, 
the bactericidal efficacy showed a much stronger 
dependence on particle size. Makhluf et al. (2005) 
demonstrated that small MgO nanoparticles had an 
efficient antibacterial activity towards Escherichia 
coli (E. coli) and Staphylococcus aureus (S. aureus). 
Small, electron-dense black dots could be observed 
in the cytoplasm of MgO-nanoparticle-treated bacteria 
(Fig. 3). In the E. coli case, a low-density area in the 
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middle of the cell was observed (Fig. 3d). These 
MgO particles within the cells were suggested to 
have been re-formed from individual MgO nano-
particles that penetrated the bacterial cell wall and 
cell membrane. The results revealed a clear size 
effect, where the amount of killed bacteria was 
strongly dependent on particle size. Sundrarajan et al. 
(2012) investigated the effect of MgO nanoparticles 
size on the antibacterial activity. The results indi-
cated that small-sized MgO nanoparticles had better 
antibacterial activities towards both gram positive (S. 
aureus) and gram negative (E. coli) bacteria. Fur-
thermore, MgO nanoparticles had more activity to-
wards gram positive bacteria compared to gram nega-
tive bacteria. Generally, the specific surface area of 
MgO nanoparticles increases as the size of the nano-
particles decreases. The increase in surface area 
determines the potential number of reactive groups on 
the particle surface, which are expected to show high 
antibacterial activity (Nel et al., 2006; Pal et al., 2007). 
 

 
Figure 3: The effect of MgO nanoparticles on the 
ultra-structure of S. aureus and E. coli cells (repro-
duced with permission from Makhluf et al., 2005) 
TEM of S. aureus untreated cells (a), and treated cells 
(b). E. coli untreated cells (c) and treated cells (d). 
Magnification 60 K. Scale bar: 0.5 μm. 
 

In addition to the particle size-dependent anti-
bacterial effect of MgO nanoparticles, some studies 
have indicated that MgO nanoparticles have dosage-
dependent antibacterial activity. Sawai (2003) re-
ported that the activity of MgO nanoparticles against 
E. coli increased with the increase of MgO concen-
tration. Jin and He (2011) found that higher MgO 
nanoparticle concentrations resulted in greater bacte-
rial inactivation. An approximate seven log unit 
reduction in E. coli O 157: H7 was achieved by an   
8 mg/mL MgO nanoparticle treatment at 24 h. At 7 h, 
the anti E. coli O157: H7 activity of MgO nanoparti-

cles was dependent on its concentration, as in the 
case of low inoculum levels. The treatment with 3 
mg/mL or higher MgO nanoparticles significantly 
reduced cell concentrations to undetectable levels 
after 24 h at room temperature, indicating 3 mg/mL 
MgO nanoparticles would be enough to kill all cells. 
Shrivastava et al. (2007) reported the preparation of 
silver nanoparticles in the range of 10-15 nm with 
increased stability and enhanced anti-bacterial po-
tency. The antibacterial effect was dose dependent. 
An et al. (2011) and Zhang et al. (2011) also found 
that high MgO nanoparticle concentrations resulted 
in greater bacterial inactivation. Many reports have 
indicated that MgO nanoparticles have better activity 
towards gram-positive bacteria than towards gram-
negative bacteria. The reason is probably due to the 
difference in cell membrane structure (Fig. 4). The 
cell wall of gram-positive bacteria (E. coli) consists 
primarily of thin layers of lipid A, lipopolysaccha-
ride, and peptidoglycan, but that of gram-negative 
bacteria S. aureus consists of only a peptidoglycan 
layer. Membrane functions, activity of enzymes as-
sociated with the membrane, and maintenance of cell 
integrity depend on the structure of the cell surface 
(Espitia et al., 2012). Therefore, E. coli shows a 
stronger resistance to MgO nanoparticles, compared 
to S. aureus (Yim et al., 2006). The findings are 
similar to the antibacterial activity of Ag nanoparti-
cles against gram-positive and gram-negative bacte-
ria. Yoon et al. (2007) observed that B. subtilis was 
more sensitive than E. coli to Ag nanoparticles, 
meaning that E. coli was more resistant to nanoparti-
cles than B. subtilis was. The lower sensitivities of E. 
coli as compared to B. subtilis was ascribed to the 
fact that the outer membrane of gram-negative bacteria 
such as E. coli is predominantly constructed from 
tightly packed lipopolysaccharide (LPS) molecules, 
which provide an effective barrier against Ag 
nanoparticles. 

Doping is a widely studied method for the modifi-
cation of nanoparticles (Lin et al., 2009; Yamamoto 
et al., 2000; Manna, 2012). Yamamoto et al. (2000) 
studied the change of antibacterial characteristics 
with the doping amount of ZnO in MgO-ZnO solid 
solution. The results showed that, with increasing 
doping amount of ZnO in MgO-ZnO solid solution, a 
decrease in the antibacterial activity against E. coli 
and S. aureus was observed. The pH in physiological 
saline at the powder concentration of 2.5 mg/mL 
showed an alkali region above 10.0, and decreased 
with the increase of ZnO amount in MgO-ZnO 
solution. The reason for the decrease in antibacterial 
activity may be the decrease of the stability of O2

- 
generated at the surface of the solid-solution and the 
decrease of pH value in the medium.  
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Figure 4: Membrane structure of gram-positive and gram-negative bacteria (repro-
duced with permission from Espitia et al., 2012).  

