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Introduction: In previous studies, we successfully designed complex multicompartmental 

microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes 

(T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to 

show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and 

to examine the shape, size, and chemical, thermal, and rheological properties of these micro-

capsules in vitro.

Method: Microencapsulation was carried out using the Büchi-based microencapsulating 

system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, 

SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete 

characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and 

spectral studies, were carried out in triplicate.

Results: PB-SA microcapsules displayed uniform and homogeneous characteristics with an 

average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics 

and showed no chemical interactions between the ingredients. These data were further supported 

by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, 

suggesting microcapsule stability.

Conclusion: The new PB-SA microcapsules have good structural properties and may be suit-

able for the oral delivery of PB in T2D. Further studies are required to examine the clinical 

efficacy and safety of PB in T2D.

Keywords: artificial cell microencapsulation, diabetes, antioxidant, anti-inflammatory, 

Probucol

Introduction
Diabetes mellitus (DM) is a metabolic disorder that affects millions of people globally. 

The prevalence of DM is increasing worldwide at an alarming rate because of lifestyle 

changes, aging, urbanization, increasing obesity, and physical inactivity.1,2 DM is clas-

sified mainly as type 1 diabetes (T1D) or type 2 diabetes (T2D).3 T2D develops because 

of genetic and environmental factors that lead to tissue desensitization to insulin.4 

Antidiabetic drugs are commonly used and are effective in minimizing variations 

between peaks and troughs of blood glucose levels in diabetic patients. However, β cell 

damage, coupled to the build-up of free radicals and toxins, remain detrimental factors 

in the treatment of the disease and its complications.5 Thus, there is a real need for new 

and more efficacious medications for diabetes, which are capable of exerting a stronger 

protection of β cells and have substantial anti-free radical and antioxidant effects.

Probucol (PB) (Sigma-Aldrich Co., St Louis, MO, USA) is a highly lipophilic (dis-

sociation constant, pk
a
=10.24) drug that has been shown to protect β cells of the pancreas 
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through its strong anti-free radical and antioxidant effects, 

thereby neutralizing reactive oxygen species and alleviating 

oxidative stress.6,7 PB was developed as an antihyperlipidemic 

drug but was withdrawn in some countries because of high 

interindividual variation in absorption and potentially severe 

adverse effects.8 PB is still in use in a few countries, mainly for 

familial hypercholesterolemia in combinations with statins. 

PB accumulates extensively in adipose tissues and is primarily 

eliminated via the fecal route.9 PB’s elimination half-life is 

highly variable between individuals and is estimated to range 

from 23 to more than 50 days. An early study reported that 

hypercholesterolemic patients treated with PB were found to 

have plasma levels of PB averaging 98 µM.10 Peak plasma 

concentrations are also significantly variable, and the time 

to reach maximum concentration in plasma is between 8–24 

hours after an oral dose.

PB concentrations in adipose tissues are 100 times 

higher than that in plasma, resulting in multicompartmental 

distribution and multiphasic excretion pathways.11,12 The 

exact metabolic fate of PB is unknown, but several com-

pounds have been identified in the plasma, although its exact 

biotransformation pathways remain elusive.13 As the major 

route of elimination is the bile and feces, renal clearance is 

very low (2%).13,14 In one study, gelatin-acacia microcapsules 

were prepared by using a special coacervation method and 

were studied for encapsulating microdroplets of oil solu-

tion containing PB; this resulted in better bioavailability.15 

PB’s low and variable oral bioavailability, and its nonlinear 

distribution and clearance, contribute to the variability in its 

pharmacokinetic (PK) and pharmacodynamic properties, as 

well as its adverse effects.16,17 Thus, despite its huge poten-

tial, its variable and poor absorption kinetics remain major 

obstacles to its potential use in T2D.16

Designing a novel and stable formulation with good rheo-

logical parameters is anticipated to overcome these obstacles. 

This can be achieved by using artificial cell microencapsula-

tion (ACM) technology.

