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There is a need for a medical imaging technology, that supplements current clinical brain imaging techniques, for the near-patient
and mobile assessment of cerebral vascular disease. Microwave tomography (MWT) is a novel imaging modality that has this
potential. The aim of the study was to assess the feasibility, and potential performance characteristics, of MWT for brain imaging
with particular focus on stroke detection. The study was conducted using MWT computer simulations and 2D head model with
stroke. A nonlinear Newton reconstruction approach was used. The MWT imaging of deep brain tissues presents a significant
challenge, as the brain is an object of interest that is located inside a high dielectric contrast shield, comprising the skull and CSF.
However, high performance, nonlinear MWT inversion methods produced biologically meaningful images of the brain including
images of stroke. It is suggested that multifrequency MWT has the potential to significantly improve imaging results.

Copyright © 2008 S. Y. Semenov and D. R. Corfield. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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1. INTRODUCTION

A healthy brain requires an adequate blood supply. A stroke
or “brain attack” compromises cerebral blood flow (CBF)
leading to brain injury. This brain injury can lead to death
or permanent loss of function and disability. Approximately
700 000 people, each year, will experience a stroke in the US;
in 2004, stroke accounted for 1 in every 16 US deaths [1].

The brain is particularly vulnerable to disturbances in
blood flow as it contains no endogenous stores of energy;
it is dependent upon a continuous and sufficient level of
blood flow for the constant replenishment of oxygen and
glucose and for the removal of waste products. Therefore,
CBF is tightly regulated to meet the brain’s metabolic needs;
local changes in cerebral metabolism are associated with local
changes in CBF. Indeed this close coupling of metabolism
and flow is the basis for functional brain imaging techniques
such as H2

15O positron emission tomography (PET) and
blood oxygen level dependent functional magnetic resonance
imaging (FMRI). In addition to the metabolic coupling of
CBF to metabolism, an intrinsic autoregulatory mechanism
maintains a constant level of blood flow despite fluctua-

tions in arterial blood pressure across a wide physiological
ranges; this protects the cerebral circulation from potentially
harmful changes in perfusion pressure. Thus, the normal
regulation of cerebral perfusion depends on a complex
interaction of metabolism, circulation, and respiration which
is perturbed by pathologies such as stroke.

Acute ischemic strokes account for about 85% of all
strokes; each begins with a blood clot (thrombus) forming
in the circulation at a site distant from the brain. The clot
breaks away from this distant site forming an embolus which
then travels through the circulation; on reaching the brain,
the embolus lodges in the small vessels interrupting blood
flow to a portion of brain tissue. With this reduction in blood
flow, tissue damage quickly ensues. Clinical management of
stroke has been enhanced by the use of thrombolytics (clot
busters) combined with the application of brain imaging
techniques that reveal the pathophysiological changes in
brain tissue that result from the stroke. In particular, the
clinical decision, to use a thrombolytic, must be made
within 3 hours of the onset of symptoms and requires
a firm diagnosis of an ischemic stroke [2]. This clinical
decision relies on imaging methods such as computed
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tomography (CT) and MRI to reliably determine ischemic
perfusion changes. Subsequent management of the stroke
is enhanced by imaging the extent of the area of brain
tissue with compromised blood flow [3]. Current clinical
imaging methods, including CT, PET, and MRI each offers
useful information on tissue properties related to perfusion,
ischemia, and infarction [3]. Whilst each of these methods
has its own advantages, none currently offers a rapid or
cost effective imaging solution that can be made widely
available at the “bedside” in the emergency department or to
first response paramedical services. Microwave tomography
(MWT) might present a safe, portable, and cost-effective
supplement to current imaging modalities for acute and
chronic assessment of cerebral vascular diseases including
stroke.

With microwave imaging, tissues are imaged based on
differences in their dielectric properties. It has been demon-
strated that tissue malignancies, blood supply, hypoxia,
acute ischemia, and chronic infarction [4–9] change tissue
dielectric properties. Therefore, MW imaging offers the
potential for the diagnosis of functional and pathological
tissue conditions, including perfusion and perfusion-related
injuries. MW imaging of breast malignancies has been
demonstrated [8, 10–12]. Perfusion-related tissue injuries
have been imaged using MWT in excised canine hearts
[13] and in simulated extremities [9]. MWT of biological
objects possesses very complicated problem of so-called
diffraction tomography [14]. A high dielectric contrast
between tissues with high water content (e.g., muscle tissue)
and low water content (e.g., bone) presents an additional
complication for MWT imaging. Various approaches in two-
dimensional (2D) and three-dimensional (3D) geometries,
using scalar and vector approximations, have been developed
recently [15–25]. We have shown that experimental MWT
imaging of high dielectric contrast objects is possible using
nonlinear Newton and multiplicative regularised contrast
source inversion (MR-CSI) methods [24]. MWT imaging
of the brain presents a significant challenge, as the brain is
an object of interest that is located inside a high dielectric
contrast shield, comprising the skull (with low dielectric
contrast (ε∼10–15) and cerebral spinal fluid (with high
ε∼55–60). The aims of this project are: (i) to determine
the optimal technical characteristics of an MWT brain
imaging device and (ii) to assess the feasibility and potential
performance characteristics of MWT for brain imaging with
a particular focus on stroke detection. The methods and
modeling approaches are described in Section 2; the results
are presented and discussed in Section 3.

