
MINI REVIEW
published: 15 November 2017

doi: 10.3389/fmicb.2017.02224

Frontiers in Microbiology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 2224

Edited by:

Jessica Galloway-Pena,

University of Texas MD Anderson

Cancer Center, United States

Reviewed by:

Ionas Erb,

Centre for Genomic Regulation, Spain

Jennifer Stearns,

McMaster University, Canada

*Correspondence:

Gregory B. Gloor

ggloor@uwo.com

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 10 July 2017

Accepted: 30 October 2017

Published: 15 November 2017

Citation:

Gloor GB, Macklaim JM,

Pawlowsky-Glahn V and Egozcue JJ

(2017) Microbiome Datasets Are

Compositional: And This Is Not

Optional. Front. Microbiol. 8:2224.

doi: 10.3389/fmicb.2017.02224

Microbiome Datasets Are
Compositional: And This Is Not
Optional
Gregory B. Gloor 1*, Jean M. Macklaim 1, Vera Pawlowsky-Glahn 2 and Juan J. Egozcue 3

1Department of Biochemistry, University of Western Ontario, London, ON, Canada, 2Departments of Computer Science,

Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain, 3Department of Applied Mathematics, Universitat

Politècnica de Catalunya, Barcelona, Spain

Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers,

metagenomes or metatranscriptomes are commonplace and being used to study human

disease states, ecological differences between sites, and the built environment. There is

increasing awareness that microbiome datasets generated by HTS are compositional

because they have an arbitrary total imposed by the instrument. However, many

investigators are either unaware of this or assume specific properties of the compositional

data. The purpose of this review is to alert investigators to the dangers inherent in

ignoring the compositional nature of the data, and point out that HTS datasets derived

from microbiome studies can and should be treated as compositions at all stages of

analysis. We briefly introduce compositional data, illustrate the pathologies that occur

when compositional data are analyzed inappropriately, and finally give guidance and point

to resources and examples for the analysis of microbiome datasets using compositional

data analysis.

Keywords: microbiota, compositional data, high-throughput sequencing, correlation, Bayesian estimation, count

normalization, relative abundance

1. INTRODUCTION

The collection and analysis of microbiome datasets presents many challenges in the study design,
sample collection, storage, and sequencing phases, and these have been well reviewed (Robinson
et al., 2016). Many methods for the analysis of microbiome datasets assume that sequencing
data are equivalent to ecological data where the counts of reads assigned to organisms are often
normalized to a constant area or volume. Methods applied include count-based strategies such as
Bray-Curtis dissimilarity, zero-inflated Gaussianmodels and negative binomial models (McMurdie
and Holmes, 2014; Weiss et al., 2017).

In an ecological study it is possible for many different species to co-exist, and their absolute
abundance may be important. For example, in an area containing only tigers, it is important
to know if the population size is sufficient to maintain needed genetic diversity for long-term
survival (Shaffer, 1981). However, the abundance of one species may not influence the abundance
of another; the area may contain both tigers and ladybugs, and the migration of several ladybugs
into the area would not be expected to affect the number of tigers.

The assumption of true independence can not hold in high-throughput sequencing (HTS)
experiments because the sequencing instruments can deliver reads only up to the capacity of the
instrument. Thus, it is proper to think of these instruments as containing a fixed number of slots
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which must be filled. Returning to our tiger and ladybug
analogy, the migration of ladybugs into an area containing
a fixed number of slots that are already filled must displace
either tigers or ladybugs from the occupied slots. This analogy
extents, without restriction, to any number of taxa, and to any
fixed capacity instrument (Aitchison, 1986; Lovell et al., 2011;
Friedman and Alm, 2012; Fernandes et al., 2013, 2014; Lovell
et al., 2015; Mandal et al., 2015; Gloor et al., 2016a,b; Gloor and
Reid, 2016; Tsilimigras and Fodor, 2016). Thus, the total read
count observed in a HTS run is a fixed-size, random sample
of the relative abundance of the molecules in the underlying
ecosystem. Moreover, the count can not be related to the absolute
number of molecules in the input sample as shown in Figure 1.
This is implicitly acknowledged when microbiome datasets are
converted to relative abundance values, or normalized counts,
or are rarefied (McMurdie and Holmes, 2014; Weiss et al., 2017)
prior to analysis. Thus the number of reads obtained is irrelevant,
and contains only information on the precision of the estimate
(Fernandes et al., 2013). Data that are naturally described as
proportions or probabilities, or with a constant or irrelevant
sum, are referred to as compositional data. Compositional data
contains information about the relationships between the parts
(Aitchison, 1986; Pawlowsky-Glahn et al., 2015).