Since the innovation of ACM technology by Thomas 

Chang at McGill University in Canada in the 1960s, this 

technology has been used worldwide by many research-

ers,  scientists, and translational entrepreneurs, using bio-

degradable polymers such as sodium alginates. ACM has 

been used significantly in the delivery of various cells and 

therapeutics.18,19 ACM is commonly used to improve the 

delivery of lipophilic drugs that exhibit low bioavailability 

and poor dissolution and absorption kinetics.20 In the pro-

cess of microencapsulation, the microcapsules encapsulate 

a drug using a biodegradable polymer (such as sodium 

alginate), which protects it from the hostile environment 

of the gastrointestinal tract, and provides a pH-sensitive 

targeted delivery. The choice of a polymer has a significant 

effect on the formulation properties and efficacy, as well as 

on the drug’s chemical and thermal characteristics.21 Previ-

ous work by our research group20,22–29 on the formulation 

of the antidiabetic drug gliclazide, alone or combined with 

bile acids (in vitro and in vivo), and our recently designed 

and formulated microcapsules platform have demonstrated 

improved PK and pharmacodynamic responses when using a 

sodium alginate-based formulation. Thus, this study aimed to 

examine the suitability of our newly developed microcapsules 

in producing a novel and a stable PB formulation suitable for 

oral delivery in T2D.

Materials and methods
Materials
PB (98%) and low-viscosity sodium alginate (LVSA, 99%) 

were purchased from Sigma-Aldrich Co., St Louis, MO, USA. 

Calcium chloride dihydrate (CaCl
2
 ⋅ 2H

2
0, 98%) was obtained 

from Scharlab SL (Barcelona, Spain). All solvents and reagents 

were supplied by Merck & Co, Inc. (Whitehouse Station, NJ, 

USA) and were of high-performance liquid chromatography 

(HPLC) grade and used without further purification.

Drug preparations
Stock suspensions of PB (20 mg/mL) were prepared by add-

ing the powder to 10% ultra water-soluble gel of 100 mL 

HPLC water. The gel is an ultrasonic gel mixed in HPLC 

water. The CaCl
2
 stock solution (2%) was prepared by add-

ing CaCl
2
 dihydrate to HPLC water. All preparations were 

mixed thoroughly at room temperature for 4 hours, stored in 

the refrigerator, and used within 48 hours of preparation.

Preparation of microcapsules
Microcapsules of PB-loaded LVSA were prepared with a 

Büchi-based microencapsulating system (Büchi Labortechnik, 

Flawil, Switzerland), using a jet-flow microencapsulation 

technique, as described elsewhere.28 Parameters were set 

in a frequency range of 1,000–1,500 Hz and a flow rate of 

4 mL/minute under a constant air pressure of 300 mbar. 

Polymer solutions containing LVSA with or without PB were 

made up to a final concentration (of PB-SA) in a ratio of 

1:30.23 Microcapsules were fabricated in the form of hydrosol 

mixture, and for each formulation (unloaded and PB loaded), 

three independent batches were prepared and tested separately 

(n=3). All microcapsules (of both formulations) were prepared 

and treated in the exact same way. Microcapsules were dried 
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by using the Stability Chambers (Angelantoni Environmental 

and Climatic Test Chamber, Massa Martana, Italy).

characterization of PB-loaded 
microcapsules
Morphology, size analysis, and chemical 

characterization of microcapsules

All microcapsules were freshly made, stored in the 

refrigerator, and used within 48 hours of preparation. The 

appearance and size of microcapsules were examined using 

light microscopy, followed by scanning electron microscopy 

and energy-dispersive X-ray spectrometry (EDXR). The 

particle size distribution and mean particle size diameter 

were calculated using the instruments’ software  provided. 

 Membrane width was measured via microcapsule’s 

cross-section measurements, using the mounted ToupTek 

 (Zhejiang, People’s Republic of China) photonics FMA050 

fixed calibrated microscope adaptor.

Optical microscopy

Morphological characteristics and particle size analysis were 

determined using a Nikon YS2-H (Tokyo, Japan) mounted 

with a ToupTek photonics FMA050 fixed calibrated micro-

scope adaptor. Sample analysis was carried out in triplicates. 

Briefly, predetermined quantities (10 microcapsules from 

each formulation) of freshly prepared microcapsules were 

loaded onto a glass slide mounted to a calibrated scale. 

