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ABSTRACT

Background: One of the significant obstacles in the development of

clinically relevant microarray-derived biomarkers and classifiers is

tissue heterogeneity. Physical cell separation techniques, such as

cell sorting and laser-capture microdissection, can enrich samples

for cell types of interest, but are costly, labor intensive and can limit

investigation of important interactions between different cell types.

Results: We developed a new computational approach, called micro-

array microdissection with analysis of differences (MMAD), which

performs microdissection in silico. Notably, MMAD (i) allows for sim-

ultaneous estimation of cell fractions and gene expression profiles of

contributing cell types, (ii) adjusts for microarray normalization bias, (iii)

uses the corrected Akaike information criterion during model optimiza-

tion to minimize overfitting and (iv) provides mechanisms for compar-

ing gene expression and cell fractions between samples in different

classes. Computational microdissection of simulated and experimen-

tal tissue mixture datasets showed tight correlations between pre-

dicted and measured gene expression of pure tissues as well as

tight correlations between reported and estimated cell fraction for

each of the individual cell types. In simulation studies, MMAD

showed superior ability to detect differentially expressed genes in

mixed tissue samples when compared with standard metrics, includ-

ing both significance analysis of microarrays and cell type-specific

significance analysis of microarrays.

Conclusions: We have developed a new computational tool called

MMAD, which is capable of performing robust tissue microdissection

in silico, and which can improve the detection of differentially

expressed genes. MMAD software as implemented in MATLAB is

publically available for download at http://sourceforge.net/projects/

mmad/.

Contact: david.liebner@gmail.com

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene expression microarrays have yielded valuable biological

and medical insight into many disease processes and have been

heavily researched, especially in the investigation of cancer

biology (Alizadeh et al., 2000; Beer et al., 2002; Belbin et al.,

2002; Bittner et al., 2000; Dhanasekaran et al., 2001; Meyniel

et al., 2010; Perou et al., 2000; Sorlie et al., 2001; Stratford

et al., 2010; van ‘t Veer et al., 2002). However, standard

approaches to microarray analysis can be easily confounded by

cellular heterogeneity in tissue samples and by variability in cell

type composition. This may introduce false-positive correlations,

but more importantly may also mask changes in gene expression

within a given cell type of interest. Of particular concern is

impact of sample heterogeneity on developing and validating

microarray-based predictive and prognostic models for human

diseases (Cleator et al., 2006; Debey et al., 2004; Elloumi et al.,

2011; Feezor et al., 2004). Physical cell separation methods such

as cell sorting and/or laser-capture microdissection can enrich

samples for the cell type of interest, but such methods are time

and resource intensive and can affect the quantity and quality of

RNA available for subsequent analysis (Debey et al., 2004; Venet

et al., 2001).

Computational microdissection using various statistical

approaches has consequently been a subject of interest for several

groups. Most techniques extend on the linear model of Venet

et al. (2001), which estimates the final measured gene expression

as the sum of gene expression of the contributing cell types.

Several approaches estimate relative fractions of individual cell

types within a sample using gene expression profiles that are

characteristic for each cell type (Abbas et al., 2009; Ahn et al.,

2013; Bolen et al., 2011; Gaujoux and Seoighe, 2012; Gong et al.,

2011; Lu et al., 2003; Wang et al., 2006; Zhong et al., 2013),

whereas other models estimate the characteristic gene expression

profiles of each cell type using measured cell type fractions

(Shen-Orr et al., 2010; Stuart et al., 2004). Simultaneous esti-

mates of cell type expression profiles and cell type fraction,

analogous to principal-components analysis have also been pro-

posed (Erkkila et al., 2010; Lahdesmaki et al., 2005; Repsilber

et al., 2010; Venet et al., 2001). A software package that incorp-

orates several of these methodologies in a unified interface has

recently been made available (Gaujoux and Seoighe, 2013).

