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Abstract: Storm surges are one of the main drivers for extreme flooding at the coastal areas.
Such events can be characterized with the maximum level in an extreme storm surge event
(surge peak), as well as the duration of the event. Surge projections come from a barotropic model for
the 1950–2100 period, under a severe climate change scenario (RCP 8.5) at the northeastern Spanish
coast. The relationship of extreme storm surges to three large-scale climate patterns was assessed:
North Atlantic Oscillation (NAO), East Atlantic Pattern (EAWR), and Scandinavian Pattern (SC).
The statistical model was built using two different strategies. In Strategy #1, the joint probability
density was characterized by a moving-average series of stationary Archimedean copula, whereas
in Strategy #2, the joint probability density was characterized by a non-stationary probit copula.
The parameters of the marginal distribution and the copula were defined with generalized additive
models. The analysis showed that the mean values of surge peak and event duration were constant
and were independent of the proposed climate patterns. However, the values of NAO and SC

influenced the threshold and the storminess of extreme events. According to Strategy #1, the variance
of the surge peak and event duration increased with a fast shift of negative SC and a positive NAO,
respectively. Alternatively, Strategy #2 showed that the variance of the surge peak increased with
a positive EAWR. Both strategies coincided in that the joint dependence of the maximum surge
level and the duration of extreme surges ranged from low to medium degree. Its mean value was
stationary, and its variability was linked to the geographical location. Finally, Strategy #2 helped
determine that this dependence increased with negative NAO.

Keywords: storm surge; Mediterranean; non-stationarity; copula; generalized additive model; probit

1. Introduction

Human occupation of low-lying coastal regions creates large areas of concentrated human activity,
where the population and their property are exposed to coastal flooding. A relevant part of such
flooding is due to extreme surges, whose consequences may unleash casualties and infrastructure
damage and disrupt essential services [1,2]. Particularly dangerous situations occur when extreme
surge levels are combined with ocean waves and a high tide, then resulting in overtopping and
breaching of sea defenses [3–5]. Low-lying coasts are highly vulnerable areas, in which surges not
only drive flooding, but also erosion [6,7]. Extreme surge events are thus an essential driver to be
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considered in early warning systems and coastal defense planning [8–10]. A proper characterization of
the extreme surge events can lead to an efficient planning of coastal areas.

The quantification of the effect of climate patterns on extreme surge levels [11,12] is becoming
a growing need since large-scale climate patterns represent key modes on the forcings that produce
flooding. Although it has been suggested [13] that surge levels would not change in the future or
could even slightly decrease [14,15] along the Catalan coast (northwestern Mediterranean Sea), how
they will be affected by different climate patterns and the nature of these interactions is still unclear. Among all
the climate patterns identified in the Mediterranean Sea [16], the North Atlantic Oscillation (NAO; Hurrell and
Deser [17]), the East Atlantic West Russian Pattern (EAWR; Barnston and Livezey [16]), and the Scandinavian
Pattern (SC) are some of the most frequently referred to ones for this region [18–23].

In a similar way to wave heights [24], surges can be influenced by NAO [25,26].
Significant correlation between NAO and extreme sea levels has already been assessed at the North
Atlantic Ocean and Mediterranean Sea [27–30]. However, not as much is known on the effects of EAWR

and SC. A relevant question could be how these teleconnection patterns influence both the intensity
and duration of storm surges.

The influence of climate dynamics on extremes [12,31–33] suggests that extreme surge
components should be characterized with non-stationary statistical models, which allow moving
trends. Further, a single non-stationary statistical model can include the whole sample of extreme
events, whereas stationary models require slicing the sample to address shifting trends. Therefore,
non-stationary models perform better than stationary models when characterizing a scarce sample of
extreme events.

Additionally, maximum surge levels and surge duration may show correlation [34]. Extreme
surge intensity at the Mediterranean can be driven by synoptic conditions that may last for days [35].
Hence, the independence assumption between these variables rarely holds valid. A common method
for including dependence among marginal probability distribution functions is with copulas. They
have been used extensively in recent works [36–39]. However, at stationary copulas, the association
parameter is kept constant. A plausible hypothesis is that such association parameters may depend
on large-scale climate indices. This hypothesis implies that a statistical model for storm surges under
changing climates should have non-constant parameters both at the marginals and the copula functions.