Data about a microbiome collected by high throughput
sequencing are often examined under the assumption that
sequencing is, in some way, counting the number of molecules
associated with the bacteria in the population, as illustrated by
the top barplot in Figure 1B. We can see the difference between
counts and compositions by comparing the data for the actual
counts for three samples in the top barplot with their proportions
in the bottom barplot. Note, that samples 2 and 3 in Figure 1B

have the same proportional abundances even though they have
different absolute counts prior to sequencing. The difference in
apparent direction of change is shown in Figure 1C and we can
observe that the relationship between absolute abundance in the
environment and the relative abundance after sequencing is not
predictable.

2. PROBLEMS WITH CURRENT METHODS
OF ANALYSIS

We will briefly outline the problems that arise when
compositional data are examined using a non-compositional
paradigm, stepping through the usual stages of analysis shown
in Figure 2. All these issues have been extensively reviewed
and debated in both the older and the more recent literature in
fields as diverse as economics, geology and ecology. Thus, rather
than present an exhaustive explanation of the problems, we will
outline the major issue and cite a few useful resources.

It is very difficult to collect exactly the same number
of sequence reads for each sample. This can be because of
differences in platform (e.g., MiSeq vs. HiSeq) or because of
technical difficulties in loading the same molar amounts of the
sequencing libraries on the instrument, or because of random
variation. The total number of counts observed (often referred to
as read depth) is a major confounder for distance or dissimilarity

FIGURE 1 | High-throughput sequencing data are compositional. (A)

illustrates that the data observed after sequencing a set of nucleic acids from a

bacterial population cannot inform on the absolute abundance of molecules.

The number of counts in a high throughput sequencing (HTS) dataset reflect

the proportion of counts per feature (OTU, gene, etc.) per sample, multiplied by

the sequencing depth. Therefore, only the relative abundances are available.

The bar plots in (B) show the difference between the count of molecules and

the proportion of molecules for two features, A (red) and B (gray) in three

samples. The top bar graphs show the total counts for three samples, and the

height of the color illustrates the total count of the feature. When the three

samples are sequenced we lose the absolute count information and only have

relative abundances, proportions, or “normalized counts” as shown in the

bottom bar graph. Note that features A and B in samples 2 and 3 appear with

the same relative abundances, even though the counts in the environment are

different. The table below in (C) shows real and perceived changes for each

sample if we transition from one sample to another.

calculations for multivariate ordinations derived from these
distances (McMurdie and Holmes, 2014). Initial attempts in the
microbiome field used “rarefaction” or subsampling of the read
counts of each sample to a common read depth to attempt to
correct this problem (Lozupone et al., 2011; Wong et al., 2016).
The use of subsampling has been questioned since it results in
a loss of information and precision (McMurdie and Holmes,
2014), and the practice of count normalization from the RNA-
seq field has been advocated instead. There are a number of
count normalization methods used and two, the trimmed mean
of M values (TMM) (Robinson and Oshlack, 2010), and the
median method (Anders and Huber, 2010) are similar to a log-
ratio transformations, but are less suitable in highly asymmetrical
or sparse datasets (Fernandes et al., 2013; Gloor et al., 2016a).
These transformations are further undesirable since the number
of counts observed by the instrument, by design, can not contain
any information on the actual number of molecules in the
environment, and because the investigator naturally interprets
the results as counts instead of log-ratios.