We developed a flexible new model, microarray microdissec-

tion with analysis of differences (MMAD), which incorporates

several features of the previously described approaches in add-

ition to several novel features, designed to improve performance

and utility. These include adjustments for reporting bias and*To whom correspondence should be addressed.
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normalization bias, incorporation of information theory criteria

to minimize overfitting and methods for comparing gene expres-

sion between classes, either globally or on a cell-specific basis. An

overview of MMAD is provided in Supplementary Figure S1.

2 METHODS

2.1 Deconvolution model

Let Xij be the observed microarray expression value for gene (or probe) i

and sample j, and xij be the log2-transform of Xij. Let I denote the number

of genes (or probes) and J denote the number of samples. If we assume

that there are K cell types that exist in varying mixing proportions in the

given samples, then we can model the observed gene expression profile

as a linear combination of contributing cell types with a log-normally

distributed error term:

xij ¼ log2

X

K

k¼1

Cikfkj

 !

þ eij ð1Þ

Here, Cik is the characteristic gene expression for gene i with respect to

cell type k, and fkj is the fraction of total messenger RNA (mRNA)

contributed by cell type k in sample j. Of note, although we refer to C

and f as characterizing the gene expression profiles of individual ‘cell

types’, they can more generally characterize any source of mRNA with

a characteristic expression profile that is present in varying concentrations

in a set of samples. These could include individual cell types (e.g. fibro-

blasts, cardiomyocytes, adipocytes), different cellular states (e.g. cells

entering mitosis, cells in G0) or even pure sources of mRNA mixed

within a laboratory setting. For simplicity, we will continue to refer to

these as ‘cell types’ for the remainder of this article.

2.2 Adjustment for bias in reported cell fraction

Unfortunately, there is no guarantee that the estimated cell fraction pro-

vided by the investigator corresponds directly to the measurable fraction

of RNA contributed by each cell type. We consider the (not infrequent)

case in which the cellular fraction (as assessed by cell count) is used as a

surrogate for the RNA fraction, f. LetNkj represent the number of cells of

type k in sample j. If the measurable RNA content per cell, �k, varies for

each cell type k, the reported value of f will be biased. That is,

fkj, reported ¼
Nkj

P

q Nqj

, whereas fkj, actual ¼
�kNkj

P

q �qNqj

ð2Þ

To account for this, we introduce the concept of the effective RNA

fraction f’, which replaces f in Equation (1), and which is linked to the

investigator-reported fraction f for a given sample j and cell type k by the

following:

f0kj ¼ �k�jfkj ð3Þ

Here, �k is a non-negative RNA source-specific scaling constant, and �j is

a non-negative sample-specific scaling constant. This formulation

allows for straightforward correction of systematic reporting biases in

f described earlier in the text. Of note, for this article, we do not constrain
P

k f
0
kj ¼ 1 for all samples j, as normalization of microarray data

during preprocessing typically results in small but computationally

significant deviations from this ideal constraint. We do, however, include

the option to constrain
P

k f
0
kj ¼ 1 during implementation of MMAD.

2.3 Optimization

For microarray studies of mixed tissue specimens, the contributing cell

types, their characteristic gene expression profiles, C, and the effective

RNA fractions, f’, may or may not be known. These parameters can be

estimated in MMAD using a maximum likelihood approach by minimiz-

ing the residual sum of squares given by

" ¼
X

I

i¼1

X

J

j¼1

ðxij � x̂ijÞ
2 ð4Þ

where

X̂ij ¼
X

K

k¼1

Ĉik f̂
0
kj and x̂ij ¼ log2 X̂ij ð5Þ

Additional modifications are incorporated, depending on the level of

prior knowledge about the cell types present in the mixed tissue.

2.3.1 C is known, f is unknown In this case, we optimize the un-

known parameters by simply minimizing the residual sum of squares

given by Equation (4) using a non-linear conjugate gradient search algo-

rithm implemented in MATLAB. The maximum likelihood estimates of

�, � and f are all constrained to be non-negative.