This paper aims to characterize storm surge projections at the NW Mediterranean Sea under an
RCP 8.5 scenario. Such analysis comprise: (1) fitting non-stationary probability distributions of both
the extreme surge levels and their duration at the Catalan coast (northwestern Mediterranean Sea,
Figure 1), (2) characterizing the joint probability distribution density of these two variables, under
a non-stationary assumption, and (3) establishing the relationship of the frequency of occurrence
of extreme surge events, the univariate probability distribution functions, and the joint probability
density to NAO, EAWR, SC, and their first two time-derivatives. The fitting sample comes from a
barotropic model that spans the whole Mediterranean Sea that uses as forcings sea level pressure
and wind fields under an RCP 8.5 scenario. The paper is organized into six sections. Following this
Introduction, Section 2 describes the study area. Section 3 describes the theoretical background and
the methodology. Section 4 lists the results. Section 5 discusses them, and Section 6 provides the
main conclusion.
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(a)

(b)

Figure 1. (a) North-Western Mediterranean Sea. The red line rectangle encloses the study area;
(b) Zoom at the Catalan coast. The red dots are the available stations from the barotropic model,
whereas the yellow rhombus is the Barcelona tidal gauge (TG-BCN; REDMARvalidation station).
PROF are the isobaths (in meters). Water depth in meters.

2. Study Area

The Mediterranean Sea (see Figure 1) is a semi-enclosed basin, delimited by the European,
the Asian, and the African continents. It has a narrow connection to the Atlantic Ocean (Gibraltar
Strait), as well as access to the Black Sea. This study considers the Catalan coast, which is located in
the northwestern Mediterranean sector. The sea bottom of the northwestern Mediterranean, delimited
by the coast of the Iberian Peninsula and the longitude 4◦E, has a rather mild slope [28]. The continental
shelf slope at the southern area is wider than at the northern part. Hence, bottom friction has a more
relevant role in the South than at the North.
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The Catalan shoreline is oriented in a northeast to southwest manner. Hence, it is heavily exposed
to southeastern winds. Eastern winds, which also contribute to extreme surges, are frequent during
the summer, triggered by an intense high-pressure area on the British Islands [1]. Along this coast,
the level of intense surges (here given by the mean of the three highest annual independent events)
is slightly above 20 cm, which is much smaller than the highest values in the Mediterranean Sea
(in the north Adriatic Sea, they exceed 60 cm), but is representative of typical values along most of
the Mediterranean coastline [14,28].

The NAO teleconnection pattern has a dipole structure, with its negative center over Greenland
and a positive center over the Atlantic, whose position shifts seasonally from Europe to North
America [16]. The EAWR has its negative center above the northeastern Atlantic and presents
a southeastward gradient leading to a positive anomaly band that extends from the Atlantic to
the Mediterranean Sea [16]. The SC pattern has a three-lobe structure with a negative center above
Scandinavia and positive centers above Western Europe (or just offshore of the Atlantic coast) and
Central Asia. EAWR is characterized by a high pressure located over most of Central Europe and
bounded by two low pressure centers, over West Russia and the mid-Atlantic. Here, the signs
of all anomalies refer to the positive phases and the 500 hPa geopotential maps, where maxima
(positive centers) and minima (negative centers) correspond to anticyclonic and cyclonic circulation,
respectively [16]. All signs are reversed during the negative phase of these patterns. As an example,
it can be seen that the position and speed of the Atlantic jet stream is linked to the phase of EAWR and
NAO, so that positive NAO corresponds to a northward shift of the jet stream and positive phase of
both patterns to its large speed [40].

Both wave climate [19,21,24] and surge levels are affected by climate patterns [27]. Teleconnection
patterns have a different effect on waves in the various areas of the Mediterranean Sea, depending
also on season [19,23]. Positive EAWR implies lower than average significant wave height (SWH),
particularly in the eastern Mediterranean, with a particularly strong effect from January to March.
In winter, a positive NAO corresponds to a situation of reduced westerly surface wind and SWH in
the northern part of the basin. A positive phase of EAWR implies a large reduction of the northwesterly
winds in the western Mediterranean, with a reduction of the SWH of the corresponding wave systems
traveling across the basin [23]. Furthermore, a positive velocity of SC leads to an increased total energy
of the extreme event [21].