Optical microscopy software (ToupTek) capable of particle 

size analysis, microcapsule characterization, and morphologi-

cal assessments was used to determine basic characteristics 

of the microcapsules to complement the scanning electron 

microscopy (SEM) studies.

seM and eDXr spectroscopy

The surface morphology of the microcapsules was examined 

using SEM (Neon 40EsB FIB-SEM; Zeiss, Oberkochen, 

Germany) with 0.8 nm calibrated resolution. The chemical 

characterization of the microcapsules was examined using 

EDXR (INCA X-Act; Oxford Instruments, Abingdon, 

United Kingdom). Electron micrographs of PB-loaded 

microcapsules and empty SA microcapsules were obtained 

using SEM, and their chemical characterization was obtained 

using EDXR. The samples were mounted on a glass stub with 

double-sided adhesive tape and coated under vacuum with 

platinum (5 nm) in an argon atmosphere before examination. 

Micrographs with different magnifications were recorded to 

study the morphological and surface characteristics of the 

microcapsules.

Determination of dispersing media viscosity

Viscosities of both preparations (SA and PB-SA) were 

measured for freshly prepared mixtures, using 15 mL 

aliquots (n=3) at room temperature and using Visco-88 

viscometry (Bohlin-Visco 88; Malvern Instruments). The 

temperature remained constant at 23°C (monitored by the 

Visco 88).

Differential scanning calorimetric analysis

Differential scanning calorimetry (DSC) thermograms of 

PB, LVSA powder (a physical powder mixture of PB and 

LVSA), and PB-loaded microcapsules were carried out in 

a DSC instrument (DSC 8000; PerkinElmer Inc., Waltham, 

MA, USA). Briefly, 5 mg samples were placed in sealed 

aluminium pans and heated at 20°C/minute under a nitrogen 

atmosphere (flow rate, 30 mL/minute) in the 35°C–240°C 

range. An empty aluminium pan was used as a reference. 

The equipment was calibrated for baseline and temperature, 

using zinc metal.

Fourier transform infrared spectral studies

Fourier transform infrared (FTIR) spectra of pure compo-

nents, their physical mixture, and the PB-loaded microcap-

sules were recorded via attenuated total reflectance FTIR 

spectrometer TWO (PerkinElmer), and infrared measure-

ments were performed in transmission in the scanning range 

of 650–4,000 cm−1 at room temperature. The PB:polymer 

ratio to those analytically determined in the microcapsules 

was used for preparing the different physical mixtures that 

were used as control.

Results and discussion
Morphology, size analysis, and chemical 
characterization of microcapsules
Microcapsules were obtained using LVSA polymer and PB 

at a constant ratio of 1:30. The mean diameters ranged from 

1,100–1,295 µm for all batches of the formulation. The aver-

age size was slightly above 1,000 µm in diameter, rendering 

them macroparticles.

Optical microscopy
A predetermined amount of microcapsules from the SA and 

PB-SA formulation was selected for particle size and mor-

phological analysis. Microcapsules revealed uniform consis-

tency and spherical shapes with similar sizes, as determined 

via a calibrated scale mounted onto a glass slide. The mean 

diameter of PB microcapsules (average ± standard deviation) 

was 1,195±98 µm (Figure 1). The vertical diameter (L1) and 
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horizontal diameter (L2) were also measured, along with 

membrane width (L3, L4, and L5), as shown in Figure 1.

seM
Results from optical microscopy revealed opaque, discrete, 

and spherical microcapsules with homogeneous particle size 

 distribution. This was further supported by SEM studies of 

the PB microcapsule (Figures 2 and 3), which represented 

randomly selected microcapsules from a few batches using 

200, 10, 3, and 2 µm scales. Figure 3B and 3D had close 

magnifications, but because of the different angles used, they 

showed different morphology. In addition, SEM results show 

A BL1 =998.6 µm

L2 =905.4 µm

L1 =986.9 µm

L5 =50.9 µm

L2 =925.2 µm

L3 =65.8 µm

L4 =51.6 µm
L3 =66.8 µm

Figure 1 Probucol microcapsules (A) and sodium alginate microcapsule (B).

Notes: l1 and l2 are vertical diameter and horizontal diameter, and l3, l4, and l5 are membrane width thickness at different positions of the microcapsules, respectively. 

Probucol manufactured by sigma-aldrich co., st louis, MO, Usa.

Figure 2 scanning electron micrographs.