2.3.2 C is unknown, f’ is known Estimation of C when f is known

can be performed independently for each gene i by minimizing the re-

sidual sum of squares for that gene. We modify this approach by

hypothesizing that some cell types may share common expression levels

for gene i. To address this possibility and minimize overfitting, we evalu-

ate all possible partitions of the K cell types into subsets, and constrain all

cell types in a given subset to have identical expression levels for that gene

i. Let P represent one possible partition, and let NP be the number of

distinct subsets under that partition, where 1�NP�K. Let Ĉ�
isjP be the

expression level of gene i for cells in subset s under partition P. In this

case, the estimated expression of gene i for cell k is given by

Ĉik ¼
X

NP

s¼1

�skjP � Ĉ�
isjP ð6Þ

where

�sk Pj ¼
1, if cell k 2 subset s, given partition P

0, else

�

ð7Þ

Let "ijP be the residual sum of squares after optimizing model fit under

partition P for gene i. To select which partition is best supported for each

gene by the available data, we use the corrected Akaike information

criterion (AICc) as defined by Hurvich and Tsai (1989). AICc provides

a measure of model fit that balances the likelihood of observing the given

data under the model against the number of parameters estimated for

that model. The AICc for partition P and gene i is given by

AICc ¼ J � log "i Pj þ
2 � J � NP þ 1ð Þ

J�NP � 2
ð8Þ

The partition that is associated with the lowest AICc for each gene is

used to generate the final estimates of Ĉ for that gene. It is important to

note that different partitions may be selected for different genes. In situ-

ations where it is computationally intractable to consider all possible

partitions, we can approximate the number of distinct subsets by

NP �
X

K

p¼1

X

K

q¼1

exp �
ĉip � ĉiq

�c

� �2
" # !�1

ð9Þ

where �c is a small positive number. We solve for the values of Ĉ that

minimize the approximate AICc. We gradually shrink �c!0, allowing

the final estimates to approach an AICc-informed model fit. Of note,

during optimization, we constrain our estimates ĉik ¼ log2 Ĉik to fall ap-

proximately within the same dynamic range as the given dataset by using

the minimum (xmin) and maximum (xmax) expression values over all genes

and all samples in the dataset to define our constraint boundaries:

xmin � 1ð Þ � ĉik � xmax þ 1ð Þ ð10Þ
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2.3.3 C and f are unknown In this case, we note that maximum

likelihood estimates of C and f’ obtained by minimizing [Equation (4)]

are not uniquely determined without the incorporation of prior know-

ledge or additional constraints (Taslaman and Nilsson, 2012). We agree

with Gaujoux and Seoighe (2012) and Zhong et al. (2013) that a priori

knowledge about the cell types of interest should be incorporated if pos-

sible; in particular, if certain genes are known to be highly specific for a

given cell type, then those genes can be used to estimate f for that cell

type. Let us assume that for each cell k, there exists a subset of genes, Gk,

which is highly specific to that cell k. Then, for all genes g 2 Gk, xgjwould

be approximated by

xgj ¼ log2ðCgkfkj þ BgÞ þ eij ð11Þ

where Bg is the background expression for gene g. Unfortunately, a spe-

cific list of genes is not always available for each of the cell types present

in a given sample. For the purposes of MMAD, in the absence of prior

information about the constituent cell types, we assume that those genes

with the highest variability in the sample set are most likely to be differ-

entially expressed by the different cell types. We assign each of these

highly variable genes (default is the top 1% most variable genes) to a

putative cell type using k-means clustering with Pearson’s correlation

coefficient as the distance metric.

Once appropriate cell-specific gene subsets have been established, we

estimate C, f and B for each gene by minimizing the residual squared

error.

"G ¼
X

K

k¼1

X

g2Gk

X

J

j¼1

ðxgj � x̂gjÞ
2

" #

ð12Þ

We use the estimate of f obtained in this manner to approximate C for

all genes in the sample by AICc optimization as outlined in Section 2.3.2.