The effect of the wind is not disjoint from that of the teleconnections. NAO, EAWR, and SC affect
the winds and the sea level pressure [23]. The overall interaction of NAO, EAWR, and SC also has a
relevant role on surges, with negative NAO leading to an increase in the number of extreme events
and also in their intensity [27].

3. Theoretical Background and Methods

This study consists of a two-step methodology (see Figure 2): (i) a process-based model that
provides data on surge; (ii) a statistical model that characterizes the surge extreme events using the data
produced by the process-based model. Two strategies for modeling the dependence between the surge
components were tested: Strategy #1 (Bivariate Copula Model (BCM)) was related to techniques
proposed by [41], and Strategy #2 (non-stationary BCM) was a modified version of Strategy #1,
but allowing non-stationarity in the copula parameter. The study was completed with (iii) a validation
of the statistical model. The details of the methodology are described in the following sub-sections.
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Figure 2. Flowchart of the proposed hybrid methodology to model the extreme surge events. The steps
of the hybrid methodology are: (1) a process-based model, (2) a statistical model, and (3) validation
of the statistical model. The statistical model (a bivariate copula model) is fed by the output data
from the process-based model. The statistical model can adopt two different strategies, with either a
pseudo-non-stationary and a non-stationary computation of the distribution parameters. Rectangles
refer to data and rhombs to processes. CMCC-CM5, Centro Euro-Mediterraneo sui Cambiamenti
Climatici Climate Model; GPD, Generalized Pareto Distribution; VGAM, Vectorial Generalized
Additive Model; VGLM, Vectorial Generalized Linear Model.

3.1. The Process-Based Model

In the process-based model, dynamical regional projections of storm surge levels (see surge
points in Figure 2) were obtained from a deterministic approach, based on the underlying physics.
The analysis was performed considering projections of surges at the Catalan coast under a
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Representative Concentration Pathway 8.5 (RCP8.5) climate change scenario. This scenario considers
a CO2 concentration in the atmosphere close to 1250 ppm in 2100, which is double that of any
other scenario in the Fifth Assessment Report [42]. The modeling chain started with the Centro
Euro-Mediterraneo sui Cambiamenti Climatici Climate Model (CMCC-CM) [43] Global Circulation
Model (GCM). Its latitude and longitude grid sizes were 0.7484◦ and 0.75◦, respectively.

NAO, EAWR, and SC indices were computed from the CMCC-CM GCM monthly-averaged sea
level pressure fields. Each climate index was based on the difference of normalized sea level pressure at
two specific places. For instance, NAO was estimated from such a difference between Lisbon (Portugal)
and Reykjavik (Iceland). They were also scaled to have a mean value equal to zero and a variance
equal to unity. In order to avoid sudden events that would hinder interpretation, the time series of
climate indices were filtered with a second order low-pass Butterworth filter [44], whose low-pass
period was 10 years.

The GCM provides boundary conditions for the Regional Circulation Model (RCM) called
COSMO-CLM [45]. The COSMO-CLM grid, which has a resolution of 0.125◦ × 0.125◦, spans the
whole Mediterranean region. The next step consisted of applying a 2D horizontal barotropic model,
called Hydrostatic Padua Surface Elevation (HYPSE) [46], which was fed with the COSMO-CLM
atmospheric pressure and wind fields. The HYPSE and the RCM share the same domain and spatial
resolution. The simulation spanned from 1950 to 2100, providing time series for surge with a frequency
of 3 h. This process-based model only considered the short-term contribution to sea level variability.
Hence, time series were preprocessed using a high-pass filter with a cutoff frequency of 1/30 days,
in order to cancel out the long term oscillation of the sea level. For the analysis, these time series,
as well as the values of the climate indices were interpolated to the hour.

Two variables were selected to describe an extreme surge event (Figure 3): maximum surge level
(Sp) and duration of the event (D). D took positive real values; consequently, it was log-transformed for
statistical modeling, to avoid scale effects [47] and to be successfully back-transformed to real values.

Figure 3. Definition of variables for a single extreme surge event. The red solid time series represent
the surge. The discontinuous red line is the threshold. The blue dot shows the maximum level in
the event (Sp). The event has an intermediate calm period of less than 72 h.