One of the first analysis steps in a traditional analysis,
following rarefaction or count normalization, is the calculation of
a distance or dissimilarity (DD) matrix from the data that is used
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FIGURE 2 | The standard microbiome analysis tool kit and the compositional

replacements. A simplified standard microbiome computational workflow is

illustrated. The initial normalization steps are not formally equivalent since

compositional data are inherently “normalized”, and read count normalization

is unnecessary. The other steps are functionally equivalent and substitute a

compositionally appropriate approach for one that is not.

for downstream analyses such as ordination, and discrimination.
Distances between features are non-linear when examined from
a Euclidian perspective (Martín-Fernández et al., 1998; Aitchison
et al., 2000) and many DD matrices are used that partially
address this problem. As noted above the total number of
reads in a sample is a strong confounding variable on all these
methods, indicating that the composition of the sample is not the
primary property being measured. However, apparently useful
DD matrices can be generated after normalization. Three DD
matrices dominate the literature; UniFrac (both the weighted and
unweighted variants) (Lozupone et al., 2011), Bray-Curtis and
Jensen-Shannon divergence, and while all have their uses, they do
not account for the compositional nature of the data. It should
be noted that the weighted UniFrac distance approach captures
important phylogenetic information, and a recent compositional
replacement has been developed (Silverman et al., 2017).

The major uses for the DD matrices are ordination and
clustering. Here, the shortcomings of these DD methods become
apparent. In addition to being sensitive to the total read depth
of a sample, DD methods largely discriminate between samples

based on the most relatively abundant features in the samples,
not on the features that are necessarily the most variable between
samples (Gorvitovskaia et al., 2016; Wong et al., 2016). This
can lead to the location of samples in an ordination changing
dramatically when different features are included or excluded
from the dataset, and to a lack of sensitivity in identifying outlier
samples (Wong et al., 2016).

Severe problems with correlation in compositional data were
first noted at the dawn of statistical practice by Pearson (1897)
and rediscovered in the context of microbiome studies (Lovell
et al., 2011; Friedman and Alm, 2012; Lovell et al., 2015; Kurtz
et al., 2015; Morton et al., 2017). Unfortunately, the effect cannot
be diluted away as has been recommended (Weiss et al., 2016).
Understanding that there is a correlation problem is crucial,
since unconstrained correlation or covariation are key concepts
for ordination, clustering, network analysis and differential
(relative) abundance determination. Compositional data have a
negative correlation bias and a different correlation structure
than the underlying count data. Even worse, compositional data
exhibit spurious correlation upon subsetting or aggregation. The
“Correlation” section in the Supplement shows that correlation is
not a reliable or a reproducible indicator of the underlying data
when dealing with compositional data.

Finally, differential (relative) abundance measures do not
account for compositionality (Fernandes et al., 2013; Mandal
et al., 2015; Gloor et al., 2016a). Large scale tool benchmarking
has revealed that differential (relative) abundance tools in
common use are sensitive to sparsity (Thorsen et al., 2016)
and consequently exhibit unacceptably high false positive
identification rates (Hawinkel et al., 2017).

In summary the analysis of compositional data using current
protocols has several challenges. However, as shown below these
issues can be addressed in a satisfactory way using tools that
account for the compositional nature of the data.

3. ANALYSIS OF HTS USING CODA
METHODS

Compositional datasets from HTS can be analyzed in a rigorous
manner by adapting tools from other fields (Van den Boogaart
and Tolosana-Delgado, 2013; Pawlowsky-Glahn et al., 2015) and
using new tools based on the same underlying foundations
(Fernandes et al., 2013; Erb and Notredame, 2016; Silverman
et al., 2017; Quinn et al., 2017). There are now examples in the
literature that provide guidance on how to do some or all of
these analyses on HTS datasets, including meta-transcriptomics
(Macklaim et al., 2013) and tag-sequencing (McMurrough et al.,
2014; Bian et al., 2017). We briefly review the approaches below.