2. METHODS

The aims of the study were accomplished using computer
simulations of MWT imaging of a 2D head model. The
model is presented in Figure 1. The dielectric properties of
the regions of normal head model, taken from published data
[26–29], are summarised in Table 1. In further developing
this model, to incorporate a region of acutely simulated
stroke injury, we used previously obtained tissue perfusion
data [4, 5, 9]. The acute stroke injury was simulated as −10
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Figure 1: Simulated 2D model of a head inside of the MWT
imaging chamber with a radius of 11 cm.

contrast (to white matter) circle with diameter 1, 2, or 4 cm.
Further simulations were conducted using two 2D models
of a head, first, with normal brain blood flow and, second,
with compromised blood flow due to simulated stroke (see
Figure 1).

Transmitters and receivers (positioned equidistantly)
were located on the outer ring of the working chamber with
a radius of 11 cm. The overall number of transmitters (Ntr)
and receivers (Nrec) was 32× 32 or 64× 64. In general cases,
the more sources/receivers that are used, the better quality
of reconstructed images is expected. However, an increased
number of antennas will add additional technical obstacles,
such as an increase of data acquisition time, problem related
to the construction of small, efficient antennas for 0.5–
2.0 GHz, and so forth. See discussion following Table 3 for
further details. To simulate an MWT imaging procedure, the
object under the study was irradiated from jth transmitter
and scattered electromagnetic (EM) field was measured
on Nrec/2 opposite receivers. This was continued for each
transmitter from 1 to Ntr. In some series of simulations, a
random noise was added to received complex EM signal. The
sources of EM radiation were simulated as unlimited strings
over the main axis (z-axis) of the 2D model. Of course,
this source model together with an overall 2D approach has
limited practical application. However, the model does allow
assessing the feasibility of the technology. In practical cases,
we proved that a dipole model is a good approximation of
ceramic loaded waveguide antennas used in our previously
built systems [30–32]. The direct problem was solved on a
polar grid system with uniform mesh (512 over angle ×256
over radius) using an approach presented elsewhere [15].

Image reconstruction was performed using the Newton
approach, presented elsewhere [15]. Within this approach,
we used a polar mesh with 256 (angle) ∗ 128 (radius)
grids for solution of the direct problem and a Cartesian
mesh with 64∗ 64 grids for inverse problem, with various
regularisation parameters. Regularisation parameters were
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Table 1: Dielectric properties of the head model at 1 GHz (see Figure 1).

Region
Matching solution

Skin Skull CSF
Grey matter White matter Stroke area

Thickness 5 mm 7 mm 3 mm

No. 1 2 3 4 5 6 7

Dielectric properties 40 + j13 40 + j11 13 + j2 57 + j26 50 + j18 40 + j15 36 + j13

Table 2: Projected signal attenuation within tomographic imaging
procedure of human head.

Frequency [GHz] 0.5 1.0 2.0

Attenuation [dB] −58 −100 −156

chosen by a trial method. Two reconstruction schemes
were used: single frequency and multi (dual)-frequencies.
Within single frequency schemes, the image reconstruction
was started with a homogeneous background medium of
matching solution, therefore, no a priori information taken
into account. Within the multifrequency schemes there was
a sequential chain of reconstructions at each frequency.
An initial reconstruction was started from a homogeneous
background medium using scattered EM fields obtained at
the 1st frequency, while, at the sequential step(s) we used
different frequencies (with corresponding scattered EM fields
obtained at that frequencies) and started from the results of
reconstruction obtained at previous step(s). This procedure
was performed using different frequencies from 0.5 GHz to
2.0 GHz At this stage, the frequency dispersion of dielectric
properties of the various tissues was not taken into account.
The potential impact of this assumption is discussed in the
next section.

3. RESULTS AND DISCUSSION

The technical performance of MWT brain imaging approach
was initially assessed over a frequency range from 0.5 GHz
to 2.5 GHz using the model and direct problem solver.
The ultimate goal is to develop microwave tomographic
technology with the best sensitivity and specificity, and with
high temporal and spatial resolution, for the noninvasive
assessment of brain tissues. The best spatial resolution can
be achieved at high frequencies. However, the attenuation
of EM radiation in biological media is in inverse ratio with
the frequency, with decreasing signal-to-noise ratio (SNR)
at high frequencies. Therefore, the strategy is to find the
highest possible frequency at which receivers will still be able
to detect signal with reliable SNR and will not compromise
temporal resolution. Using our MWT simulation approach,
together with the model of the head (see Figure 1), we
estimated an overall signal attenuation summarised in
Table 2. The results should be taken as a guidance or initial
estimation, which does not take into account dispersion of
tissue dielectric properties, any particulars of head geometry,
and so forth.