2.4 Tests for differences between classes

Assume that the samples in a given dataset X can be divided into two

distinct classes. Let C(1) and C(2) be the characteristic gene expression

profiles for the different cell types, and let f0(1) and f0(2) be the class-specific

cell fractions. Differences in gene expression and cell type composition

between classes are assessed as follows:

2.4.1 Differences in cell fraction between classes Estimates of

effective RNA fraction in each sample are first obtained using the appro-

priate algorithm mentioned earlier in the text without using class infor-

mation. Class-specific cell fractions are then compared using a two-tailed

unpaired t-test as implemented in MATLAB using the function t-test2().

2.4.2 Differences in cell type-specific gene expression between
classes In cases where f is unknown, we first estimate f for all of the

samples as per Section 2.3.3. For each gene i, we then compare the null

model of differential expression (no differential expression in any of the

cell types between the two classes) with all models in which gene i is

differentially expressed by just one of the cell types k. For computational

reasons, we do not consider models in which41 cell type differentially

expresses gene i. We calculate the AICc for each of these models, as well

as the AICc weight, which is the relative support for the given model

when compared with all models under consideration:

!model diffðkÞ½ � ¼
e�

1
2
AICc, model diffðkÞ½ �

e�
1
2
AICc, model null½ � þ

P

h

e�
1
2
AICc, model diffðhÞ½ �

ð13Þ

We define the MMAD cell-specific differential expression test statistic

for gene i and cell type by

Mcell�specific, ik ¼ � log 1� !model diffðkÞ½ �

� �

ð14Þ

Larger values are consistent with greater support for differential

expression of gene i in cell type k. P-values and false discovery rates

can be estimated using a permutation-based approach in which class

labels are randomly permuted and the statistics are recalculated.

2.4.3 Global test for differences in cell-specific gene
expression The global test for differences in cell-specific gene expres-

sion summarizes the existing support for differential expression in at least

one of the cell types present in the sample:

Mglobal, i ¼ � log 1�
X

k
!model diffðkÞ½ �

� �

ð15Þ

Once again, larger values are consistent with greater evidence for

differential expression for gene i in at least one of the cell types in the

sample. P-values and false discovery rates can be estimated using a

permutation-based approach.

2.4.4 Comparison metrics for differences in gene expression As

our comparison metrics, we evaluated (i) a two-tailed t-test, (ii)

significance analysis of microarrays (SAM) (Tusher et al., 2001) and

(iii) cell type-specific significance analysis of microarrays (csSAM)

(Shen-Orr et al., 2010). The t-test was implemented using the

MATLAB function t-test2() (MATLAB R2012b), SAM using the

samr() package in R (version 2.15.1) and csSAM using the csSAM R

package (R version 2.15.1).

2.5 Simulation

To assess model performance, we created a dataset consisting of simulated

colorectal adenocarcinoma cells, adipose cells and CD8þ T-cells in differ-

entmixing proportions. For each of the selected cell types, we used publicly

available gene expression data from theGene ExpressionOmnibus (GEO),

series GSE1133, to define the characteristic gene expression profiles (Su

et al., 2004). All samples selected had been run on the Affymetrix HG

U133A Array. We downloaded the raw CEL files from GEO and used

the median-normalized gene expression data to define the cell-specific ex-

pression profiles (C). For each sample j and cell type k that was simulated,

we sampled the effective RNA fractions (f0kj) from aDirichlet distribution.

The final value of xijwas calculated per Equation (1) with eij drawn from a

normal distribution with variance set equal to the global variance in gene

expression between duplicate samples in GSE1133.

2.6 Data preprocessing

Background adjustment for simulated data was performed using the

MATLAB function rmabackadj(). Median and quantile normalization

were performed using the MATLAB functions manorm() and quantile-

norm(), respectively. Robust Multichip Average (RMA) summarization

(Bolstad et al., 2003) was performed using the MATLAB function rma-

summary(). Prefiltering of Affymetrix probes was performed using the

Micro Array Suite 5.0 (MAS5.0) algorithm with �¼ 0 (Hubbell et al.,

2002).