Notes: sodium alginate microcapsule at 200 µm scale (A); surface morphology at 2 µm scale (B), 10 µm scale (C), and 3 µm scale (D).
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microcapsules of consistent uniformity and well-defined spher-

ical shapes. Because of the high-resolution images, we were 

able to conclude that the surfaces of the microcapsules were 

rough but consistent from one microcapsule to another in all 

analyzed batches. Interestingly, small crystals were distributed 

throughout the microcapsule surfaces, either as large clumps 

or as smaller ones. These crystals coating the microcapsule 

surface were believed to be the drug, PB, which was confirmed 

by EDXR results (Figures 4, 5, and 7). However, PB present 

in the surface could be crystal or amorphous phase.

eDXr
To further analyze the composition of the microcapsule sur-

face, EDXR was used to identify the various surface crystal 

Figure 3 scanning electron micrographs.

Notes: Probucol-sodium alginate microcapsule at 200 µm scale (A); surface morphology at 2 µm scale (B), 10 µm scale (C), and at 3 µm scale (D). Probucol manufactured 

by sigma-aldrich co., st louis, MO, Usa.
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Figure 4 energy-dispersive X-ray spectra of sodium alginate microcapsules’ surface.

Notes: showing crystal deposition (A, 1) and surface composition (C, 2), with corresponding analysis (B and D). note that no sulfur atoms were detected because no 

Probucol was in this formulation.
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depositions and microcapsule surface composition. The coat-

ing materials (Pt and Zr) have been neutralized in the analysis 

by the instrument. Analysis of crystal depositions on the 

microcapsule surfaces (Figures 4 and 5) revealed high levels 

of sulfur atoms, confirming that the small crystals noted on 

the surface of PB-SA microcapsules were that of PB (as no 

other compound used in the formulation contains the sulfur 

atom).30 It appears from SEM coupled with EDXR analyses 

that PB preferentially coats the microcapsule surface, form-

ing scattered clumps of drug agglomerates distributed around 

the microcapsule surface.

EDXR assessment for two different surface sites of a SA 

microcapsule is shown in Figure 4, with its corresponding 

analysis. As can be seen, the surface is largely made up of 

calcium and oxygen atoms, which is expected for micro-

capsules produced using the ionic gelation method (surface 

composition is largely calcium alginate).

An example of an EDXR assessment of PB-SA 

microcapsules is shown in Figure 5, with the respective 

spectrum of the microcapsule surface. The microcapsule 

surfaces were not perfectly homogeneous, and thus, vary-

ing crystal depositions occurred at selected sites across 

the microcapsule surface. Figure 5 shows typical PB-SA 

microcapsule surface sites where EDXR analysis was con-

ducted (two distinct sections of the microcapsule surface). 

Two  different sites were randomly selected and analyzed 

( Figures 4A, 4C, 5A and 5C), and the atom composition 

results (Figures 4B, 4D, 5B and 5D) represent both crystals 

of drug agglomerates, as well as the surface itself. The spec-

tra of chemical analysis showed the dominant atoms (Na, O, 

Ca, S, and Cl) we expected for a typical PB-SA microcapsule 

prepared via ionic-gelation methodology. The sulfur atom 

was unique to PB, which showed preferential binding to 

the microcapsule surface; Na and Cl represented sodium 

chloride, which was the byproduct of ionic gelation and 

Ca with O, and was expected, given that the microcapsule 

surface is composed largely of calcium alginate.31,32

Viscosity of the microencapsulated 
formulation
Table 1 shows the viscosity, shear rate, shear stress, and 

torque force for both microencapsulated formulations (SA 

and PB-SA) under various speeds (20, 35, 61, 107, 187, 

327, 572, and 1,000 rpm). No detectable viscosity, torque, 

or shear stress for the SA formulation was found because the 

instrument and/or parameters used were not able to detect 

a significant rheological pattern, despite increasing stirring 

speeds and shear rate. This is similar to previously published 

work using the antidiabetic drug, gliclazide, microencapsu-

lated in SA.28 However, it was noted that the PB-SA formu-

lation behaved in a non-Newtonian, thixotropic manner, as 

made evident by parallel reductions in the apparent viscosity 

with increasing stirring speeds, which was expected.33,34 

Further evidence of the thixotropic- pseudoplastic behavior 

A C

B D

100 µm

0 0.5 1 1.5 2 2.5 3 3.5

Cl

Cl

NaO

CI CI

CI

C

Ca
O

Na

Ca

Ca

Ca

Ca

S

CI

CI

CI

CI

Full scale 849 cts cursor: −0.223 (0 cts) Full scale 1,626 cts cursor: −0.223 (0 cts)

4 4.5 5 5.5 6 6.5 7 7.5 8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

keV keV

20 µm

Figure 5 energy-dispersive X-ray spectra of Probucol-sodium alginate microcapsules surface.