3.2. Statistical Model

The data obtained from the process-based method could be characterized statistically (Figure 3).
Strategy #1 provided a first approximation, with the help of a concatenation of stationary joint
probability structures of Sp and D. Then, Strategy #2 was employed, introducing a full non-stationarity
of the joint probability structure, estimation of the marginal probability structures of each variable at
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the same time as the joint probability structure, and the link of the whole joint probability distribution
function to the selected climate indices.

3.2.1. Commonalities of the two strategies

In both cases, the non-stationarity of the marginal distribution functions was addressed with a
Vectorial Generalized Additive Model (VGAM; Yee and Wild [48]). A VGAM allows a wide range
of parametric probability density functions. The parameters related to the storminess, the threshold
(h0), and the frequency of extreme events followed a Poisson process (λ), whereas the surge
components were modeled with a Generalized Pareto Distribution (GPD). A VGAM consisted of
a linear function [49,50]:

ηi(j) = β∗
1(j) + f2(j) (xi2) + . . . + fp(j)

(

xip

)

, (1)

where ηi(j) is the jth dependent variable and xi is the ith independent variable that generates
ηi. ηi is the sum of smooth functions of the individual covariates β∗

1(j) and fp(j). Additive
models did all the smoothing in R, avoiding the large bias introduced in defining areas in R

n.
The mathematical assumptions for regression models reflected the degree of confidence of this type
of model. These assumptions were: (1) non-correlation, (2) normality, and (3) homoscedasticity of
residuals. Assumption 1 was assessed with a autocorrelation function plot. Assumption 2 could be
checked with a quantile-quantile plot against an N

(

0, σ2) distribution, where the sample standard
deviation was used as σ2. Assumption 3 could be analyzed on a scatter plot that contraposed fitted
values to residuals.

It was assumed that the relationship between the threshold h0 and any of the following selected
factor would follow a Laplace distribution. In order to ensure event independence [34], the minimum
time interval between extreme surge events was set to be 72h. A sensibility analysis was carried out on
two possible thresholds: 90th and 95th quantiles of the modeled surge series.

The frequency λ was a mean value of a counting variable. Therefore, it was a counting variable,
as well. In such a case, a Vectorial Generalized Linear Model (VGLM) could be adopted for its
estimation [48]. The VGLM was a particular example of VGAM. The relationship of λ to a factor such
as a climate index could be approximated by a Poisson distribution [51,52].

The definition of a GPD was as follows. Y = X − x0 was the excess of a magnitude X over a
location parameter x0, conditioned to X > x0; the support of Y was

[

0 , ysup

]

[53]. ysup was the upper
bound of the support. The GPD cumulative probability distribution function was, then,

FY (y|β, ξ) = 1 −
(

1 +
ξ

β
y

)− 1
ξ

, 0 ≤ y ≤ ysup, (2)

where β ≥ 0 is the scale parameter and ξ ∈ R is the shape parameter. This β should not be mistaken
by a covariate of the VGAM.

The non-stationary GPD location parameter x0 was estimated through quantile regression [54].
The quantile regression was a specific type of VGAM, and it estimated the 100τ̂% conditional quantile
yτ̂ (x) of a response variable Y as a function u (x, τ) of covariates x. The equation l∗u = lu + ̺uRu had
then to be minimized, where lu = τ̂ ∑

i:ri≥0
|ri| (1 − τ̂) ∑

i:ri<0
|ri| for residuals ri = yi − u (xi, τ̂), and ̺ was

a roughness coefficient that controlled the trade-off between quality of fit to the data and roughness
of the regression function; and R was a roughness penalty [55,56]. Regarding the rest of the GPD
parameters: the shape parameter ξ was assumed to remain constant.

The location and scale parameters could be related to the mean and variance of the population
through the expressions:

E (X) = x0 +
β

1 − ξ
≈ x0, ξ < 1, (3)
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Var (X) =
β2

(1 − ξ)2 (1 − 2ξ)
≈ β2, ξ <

1
2

. (4)

The approximation in Equation (3) remained valid if the orders of magnitude of x0 and β

were similar.
NAO, EAWR, SC, and their first two time-derivatives were eligible climate indices as covariates

for the VGAM [21,52] to predict the threshold h0, the frequency λ, and the GPD parameters.
Using time-derivatives of climate patterns presented an advantage: time-derivatives were associated
with variability in the sharp time gradients of these patterns. Up to two climate indices could be
used to predict h0, λ, and x0. If a climate index had clearly much more influence on these parameters,
then only this single climate index was used, for the sake of simplicity. A linear interpolation function
was selected to relate the covariates to the predictands. The first and second time-derivatives could be
written herein as d (·) and d2 (·), respectively. For example, the first and the second time-derivatives of
NAO could be written as dNAO and d2NAO, respectively.