3 RESULTS

We present a method for the in silico microdissection of tissue

samples into component cell types that is both flexible and

robust.

3.1 Properties of MMAD deconvolution algorithm

3.1.1 Data preprocessing Background subtraction and quantile

normalization can alter the linear relationship between probes

in an intensity-dependent manner; median normalization pre-

serves linearity though it is less robust when adjusting for
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intensity-related bias. Importantly, choice of normalization

method can directly influence the ability to detect differentially

expressed genes (Chiogna et al., 2009). We compared MMAD

performance with and without RMA background subtraction

and compared median normalization with quantile normaliza-

tion using simulated data consisting of 40 samples generated as

per Section 2.5. We noted comparable performance using

quantile normalization and median normalization, suggesting

that these methods may be interchangeable for initial probe nor-

malization; however, predicted differences in gene expression be-

tween cell types was poorer when background correction was

performed before the model fit (Supplementary Fig. S2).

Therefore, for high-quality datasets with stable signal-to-noise

ratios, we recommend using median or quantile normalization

and not background correcting before performing computational

microdissection withMMAD.We use quantile normalization for

the remainder of this article.

3.1.2 AICc adjustment improves the prediction of cell-specific gene

expression Overfitting can be a major concern during decon-

volution, particularly when the number of samples is small and

when individual cell types are typically present at low frequencies

in a given sample. We evaluated MMAD performance in three

simulated datasets generated as per the methodology outlined in

Section 2.5. Each dataset consisted of 10 samples; we decreased

the relative percentage of adipose cells in each of the datasets,

such that on average adipose cells comprised 10% of cells in the

first dataset (70% colon, 20% T-cell), 1% of cells in the second

dataset (79% colon, 20% T-cell) and 0.1% of cells in the third

dataset (79.9% colon, 20% T-cell). We estimated gene expression

profiles for each of the three cell types both with and without

AICc correction using the known values of f. We note that there

was a marked improvement in the model fit with AICc correc-

tion, particularly for adipose cells, which were present at the

lowest frequency in the simulation (Fig. 1 and Supplementary

Fig. S3).

3.2 Computational microdissection of tissue mixture

datasets

Given model performance with the simulated datasets, we inves-

tigated performance on available tissue mixture datasets.

3.2.1 Estimation of cell-specific gene expression (C) We used a

benchmark dataset consisting of pure brain, liver and lung tissue

from a single rat in isolation as well as in 11 different mixture

ratios as described in Shen-Orr et al. (2010). Each mixture ratio is

characterized by 3 technical replicates with 42 total samples

(9 pure tissue samples, 33 mixed tissue samples). RNA expression

levels were measured with the Rat Genome 230 2.0 Array

(Affymetrix). Raw data are available on the GEO site,

GSE19830. CEL files were downloaded from GEO; probesets

were prefiltered using the MAS5.0 detection algorithm with a

threshold P50.05 in at least two samples, and data were quantile

normalized and summarized using rmasummary().

Computational microdissection of the 33 mixed tissue speci-

mens was performed using MMAD and compared with results

from csSAM. MMAD was constrained to use the investigator

supplied cell fractions f and allowed to fit the model using both a

strict supervised fit (� and � constrained to equal 1) and a semi-

supervised fit (� and � unconstrained). For csSAM, we used the

function csfit() as implemented in the csSAM R package (R ver-

sion 2.15.1). We performed the deconvolution in csSAM in both

log-space (original implementation) and linear space based on
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Fig. 1. AICc correction during model fit improves estimates of gene expression. We simulated three datasets containing mixtures of colon adenocar-

cinoma cells, CD8þ T-cells and adipose cells in different mixing proportions. The average percentage of adipose cells was decreased in each simulation

(10, 1, 0.1%, respectively). Without AICc correction, we note a marked decrease in the ability of MMAD to predict the gene expression profile of adipose

cells when the fraction of adipose cells drops to 1% or below (A). AICc correction dramatically stabilizes predictions, even at cell fractions averaging 0.1

percent (B). (See also Supplementary Fig. S3.)
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reports of potentially improved performance in linear space

(Zhong and Liu, 2012).