The starting point for any compositional analyses is a ratio
transformation of the data. Ratio transformations capture the
relationships between the features in the dataset and these ratios
are the same whether the data are counts or proportions. Taking
the logarithm of these ratios, thus log-ratios, makes the data
symmetric and linearly related, and places the data in a log-ratio
coordinate space (Pawlowsky-Glahn et al., 2015). Thus, we can
obtain information about the log-ratio abundances of features
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relative to other features in the dataset, and this information is
directly relatable to the environment. We cannot get information
about the absolute abundances since this information is lost
during the sequencing process as explained in Figure 1. However,
log-ratios have the nice mathematical property that their sample
space is real numbers, and this represents a major advantage for
the application of standard statistical methods that have been
developed for real random variables.

Often the centered log-ratio (clr) transformation introduced
by Aitchison (1986) is used. Given an observation vector of D
“counted” features (taxa, operational taxonomic units or OTUs,
genes, etc.) in a sample, x = [x1, x2, ...xD], the clr transformation
for the sample can be obtained as follows:

xclr = [log(x1/G(x)), log(x2/G(x)) . . . log(xD/G(x))],

G(x) = D
√
x1 · x2 · ... · xD (1)

G(x) is the geometric mean of x. The clr transformed values
can be used as inputs for multivariate hypothesis testing using
tools such as MANOVA, regression etc. (Van den Boogaart
and Tolosana-Delgado, 2013) and for model building. The clr-
transformed values are scale-invariant; that is the same ratio is
expected to be obtained in a sample with few read counts or an
identical sample with many read counts, only the precision of
the clr estimate is affected. This is elaborated in the “Probability”
and “Log-ratio transformations” section in the Supplement, but
the consequence is that count normalization is unnecessary and
indeed, undesirable since information on precision is lost.

The G(x) cannot be determined for sparse data without
deleting, replacing or estimating the 0 count values. Fortunately,
there are acceptable methods of dealing with 0 count values as
both point estimates using zCompositions R package
(Palarea-Albaladejo and Martín-Fernández, 2015), and
as a probability distribution using ALDEx2 available on
Bioconductor. Converting the single estimate to a probability
vector prior to clr transformation produces a scale-invariant
measure since this accounts for the precision of the estimate
of the probabilities for each feature; we refer advanced readers
to the more technical literature (Jaynes and Bretthorst, 2003;
Fernandes et al., 2013; Gloor et al., 2016a) and the “Probability”
section of the Supplement for more information.

There are compositional replacements for distance
determination that is used for clustering and ordination.
The first is the philr phylogenetic transform (and R package)
based on balances (binary partitions) along an evolutionary tree
(Silverman et al., 2017) that is a replacement for the familiar
UniFrac distance metric. Distances determined by phylogenetic
transforms have the advantage that the binary partitions chosen
have a simple interpretation and the correlation structure of
the data is fully accounted for. However, the disadvantage is
that only the relationships between the chosen partitions can be
examined. A second distance metric is the Aitchison distance,
which is simply the Euclian distance between samples after
clr transformation, and the distances between samples are the
same as the phylogenetic ilr. The Aitchison distance is superior
to both the widely used Jensen-Shannon divergence and the
Bray-Curtis dissimilarity metrics, being more stable to subsetting

and aggregating of the data, and being a true linear distance
(Aitchison et al., 2000).

The replacement for β-diversity exploration of microbiome
data is the variance-based compositional principal component
(PCA) biplot (Aitchison, 1983; Aitchison and Greenacre, 2002)
where the relationship between inter-OTU variance and sample
distance can be observed (Gloor et al., 2016b). The compositional
biplot has several advantages over the principal co-ordinate
(PCoA) plots for β-diversity analysis. The results obtained are
very stable when the data are subset (Bian et al., 2017), meaning
that exploratory analysis is not driven simply by the presence
absence relationships in the data nor by excessive sparsity (Wong
et al., 2016; Morton et al., 2017). PCA plots can be substantially
more reproducible, since they do not depend upon an presumed
underlying tree that may need to be regenerated with each
data subset, or when new taxa need to be incorporated. This
simplicity facilitates exploratory data analysis. Compositional
PCA biplots display the relationships between OTUs and the
distances between samples on a common plot. It is possible to
glean substantial qualitative information regarding the quality
of the dataset and the relationships between groups with this
tool (Aitchison and Greenacre, 2002; Gloor et al., 2016b), and
examples are shown in the “Biplot” section of the Supplement.