The fitting criteria were to minimize the the Akaike Information Criterion (AIC; Akaike [57])
and the Bayesian Information Criterion (BIC; Tamura et al. [58]). Several combinations of large-scale
indices were tested, and those ones with the minimum AIC were chosen. This criterion meant
that the selected combination explained more information about the sample than those ones with
higher AIC. Additionally, in order to avoid overfitting, the AIC penalized the combination of several
large-scale indices (i.e., as the number of covariates grew, the AIC increased). Note that in the figures
from Figures 8–13, the discontinuous red line marks the selected large-scale index combination.
The degree of influence of the climate indices was quantified in the following manner: Equation (1)
can be written as:

ηi(j) ≈ β1(j) + Cr · xi2;

for xi2 6= 0, both sides of the equation could be divided by xi2 and be represented as:

ηi(j)/xi2 ≈ β1(j)/xi2 + Cr,

where Cr is the first coefficient of this polynomial expression, and it can be compared to β1(j)/xi2

(called relative order or Orel). In its turn, Orel was herein approximated by the ratio between the mean
of the variable and the order of magnitude of the climate index, which was one.

In both strategies, the joint dependence density among several variables could be modeled by a
multi-dimensional Archimedean copula. A d-dimensional Archimedean copula has the form:

C (F; φ) = G−1 (φ (F1) + · · ·+ φ (Fd)) , F ∈ [0, 1]d , (5)

for a given generator function G [59–61]. A Gumbel generator could define the dependence in the upper
tail of the probability distribution [62]. The fitting criteria was the maximum likelihood method.
The dependence parameter θ could be transformed to Kendall’s τ for easing interpretation [63,64].
τ specified the independence when τ = 0 and total dependence when |τ| → 1. The τ of Kendall was a
different concept from the τ̂ in the quantile regression.

3.2.2. Differences of the Two Strategies for Modeling Dependence

In Strategy #1, the scale parameter β of the non-stationary GPD was estimated by a VGLM. It was
predicted using a series of co-variates, which, in this case, were the selected climate indices. A linear
combination of up to two climate indices was established in Strategy #1 to predict β.

In this strategy as well, the joint probability density was formed by the concatenation of a series
of stationary Archimedean copulas. Constant Kendall’s τs were calculated for time-slices of 15 years
that ranged from 1950 to 2100. Stationarity was assumed for each time-slice, which overlapped with
the previous and latter time-slices by half a year. Such time-slicing for stationary probabilistic models
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is usual in the state-of-the-art [13]. Due to the persistence of the chosen climate indices, the hypothesis
of stationarity was fulfilled within these time-slices. Once all these stationary τ were calculated for
each time-slice, they constituted a time series of a non-stationary τ. Fifteen years was the minimum
time-span that provided a sufficient number of extreme surge events to determine the Archimedean
copula density [65,66]. Time-slices shorter than 15 years did not have enough extreme event samples,
and the statistical model may lead to sampling bias.

Strategy #2 estimated the parameter β of GPD and a non-stationary joint probability density
through a bivariate probit model [41]. Whereas in Strategy #1, the copula was not related to the climate
indices, in Strategy #2, both the parameter β of GPD and the parameter θ of the copula were each
related to the climate indices. Only one climate index was used as a covariate in each one of these
cases, in order to avoid over-complicating the probit model. The parameters of the probit model have
the expression:

η = β01n + Z1β1 + . . . + ZKβK. (6)

In this equation, 1n is an n-dimensional vector made up of one, the kth element β∗
k is the vector

(

β∗
k1, . . . , β∗

kJk

)⊤
from Equation (1) (not related to the parameter β of GPD), and the design matrix

Zk (i, jk) is bkjk (zki).