The estimates of gene expression for each constituent tissue

type were best when using MMAD with the semi-supervised fit

(rliver¼ 0.99, rbrain¼ 0.98, rlung¼ 0.99). Though csSAM in linear

space performed better than csSAM in log-space, there was still

significant residual model error (�2
err), particularly for genes with

low levels of expression in the different cell types (Fig. 2).

3.2.2 Estimation of cellular fraction (f,f’) We used a test dataset

consisting of mixtures of four immune cell lines (Jurkat, IM-9,

Raji and THP-1) that is available for public download from

GEO (GSE11058) (Abbas et al., 2009). Deconvolution of this

particular dataset is challenging due to the fact that the represen-

tative cell lines have highly correlated gene expression signatures

given their common immune phenotype. CEL files were down-

loaded from the GEO site, prefiltered with the MAS5.0 detection

algorithm (�¼ 0) and kept for further analysis if a detection

P50.05 was present in at least two samples.Datawere then quan-

tile normalized and summarized using rmasummary(). We eval-

uated three different approaches to the estimation of cell fraction

in this dataset: (i) estimation of f (or f0) using the complete gene

expression profiles of pure cells (C), (ii) estimation of f (or f0) using

a subset of cell-specific marker genes and (iii) blind estimation of

cell fractionwithout prior knowledge of constituent cell types. For

our target gene subset in (ii), we used those genes that were ex-

pressed at least 5-fold higher in the target cell as compared with

any of the other cell types. For the blind deconvolution in

MMAD, we used the top 1% most variable genes in log-space

as our target genes and assigned each of these genes to a putative

cell type of interest using k-means clustering as implemented in

MATLAB with the kmeans() algorithm. As comparators to

MMAD, we also evaluated the performance of quadratic pro-

graming implemented in MATLAB as proposed by Gong et al.

(2011), gene subset-guided deconvolution using the Digital

Sorting Algorithm (DSA) algorithm proposed by Zhong et al.

(2013) and blind deconvolution using the deconf() algorithm pro-

posed byRepsilber et al. (2010) implemented inR (version 2.13.1).

For all MMAD-derived estimates, there was a tight correl-

ation between estimates of f (or f0) and reported cell fractions

(Figs 3 and 4). The blind deconvolution approach was particu-

larly impressive for MMAD (r¼ 0.961) and outperformed the

comparator (r¼ 0.798). We did note, however, that when the

gene expression profiles of pure cells were used to computation-

ally microdissect the mixed samples (approach 1) that there was a

scaling artifact, which could be resolved by rescaling each cell

type by a constant term. This artifact was also noted for the

comparator method, supporting the notion of either normaliza-

tion bias or reporting bias.

Fig. 2. Computational microdissection of rat tissue mixture dataset

(GSE19830). We compared the gene expression of pure liver, brain and

lung tissue with estimates obtained by deconvoluting impure (mixed)

tissue samples using MMAD and csSAM. Both MMAD and csSAM

were constrained to use the investigator supplied values of f. We evalu-

ated performance of MMAD without normalization adjustments (super-

vised approach) (A) and with normalization adjustments (semi-supervised

approach) (B). Results were compared with csSAM deconvolution in

both log-space (C) and linear space (D). We note that MMAD outper-

forms csSAM in both log-space and linear space; in particular, the

residual variance is markedly reduced when MMAD is run in a semi-

supervised manner using the bias-correction parameters

Fig. 3. Estimation of cell fraction using MMAD in an immune mixture

dataset (GSE11058). We estimated the fractional contribution of individ-

ual immune cells to mixed samples using gene expression profiles of pure

immune cells (A). There is a slight scaling artifact, which can be filtered

out by multiplying the gene expression profiles of pure cells by an appro-

priate constant (normalization artifact) (B). Results are similarly robust

using predefined characteristic gene subsets (C) or with a blind deconvo-

lution using the top 1% most variable genes (D)
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3.3 Deconvolution with MMAD improves detection of

differentially expressed genes

We then proceeded to investigate whether our model was able to

improve the detection of differential expression of genes that are

differentially expressed only in a specific cell type.