Notes: Drug deposition (A, 1) and surface composition (C, 2) with corresponding analysis (B and D). The presence of drug crystals and corresponding sulfur atoms detected 

confirm the presence of Probucol in this formulation. Probucol manufactured by Sigma-Aldrich Co., St Louis, MO, USA.
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of the PB-SA formulation can be seen in the proportional 

increases in torque and shear rate after rising shear stress 

forces and an associated decrease in the viscosity character-

istic of non-Newtonian fluids and thixotropic behavior of the 

polymer solutions.35,36 The flow behavior of the microcapsules 

is important when estimating their PK and pharmacodynamic 

parameters in terms of transit time and pH-targeted delivery 

after an oral dose.27,32 The application of the stirring rod in 

both solutions at increasing speeds resulted in the solu-

tions forming rapid circular motions away from the site of 

centripetal force origin, suggesting they behaved in a non-

Weissenberg fashion.37,38

Dsc
DSC is an important technique for the thermal character-

ization of various materials.39 DSC establishes a connec-

tion between temperature and specific physical properties 

of substances.40,41 It is commonly used to determine the 

enthalpy associated with the process of microencapsulation. 

In microencapsulation, DSC measures how physical proper-

ties of PB molecules change, along with temperature against 

time.42 This occurs through determining the temperature and 

heat flow (35°C–240°C) associated with PB transitions as a 

function of time. DSC spectra were analyzed for PB powder 

(Figure 6A), SA powder (Figure 6B), PB-SA microcapsules 

(Figure 6C), and the combined physical powder mixture 

PB-SA (Figure 6D).

PB has at least two polymorphs with different crystal 

lattice structures and molecular configurations.43,44 Form I 

(melting point, 125°C) is substantially more thermodynami-

cally stable than form II (melting point, 116°C).44 DSC 

analysis of PB powder (Figure 6A) shows a peak of 128°C, 

which is indicative of the melting point of the compound, in 

accordance with published work.45 Importantly, we were able 

to conclude that the PB sample acquired from our supplier was 

form I and not form II. The thermogram of sodium alginate 

powder was also in line with previously published work and 

was indicative of the polymer’s melting point.46 For the com-

bined physical powder mixture, the thermogram included both 

the PB melting peak and that of the polymer, which indicated 

that SA retained its amorphous polymer structure and PB’s 

crystalline form and was not modified on physical mixing. 

The DSC analysis of the PB-SA microcapsules (Figure 6C) 

revealed two distinct peaks. The peak at 127°C clearly depicts 

PB, whereas the peak at 213°C was a marginal shift to the 

right when compared with SA powder (193°C, as seen in 

Figure 6B) and could represent plasticization of the polymer.46 

PB was not chemically modified by and did not participate 

in any reaction with the polymer used in the formulation, as 

evident by endothermic peaks characteristic of the drug after 

analysis of the microcapsules. After microencapsulation, PB 

retained its chemical integrity and crystal lattice structure, 

as confirmed by both DSC and FTIR results (Figure 7); thus, 

full compatibility was evident. In addition, PB form I was 

Table 1 Viscosities and related parameters of both microencapsulated formulations, sodium alginate and Probucol-sodium alginate (n=3)

Formula code  

and set speed

RPM Viscosity,  

mPa × seconds

Shear rate,  

seconds1

Torque,  

mNm

Shear 

stress, Pa

sodium alginate

 1 20 UD 23.8±0.2 UD UD

 2 35 UD 42.1±0.5 UD UD

 3 61 UD 74.4±0.3 UD UD

 4 107 UD 125±0.2 UD UD

 5 187 UD 222±0.3 UD UD

 6 327 UD 385.8±0.2 UD UD

 7 572 UD 681.8±0.1 UD UD

 8 1,000 UD 1,197±3 UD UD

Probucol-sodium alginate

 1 20 UD 23.9±0.3 UD UD

 2 35 UD 42.2±0.3 UD UD

 3 61 UD 74.5±0.2 0.08±0.01 UD

 4 107 25±0.2 125.1±0.2 0.11±0.01 3.2±0.02

 5 187 20±0.2 222.2±0.4 0.17±0.02 4.5±0.01

 6 327 15±0.3 385.7±0.3 0.21±0.03 5.7±0.03

 7 572 10±0.2 681.8±0.1 0.26±0.02 6.9±0.1

 8 1,000 9±0.3 1,194±4 0.40±0.03 10.9±0.01

Note: Probucol manufactured by sigma-aldrich co., st louis, MO, Usa.