 
 
Avanzato et al. (2009) investigated the antibacte-

rial activity of magnesium oxide-germanium oxide 
composite powder. The prepared nano-composite 
powder showed good bactericidal activity toward 
both gram-negative (E. coli) as well as gram-positive 
bacteria (S. aureus), though they were more efficient 
against gram-positive bacteria. The results showed 
that nanocomposite powders were more effective 
against S. aureus than E. coli at lower concentrations. 
At higher concentrations (>5 mg/mL), the growth of 
bacteria was almost completely inhibited (>95 %) in 
both cases. The minimal inhibitory concentration 
(MIC) for S. aureus was found to be 0.05 mg/mL 
whereas that of E. coli was found to be 0.25 mg/mL. 
 
 

ANTIBACTERIAL MECHANISM OF MgO 
NANOPARTICLES 

 
The exact antibacterial mechanism of MgO nano-

particles is still unknown. A number of mechanisms, 
such as the formation of reactive oxygen species 
(ROS), the interaction of nanoparticles with bacteria, 
subsequently damaging the bacterial cell, and an 
alkaline effect have been proposed to explain the 
antibacterial mechanism of MgO nanoparticles. 
Several similar mechanisms have been proposed to 
explain the inhibitory effect of silver nanoparticles 
on bacteria. Silver has long been known to cause 
microbial inhibition. The antibacterial mechanisms 
of silver include induction of oxidative stress due to 
generation of ROS, which may cause the degradation 
of the membrane structure of the cell. Release of ions 
from the surface of nanoparticles has been reported 
to cause bacterial death due to binding to cell 
membrane (Emamifar et al., 2011; Kim et al., 2007). 

Many studies have indicated that the antibacterial 
mechanism of MgO nanoparticles is due to the for-
mation of ROS such as superoxide anion (O2

−) (Huang 
et al., 2005 a, b; Lin et al., 2005; Yamamoto et al., 
2010; Yamamoto et al., 2001). It has been reported 
that the increase of the surface area of MgO particles 
leads to an increase of the O2

− concentration in solu-
tion and thus results in a more effective destruction 
of the cell wall of the bacteria. However, when the 
particle size of MgO is below 15 nm, the aggregation 
effect becomes very significant due to the very high 
surface energy of the particles. The large size of 
aggregated MgO inhibits the interaction with bacte-
ria and particles so that the bactericidal efficiency 
becomes lower (Sawai et al., 2000; Yamamoto et al., 
2000). Hewitt et al. (2001) reported that the enhance-
ment of the antibacterial activity of MgO nanopow-
der against E. coli was due to the generation of a 
large amount of O2

− by the surface of MgO powder. 
Recently, Krishnamoorthy et al. (2012) evaluated the 
antibacterial activity of MgO nanoparticles against 
the gram-negative bacteria E. coli and Pseudomonas 
aeruginosa (P. aeruginosa), as well as the gram-
positive bacterium S. aureus. MgO nanoparticles ex-
hibited antibacterial activity with MIC of 500 μg/mL 
against E. coli and 1000 μg/mL for P. aeruginosa 
and S. aureus. It was suggested that the mechanism 
of the antibacterial activity of MgO nanoparticles may 
be lipid peroxidation and ROS due to the presence  
of defects of oxygen vacancy at the surface of the 
nanoparticles. 

The interaction of MgO nanoparticles with bacte-
ria, subsequently damaging the bacterial surface, has 
been proposed to explain the antibacterial activity of 
MgO nanoparticles. Stoimenov et al. (2002) sug-
gested that the cell death was caused by the electro-
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static interaction between the bacteria surface and 
MgO nanoparticles. Peter et al. (2002) and Makhluf 
et al. (2005) demonstrated that nano-MgO exhibited 
high activity against bacteria due to the interaction of 
particles and bacteria. It was found that nano-MgO 
particles could take up halogen gases due to the de-
fect nature of their surface and its positive charge, 
which resulted in a strong interaction with bacteria, 
which are negatively charged (Stoimenov et al., 
2002).  

The alkaline effect has been considered as an-
other primary factor in the antibacterial action of 
MgO nanoparticles (Sawai et al., 2001; Yamamoto 
et al., 2000). Sawai et al. (1997) proposed that the 
possible antibacterial mechanism was the adsorption 
of water moisture on the MgO nanoparticle surfaces, 
which could form a thin water layer around the parti-
cles. The local pH of this thin water layer formed 
around the nanoparticles might be much higher than 
its equilibrium value in solution. When the nano-
particles are in contact with the bacteria, the high pH 
in this thin surface water layer could damage the 
membrane, resulting in cells death. 
 
 

CONCLUSIONS 
 

MgO nanoparticles are a promising antibacterial 
agent due to their high resistance to harsh processing 
conditions. Many synthetic methods, such as the sol–
gel method, hydrothermal method and micro-emul-
sion method, have been used to prepare MgO nano-
particles. The hydrothermal method has been given 
more attention due to the simplicity. The antibacterial 
activity of MgO nanoparticles is size and concentra-
tion dependent. Although the exact antibacterial 
mechanism of MgO nanoparticles is not clear, three 
main antibacterial mechanisms have been proposed, 
such as the formation of ROS, the interaction of 
nanoparticles with bacteria, subsequently damaging 
the bacterial cell, and an alkaline effect. In the future, 
more research should be focused on the preparation 
of MgO nanoparticles with low cost and studies of 
the antibacterial mechanism of MgO nanoparticles. 
Also, more studies should be carried out on the 
activity of MgO nanoparticles towards other micro-
organism species.  
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