3.3.1 Simulation We considered a mixed tissue dataset in which

colon adenocarcinoma cells, CD8þ T-cells, and adipose cells are

present in varying mixing proportions as per Section 2.5. We

divided these samples into two distinct classes. For samples in

class 1, we downregulated 1% of all genes in each of the cell

types by a factor of 1.5. We also up regulated 1% of all genes in

each cell type by a factor of 1.5. These genes were selected at

random. A total of 40 samples were simulated for each dataset

with 20 samples in class 1 and 20 samples in class 2.

3.3.2 Performance of the global MMAD test statistic We

hypothesized that improvements in the detection of differential

gene expression using the global MMAD test statistic would be

most noticeable in samples with highly variable cell type com-

position. To assess this, we simulated three datasets as per

Section 3.3.1 with high, moderate and low variability in cell frac-

tion (Dirichlet concentration parameters: 3, 30 and 300,

Supplementary Fig. S4). In all cases, the expected fractions of

colorectal adenocarcinoma cells, CD8þ T-cells and adipose cells

were fixed at 0.7, 0.2 and 0.1. We compared the global MMAD

test statistic versus the SAM test statistic for the detection of

differentially expressed genes. Receiver-Operating Characteristic

curves are summarized in Figure 5A. We note that the perform-

ance of MMAD is superior to SAM in cases where cell type

fraction is at least moderately variable. In cases where cell type

variability is low, performance is comparable between MMAD

and SAM.

3.3.3 Performance of the cell-specific MMAD test statistic We

then evaluated the ability of MMAD to properly attribute dif-

ferences in gene expression to the appropriate cell type (Dirichlet

concentration parameter 25, expected cell fractions unchanged

from Section 3.3.2). We computed the cell-specific MMAD test

statistic for each gene and each cell type as well as the csSAM

cell-specific differential expression test statistic. MMAD

performance was similar to csSAM for the most highly expressed

cell type (colon adenocarcinoma). However, for both the CD8þ

T-cells and the adipose cells, detection of differential expression

was superior with MMAD (Fig. 5B).

4 DISCUSSION

Numerous studies have demonstrated the potential of micro-

array expression profiling as a diagnostic, prognostic and pre-

dictive tool. However, widespread adoption of microarray

technologies into clinical and laboratory practice has been lim-

ited in part by the problem of tissue heterogeneity, which is an

unavoidable challenge for investigators evaluating real-world

samples. Such heterogeneity can mask key differences between

sample classes and can limit the ability of investigators to gener-

alize results across studies and across different institutions.

Fig. 4. Comparison of approaches for estimation of cell fraction. MMAD compares favorably with all comparators. We note comparable performance

between MMAD and quadratic deconvolution (Gong et al., 2011) after rescaling (renormalizing) the reported gene expression of pure cell types (r40.99

for both approaches). Performance is also comparable for deconvolution with target gene subsets between MMAD and DSA (Zhong et al., 2013).

MMAD outperforms deconf() (Repsilber et al., 2010) in blind deconvolution

Fig. 5. Detection of differentially expressed genes is improved with

MMAD. The global MMAD test statistic provides greater discriminatory

power than the SAM test-statistic for the detection of differentially

expressed genes in mixed tissue samples with highly variable and moder-

ately variable cell type composition; differences are not seen when vari-

ability in cell type fraction is low (A). In a moderately variable simulation,

MMAD and csSAM perform similarly for detecting differences in differ-

ential expression for the major cell type present in the simulated mixed

tissue samples (colon adenocarcinoma cells, average cell fraction 0.7);

MMAD shows improved ability to detect differential expression in cell

types present at lower frequencies in the simulation (CD8þ T-cells and

adipose cells, average cell fractions 0.2 and 0.1) (B)
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In this article, we designed and validated a flexible new

method for performing computational microdissection of com-

plex tissues and analyzing differences between classes. By

accounting for this heterogeneity with robust methodologies,

we believe that investigators will improve their ability to discover

pertinent (and potentially disease-modifying) differences in gene

expression.