As can be seen, the attenuation is very high at frequencies
above 1 GHz-2 GHz range. As it is highly desirable: (i) to

achieve a good SNR ratio (within a range of 40–60 dB) for
biological detection reasons, such as sensitivity, specificity,
and resolution and (ii) to not increase data acquisition time
for measuring highly attenuated signals, which compromises
an expected very attractive time resolution (within msec
range) in order to detect circulated gated tissue changes,
we suggest that frequencies within 0.5 to 1.0 GHz might
be an optimal for brain imaging. An additional expected
advantage, of using this low portion of microwave spectrum,
is that acute perfusion related changes in tissue dielectric
properties are more pronounced at low frequencies [4, 5].
This choice might unfavorably affect spatial resolution in its
classical, far-EM-field sense. However, there is potential to
improve spatial resolution, even to obtain a super-resolution
in near-EM-field using nonlinear inversion [33, 34].

We further assessed the potential resolution of the tech-
nology to detect acute “stroke-like” areas with−10% contrast
in dielectric properties. It has to be noted here that this
is different from the classical spatial resolution definition,
which is defined as a minimal distance (using Raleigh or half-
height criteria) at which two small similar inhomogeneities
can be distinguished between each other. Previously, we
conducted such studies and experimentally achieved a 7–
9 mm spatial resolution at 0.9 GHz [35]. In this study, the
aim was to understand what was the smallest size of brain
inhomogeneity, with a particular dielectric contrast, that
could potentially be detected. In our previous MWT imaging
studies, we suggested that changes in about 1% in amplitude
and about 1 degree in phase of the received EM signal
could be confidently detected and corresponding alterations
in dielectric properties could be successfully reconstructed.
We simulated MWT data acquisition for brain models with
and without stroke areas of different size and then averaged
differences in received EM signals over all receivers for each
of transmitter position. The averaged differences in EM
signals at 1 GHz for normal brain, and brain with stroke,
were about: 3.8% in amplitude and 5.5◦ in phase for 4 cm
diameter stroke, 1.2% and 2◦ for 2 cm and 0.3% and 0.2◦ for
1 cm correspondingly. Therefore, it is suggested that, at this
level of the development of MWT imaging technology, the
smallest imaginable area of acute stroke is estimated to be
about 2 cm in diameter. This resolution might not compare
with the one achieved by other imaging modalities, such
as MRI or CT. However, all performance factors should be
considered together. Excellent temporal resolution will add
a novel diagnostic dimension. Cost efficiency, mobility, and
safety are other significant factors which suggest potential
advantages of MWT for brain imaging.

An MWT imaging cycle was simulated as described
in the method section. The results of the first series of
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Figure 2: Reconstructed MWT images of simulated brain model: (a) normal and (b) with a stroke injury with radius 2 cm centered at
{−4, 0}, (c) the reconstructed differential profile [% difference] through the stroke area. Noiseless case. Frequency 1 GHz.

imaging experiments are presented in Figure 2 for 1 GHz
frequency for the 32 × 32 transmitters × receivers case.
The absolute values of the reconstructed dielectric properties
of (a) the normal brain image can be compared with
(b) those reconstructed properties for the stroke case. The
reconstructed profile through the stroke area of a radius
2 cm located at X = −4 cm and Y = 0 cm is presented in
(c) as % difference in reconstructed values between normal
and stroke cases. The shadow of the stroke area can be easy
appreciated from the reconstructed image (b). Furthermore,
the reconstructed differential profile (c) clearly indicates
an area of dielectric inhomogeneity (stroke) in terms of
both the geometrical position and the absolute values of
the reconstructed dielectric properties, as evidenced by the
proximity of the reconstructed profile (line in c) to the
expected simulated profile (dots in c).