As noted above, the correlation is unreliable in compositional
datasets because of the negative correlation bias and the
instability of correlation to subsetting the data. This is explained
more fully in the supplement (Pearson, 1897; Aitchison, 1986)
but these problems are observed with all non-compositional
correlation methods (Ortego and Egozcue, 2013). Unfortunately,
correlation cannot be subjected to a principled process to
determine the optimal method as has been advocated recently
(Weiss et al., 2016).

There are several more rigorous approaches that can be
applied to analyze correlation in microbiome datasets, including
SPARCC (Friedman and Alm, 2012) and SPieCeasi (Kurtz et al.,
2015), both of which assume a sparse data matrix, and the φ

(Lovell et al., 2015) and ρ (Erb andNotredame, 2016)metrics (the
published versions of which required a non-sparse matrix). These
latter two metrics have been incorporated into the R package
propr, that includes an adaptation allowing the calculation of
the metrics with sparse data that gives an expected value of
ρ (E(ρ)), that approaches 1 if the two features have exactly
constant ratios in the data (Lovell et al., 2015; Quinn et al., 2017).
Supplementary Figure 2 shows that the expected value of ρ is
much more stable to subsetting than are familiar correlation
metrics, and becomes more reproducible as the value of E(ρ)
approaches 1, thus indicating greater precision in estimation as
correlation becomes stronger. However, determining an optimal
and general approach for correlation in compositional datasets
is an open research problem. Supplementary Figures 2–5 have a
more extended explanation of the correlation problem and the
use of E(ρ) as a proposed solution.

Differential (relative) abundance of OTUs between groups
in compositional data is often examined using purpose-built
tools that compare the difference in relative abundance across
samples, and recently tools adapted from the domain of RNA-
seq have been suggested. Unfortunately, these approaches do

Frontiers in Microbiology | www.frontiersin.org 4 November 2017 | Volume 8 | Article 2224

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Gloor et al. Microbiome Datasets Are Compositional

not account for the compositional nature of the data, and so
can be particularly sensitive to the negative correlation bias and
large variability of such datasets (Fernandes et al., 2013). Indeed
benchmarking suggests that traditional tools exhibit different
false positive rates with different levels of sparsity (Thorsen et al.,
2016), and that the false positive rates can be up to 20× higher
than expected (Hawinkel et al., 2017).

Tools based on an approximate compositional foundation
are available. The ANCOM tool performs statistical tests on
point estimates of data transformed by an additive log ratio,
where (presumed) invariant taxa are chosen as the denominator
(Mandal et al., 2015). ANCOM is being incorporated into the
popular QIIME suite of microbiome analysis tools (Weiss et al.,
2017). The ALDEx2 tool performs statistical tests on the clr
values from a modelled probability distribution of the dataset
(Supplementary data Equations 1–4), and reports the expected
values of parametric and non-parametric statistical tests along
with effect-size estimates. This approach reduces the false-
positive identification problem to near 0 in real and modelled
microbiome datasets with little effect of sensitivity (Thorsen
et al., 2016) and is observed to be relatively insensitive to change
when the data are subset (Fernandes et al., 2014). There are
many examples in the literature on its use (Macklaim et al.,
2013; McMurrough et al., 2014; Bian et al., 2017) and in the
Supplementary.

In summary, the analysis of compositional data by traditional
methods can appear to give satisfactory results. However, these
results can be misleading and unpredictable. Compositionally-
appropriate tools exist as drop-in replacements at each stage of
the analysis as shown in Figure 2, and interested readers are

directed to the supplementary and to other published examples
(Macklaim et al., 2013; Fernandes et al., 2014; McMurrough et al.,
2014; Lovell et al., 2015; Mandal et al., 2015; McMillan et al.,
2015; Gloor and Reid, 2016; Gloor et al., 2016b; Bian et al.,
2017; Silverman et al., 2017; Quinn et al., 2017), and the similar
correspondence analysis implemented in the phyloseq package
(McMurdie and Holmes, 2013).
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