MMAD incorporates features of previous algorithmic

approaches to tissue deconvolution (Abbas et al., 2009; Bolen

et al., 2011; Erkkila et al., 2010; Gong et al., 2011; Lahdesmaki

et al., 2005; Lu et al., 2003; Repsilber et al., 2010; Shen-Orr et al.,

2010; Stuart et al., 2004; Venet et al., 2001; Wang et al., 2006)

and also introduces several novel ideas. Key features of MMAD

include the following:

(1) Computational microdissection with MMAD does not

require prior knowledge about contributing cell types

(although such knowledge can be incorporated into the

model). We have demonstrated that estimates of cell frac-

tion and cell type-specific gene expression can be obtained

using existing gene expression data or cell fraction data

when available or by using a ‘blind’ deconvolution. In all

cases, results obtained with MMAD compare well to pre-

viously described approaches. This is particularly true for

‘blind’ deconvolutions. The flexibility of this approach is

important for analysis of many biologic systems, as the

fractional contribution of individual cell types may be un-

known or known with limited precision.

(2) Biologic variation is modeled assuming log-normal vari-

ation, an assumption which is shared with several standard

normalizations and analysis metrics used to test for differ-

ential expression (Bolstad et al., 2003; Tusher et al., 2001).

Importantly, though, the deconvolution uses the natural

scale gene expression values (not log-transformed) as rec-

ommended in Zhong and Liu (2012). This allows us to fit

the observed data with more realistic models and, conse-

quently, to make more natural inferences about differen-

tial gene expression. A similar statistical model was

recently used by Ahn et al. (2013).

(3) We introduce the concept of effective RNA fraction (as

distinct from the reported RNA fraction) that improves

the results of computational microdissection by account-

ing for subtle normalization and reporting biases.

(4) We note that overfitting is a potential source of bias in

computational microdissection, which has been largely

overlooked in previous approaches. We include a standard

information metric (AICc) during model fit to reduce po-

tential overfitting. We demonstrate that the effect of this

approach is most noticeable in cell types present at low

frequencies within mixed tissue samples.

(5) We introduce several techniques that can be used to com-

pare differences in gene expression between classes, includ-

ing global differences in gene expression between sample

classes (adjusted for tissue heterogeneity), differences in

cell type frequency between sample classes and differences

in gene expression between sample classes at the level of

individual cell types. These metrics improve on standard

approaches for the detection of differentially expressed

genes (e.g. SAM) as well as more recently described

approaches that attempt to incorporate computational

microdissection (csSAM).

We note that deconvolution of gene expression data from

RNAseq experiments is now an area of active research

(Gong and Szustakowski, 2013). We note that although

MMAD cannot be used directly for the analysis of RNAseq

data, the approach that we have outlined in MMAD can easily

be adapted for use in RNAseq experiments and other quantita-

tive sequencing datasets by incorporating the appropriate statis-

tical models. This would be a natural extension of our current

work.

We believe the flexibility provided by MMAD will be key to

allowing tissue deconvolution to be adopted more generally in

microarray studies. Of particular interest will be the application

of deconvolution to tumor samples with the potential to investi-

gate biologically significant changes in both tumor and stroma.

This concept has been strongly driven by findings that gene

expression in tumor associated fibroblasts affects tumor growth

in epithelial cells (Trimboli et al., 2009). Because MMAD has the

potential to derive the characteristic gene expression of a specific

cell type in the microenvironment of a tumor, or other tissue, we

propose that it will now be possible to more rigorously evaluate

specific contributions of the microenvironment to disease devel-

opment in mixed tissue samples, including the evaluation of

changes in gene expression in stromal cells, such as fibroblasts

or macrophages.
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