Abbreviations: UD, undetected (below the instrument limit of detection); rPM, revolutions per minute.
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maintained throughout the microencapsulation procedure, and 

thus, thermodynamic stability was also maintained.

The two distinct peaks detected on the DSC analysis of 

PB-SA microcapsules and PB-SA powder (Figure 6D; one 

for Probucol and the other being alginate) raise the notion 

that the drug was not solubilized in the matrix system of the 

microcapsules; otherwise, any PB-alginate interactions would 

have resulted in “disappearance” of the thermogram for PB, 

and new chemical bonding groups would have been detected 

on FTIR investigations.42,44 Hence, low affinity of PB for the 

alginate-matrix system of the microcapsules resulted in the 

drug preferentially partitioning onto the surface, forming 

crystal agglomerates that were viewed by SEM analysis and 

analytically verified via EDXR (Figures 4 and 5). Thus, future 

work will endeavor to study the stability and drug-release 

profiles at physiological conditions from these novel micro-

capsules and determine their feasibility as a delivery system 

for the effective oral administration of PB in T2D.

FTir spectral studies
The FTIR method is widely used to stimulate vibrational 

levels of known chemical groups in a molecule and induces 
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Figure 6 Differential scanning calorimetric thermograms.

Notes: Probucol powder (A), sodium alginate powder (B), Probucol-sodium alginate microcapsule (C), and Probucol-sodium alginate powder (D). Probucol manufactured 

by sigma-aldrich co., st louis, MO, Usa.
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Figure 7 Fourier transform infrared spectra.

Notes: Probucol powder (A), sodium alginate powder (B), Probucol-sodium alginate microcapsule (C), and Probucol-sodium alginate mixed powder (D). Probucol 

manufactured by sigma-aldrich co., st louis, MO, Usa.
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a variation in chemical reactions different to those in ther-

mal analysis, such as DSC. The FTIR spectra were used 

to confirm the chemical compatibility of PB with the SA 

polymer in the microencapsulation formulation. FTIR spec-

tra were analyzed for PB powder (Figure 7A), SA powder 

(Figure 7B), PB-SA microcapsules (Figure 7C), and PB-SA 

mixture (Figure 7D). FTIR spectral analysis of individual 

powders, mixed powders containing all the ingredients, and 

final microcapsules attained is necessary to ensure the chemi-

cal compatibility of PB postmicroencapsulation.

The spectrum of PB powder (Figure 7A) revealed charac-

teristic peaks at 2,959, 1,422, and 1,310 cm−1, which were in 

line with previously published work.44 In addition, the spec-

trum for SA powder (Figure 7B) was also in accordance with 

published work, revealing similar peaks.47

For the combined powder of PB-SA (Figure 7D), peaks 

representative of PB and the polymer were present with 

no interference, dilution, or alterations in the bond peak 

activity. This confirmed compatibility of all the ingredi-

ents in the powder form, which is the same combination/

proportions as formulated in the drug–polymer solution 

premicroencapsulation.

The FTIR spectra of the PB-SA microcapsule 

(Figure 7C) clearly showed two distinct and interference-

free peaks corresponding to PB (1,426 and 1,310 cm−1), 

with the third peak shadowed by the dominant infrared 

spectral activity of alginate in that region, and three distinct 

peaks representative of alginate (3,350, 1,602, and 1,025 

cm−1). As the DSC and FTIR results depicted no signifi-

cant changes in the chemical composition of SA or PB 

on microencapsulation, it seems valid to conclude that no 

chemical reaction or decomposition occurred before and 

after microencapsulation.

Overall, FTIR spectra of PB suggest that microencap-

sulation of PB with SA does not significantly compromise 

the chemical composition and structural integrity of the 

PB molecules because no significant chemical reaction 

occurred between the drug and any of the formulation 

excipients.

Conclusion
Using artificial cell microencapsulation, a novel form of tar-

geted drug delivery of PB with the polymer LVSA displayed 

optimal excipient compatibility and desired microcapsule 

size, uniformity, and homogeneity. An interesting future study 

will be to investigate the release profile, drug entrapment, 

and stability characteristics of this novel drug delivery for 

PB microcapsules.
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