Next, we focused on the MWT imaging performance at
different frequencies with 1% noise. This noise figure does
require a good performance of both MWT imaging hardware
and the overall MWT imaging reconstruction protocol but
is achievable in practice. We used the brain model, with the
stroke area of a radius 2 cm located at {−4; 0}. The imaging
results are presented in Figure 3 for frequencies (a) 0.5 GHz,
(b) 1.0 GHz, and (c) 2.0 GHz. The area with suspected stroke
injury is circled in white. The stroke injury area failed to
be reconstructed when a high frequency (2 GHz) is used
alone. This unsuccessful imaging result might be attributed
to (i) a very high attenuation of EM field at this frequency
(see Table 2) and/or to (ii) weaknesses of used imaging
approach. However, the used imaging algorithm based on
the Newton approach has previously shown a good imaging
performance, which is comparable with other powerful,
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Figure 3: Reconstructed MWT images of simulated brain model with a stroke injury with radius 2 cm located at {−4, 0} obtained at
frequencies (a) 0.5 GHz, (b) 1.0 GHz, and (c) 2.0 GHz. 1% noise. Area with suspected stroke injury is circled in white.

recently developed nonlinear methods of MWT, such as
gradient method and contrast source inversion method [15,
24]. An area of stroke injury was reconstructed when MWT
imaging was performed at lower frequencies (0.5–1.0 GHz),
with more pronouncing detection at 1 GHz (b).

A multifrequency approach further improved the imag-
ing results. Images, obtained at 0.5 GHz and 2.0 GHz, were
used as a starting point (initial guess) for further data
inversion at 1 GHz. Corresponding scattered EM fields,
obtained at individual frequencies, were used. At this stage,
the frequency dispersion of dielectric properties of various
tissues was not taken into account, that is, we used the
same dielectric parameters of the model at 0.5 GHz and
2.0 GHz as we did at 1 GHz (see Table 1). The dielectric
properties of biological tissues at this frequency band show
significant dispersion. For example, for an averaged brain
tissue they vary from 48.5 + j22.7 at 0.5 GHz to 43.2 + j11.8
at 2.0 GHz [29]. These variations can be incorporated into

a multifrequency reconstruction approach later on, using
well-developed models of tissue dielectric properties, such
as the Cole-Cole model or the multicomponent Schwan
approach. The aim here was to assess if multifrequency
MWT imaging has the potential to improve brain imaging.
This is demonstrated in Figure 4, when two multifrequency
approaches were used. The first one (a) uses an initial imag-
ing procedure at 0.5 GHz continuing at 1 GHz; the second
one uses an initial inversion at 2.0 GHz continuing at 1 GHz.
Both approaches demonstrate significant image improve-
ment as compared with the 1st phase of reconstruction (see
Figure 3). The area of stroke injury (circled in white) has
been reconstructed using both approaches. There is room
for improvement and optimisation of multifrequency MWT
imaging, which should be a focus of further simulation and
experimental studies. The most interesting and technically
important question, at the moment, is how distant should
frequencies be? If the frequency gap can be narrowed, then
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Figure 4: Reconstructed MWT images of simulated brain model with a stroke injury with radius 2 cm located at {−4, 0} obtained using
multifrequency reconstruction: (a) 0.5 GHz and 1.0 GHz and (b) 2.0 GHz and 1.0 GHz. 1% noise. Area with suspected stroke injury is white
circled.

Table 3: Characteristics and projected performance of an initial MWT system for brain imaging.

MW frequencies 0.7–1.0 GHz

Imaging chamber 3D “Helmet” like, with R∼11 cm

Number of antennas per a 2D “slice” of an imaging chamber 32–64

Type of antennas ceramic (ε∼60–90) loaded waveguides

Each antenna works as transmitter and receiver Yes

Measured attenuations [dB] 60–110

S/N ratio [dB] 40–60

IFBW [kHz] 1–10

Output power on antenna +20 dBm

(i) tissue dispersion might not be taken into account and (ii)
narrow band efficient antennas may be used instead of wide
band, or a family of narrow bands, antennas.

Presented imaging results are not perfect. However, they
indicate that MWT has the potential to determine perfusion
related changes in the human brain and that MWT could
be developed as a useful new imaging modality for stroke
management. There is room for further images improvement
at both stages: during reconstruction and at post-processing
afterwards.

The projected characteristics of an initial practical MWT
system for brain imaging are summarised in Table 3. We
intend to use ceramic loaded (with ε∼60–90) waveguide
antennas as previously successfully used EM sources within
MWT imaging chamber [30–32]. The typical dimensions of
the antenna tip facing the imaging chamber for frequency of
interest are 21 mm × 7 mm. This gives a maximal number
of antennas per a 2D “slice” of an imaging chamber of
about 32 to 90, depending on an antenna rotation and,
consequentially, an imaging approach used (2D, 3D scalar or
3D vector).

4. CONCLUSIONS

(1) The MWT imaging of deep brain tissues and stroke
detection presents a significant challenge, being an object
of interest located inside of a high dielectric contrast shield,
comprising the skull and cerebral spinal fluid.

(2) High performance, nonlinear MWT inversion meth-
ods were able to produce biologically meaningful images
including images of stroke. At this level of the development
of MWT imaging technology, the smallest imaginable area of
acute stroke is estimated to be about 2 cm.

(3) Suggested multifrequency MWT has potentials for
significant improvement of imaging results.
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