3.3. Validation of the Non-Stationary Statistical Model

The projections of storm surges showed the general trend of the extreme storm surge events.
Climate projections aimed to reproduce climate due to a set of constraints (for instance, a given
CO2 concentration). However, they were different from other products such as reanalysis. In these
cases, as proposed in [21], a plausible option was to compare empirical Probability Distribution
Functions (PDF) from measurements and fitted parametric PDFs. When two sets of PDFs shared
similar probability weights at the same quantile discretization, a random sample from the fitted PDF
had similar moments as the measurements (i.e., mean, variance, skewness). Therefore, the trend in
their statistical characterization should be comparable to the trend in the observations.

The proximity of the locations of the tidal gauge and the model output was also relevant for
the validation of the model. For instance, the model points at Badalona and Barcelona were near each
other (Figure 1). Therefore, the modeled probability distribution functions of Sp and D of Badalona
could be compared to the ones from the Barcelona tidal gauge (REDMAR; Sea Level Monitoring
Network, Puertos del Estado).

The Kullback–Leibler divergence [67] and the Aitchison distance [68,69] could show the affinity
of two time series of Sp by comparing their probability distribution functions. A set of Sp readings
from gauges, during surge extreme events, is:

{

Sp,1, . . . , Sp,i, . . . , Sp,n
}

, i = 1 ÷ n, n ∈ R, (7)

and a set of model Sp (written as S∗
p, just for this explanation) is:

{

S∗
p,1, . . . , S∗

p,j, . . . , S∗
p,m

}

, j = 1 ÷ n, m ∈ R. (8)

They can be combined to form a joint set:

{

Sp,1, . . . , Sp,i, . . . , Sp,n, S∗
p,1, . . . , S∗

p,j, . . . , S∗
p,m

}

This was partitioned into quantiles multiples of 10 (i.e., 10th, 20th quantiles). There were elements
from both the observed Sp and the model S∗

p in each category of quantiles. Two vectors can be
defined as:
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vecobs,r =
qr+1

∑
qr

p
(

Sp,r
)

, r = 1, ..., 11

and

vecmod,s =
qr+1

∑
qr

p
(

S∗
p,r

)

, r = 1, ..., 11,

where vecobs corresponds to the observations and vecmod corresponds to the model. Each element of
the vector was the summation of the probability distribution function in between two corresponding
quantiles. If two probability distribution functions were similar, the function between two quantiles
should be similar, so each pair of elements in vecobs and vecmod should be close in value.

A Kullback–Leibler divergence Kullback [67] has the form:

DKL (P ‖ Q) = ∑
i

P (i) log
P (i)

Q (i)
. (9)

It measured the extra entropy of the probability distribution Q of the model, with respect to
the probability distribution P of the observations. DKL ranged between zero and infinity. The more
similar two probability distributions were, the smaller the divergence measure should be. Note that
for any i, Q (i) = 0, it must imply P (i) = 0, in order to avoid indetermination. That is, the model
should consider all the values that the observations showed. Furthermore, whenever P (i) = 0,
the contribution of the ith term was null, as lim

x→0
x log (x) = 0.

The Aitchison distance was also a useful tool to compare vecobs and vecmod. The partition
of cumulative probabilities between quantiles ended up being the partition of a whole (the total
cumulative probability) into the quantiles. This kind of data, called “compositional data”, was more
focused on the ratios between the compositions than on their absolute values [70,71]. The Aitchison
distance dealt with compositional data. Its expression is: [68,72]:

d (x, y) =

∣

∣

∣

∣

ln
x (1 − y)

y (1 − x)

∣

∣

∣

∣

, x, y ∈ (0, 1) ∈ R. (10)

where x and y are the two compared vectors. d (x, y) takes values in the interval (0, ∞)∈ R. If all
the kth elements in the two vectors coincided, the distance would be zero.

Note that the modules of P, Q, x, and y were particular expressions of the Kullback–Leibler
divergence or the Aitchison distance and presented an order of magnitude of one. Therefore, the model
resembled the observations when the measures calculated with Equations (9) and (10) were reasonably
smaller than these modules.

4. Results

4.1. Process-Based Model

This subsection addresses the results from HYPSE projections at a set of four specific points.
These points were selected as representatives of the general behavior of the model at the study area.
All four points presented a high variance in Sp and D for the whole period, but they showed a constant
moving average throughout time. For instance, the Sp at Tossa (Figure 4) ranged from 0.14 to 0.43 m,
with a mean equal to 0.21 m. The maximum modeled surges had the same order of magnitude
as the tidal station measurements. Its D ranged between 25 and 530 h, with a mean equal to 68 h,
in the same time period.
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Figure 4. Descriptive plots of the two surge components at the N-2 Tossa model point (period from
1950–2100). Data extracted from the barotropic model. (a) Continuous red line: surge-level at the peak
of the extreme surge event (Sp, in meters); (b) continuous cyan line: duration of the extreme surge
event (D, in hours).

However, two spatial clusters can be stated: (i) a northern one from Llanca to Badalona and (ii) a
southern one from Badalona to the Ebro Delta. As stated in Section 2, the Northern part of the Catalan
Coast was more affected from sharp wind gradients than the South. The central part (Badalona,
Figure 5) featured a transition area. At the north, wind stress from N-NW sectors (i.e., Tramontana
and Mistral winds) drove surges. Then, Sp at Llanca (Figure 6) peaked above 0.25 m more frequently
than at the other points. Whereas Sp values above 0.3 m were uncommon at La Marquesa (15 storms
in Figure 7), there were around 50 storms at Llanca and 30 storms at Tossa. Additionally, high Sp

events were grouped at specific decades, whilst other decades were relatively calmer, with Sp below
0.25 m at Llanca. These results suggested that the variability of large-scale climate may have a role in
the intensity and duration of the events.
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Figure 5. Descriptive plots of the two surge components at the N-5 Badalona model point (period from
1950–2100). Data extracted from the barotropic model. (a) Continuous red line: surge-level at the peak
of the extreme surge event (Sp, in meters); (b) continuous cyan line: Duration of the extreme surge
event (D, in hours).

Storm duration was more homogeneous along the Catalan coast. However, events above 250 h
were more frequent in the North than in the South: around 30 events were above this duration at Llanca
and Tossa, whereas the number decreased to 20 events at La Marquesa. Note also that the exceptional
storm events in the sample (high Sp and D, as the one around 2075) affected the whole study area.
They highlighted an upper bound of what may be possible. However, these rare events were highly
uncertain, and they could not be representative of strong conclusions.
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Figure 6. Descriptive plots of the two surge components at the N-1 Llanca model point (period from
1950–2100). Data extracted from the barotropic model. (a) Continuous red line: surge level at the peak
of the extreme surge event (Sp, in meters); (b) continuous cyan line: duration of the extreme surge
event (D, in hours).
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Figure 7. Descriptive plots of the two surge components at the N-7 Marquesa model point (period
from 1950–2100). Data extracted from the barotropic model. (a) Continuous red line: surge-level at
the peak of the extreme surge event (Sp, in meters); (b) continuous cyan line: duration of the extreme
surge event (D, in hours).

The results of the validation will be shown in the next subsection. The empirical PDF
(from the measurements) and the fitted PDFs are compared with the method stated in Section 3.3.

4.2. Non-Stationary Statistical Models

This subsection handles the second step in the analysis, showing the results from the fitting of
the non-stationary probability distributions. The climate index that presented the strongest influence
on the threshold h0 was, by a significant difference, SC (see Figure 8). Therefore, only this one climate
index was selected, following the principle of parsimony. Its Cr = 0.134 was comparable to the Orel of
surge levels, which was 0.207.

The climate index that presented the strongest influence on the frequency parameter λ was SC.
Its Cr was 0.156, while λ in the Catalan coast was of the order of one to 10 storms/year. Hence, SC was
related to a higher frequency λ.

The climate index combination that mostly affected the value of the location parameter x0 of
the GPD of Sp was a combination of NAO and d2NAO (see Figure 9). Its Cr = −0.001 was significantly
smaller than its Orel = 0.207, exhibiting that a combination of NAO and d2NAO had a small effect on
the mean of Sp. The BIC indices presented analogous trends to the AIC indices. The climate pattern
that mostly affected the value of the location parameter x0 of D was SC (see Figure 9). Its Cr = 0.038
was much smaller than its Orel = 4.187. Thus, the mean value of D was independent of the proposed
climate patterns.
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Figure 8. Akaike Information Criterion (AIC) indices common to both strategies, since they share
the same structure of threshold and frequency of extreme surge events. They show the goodness-of-fit
of the different combinations of climate indices: North Atlantic oscillation (NAO), East Atlantic-West
Russian pattern (EAWR), and Scandinavian pattern (SC). (a) Threshold of the extreme surge event
(h0) and (b) frequency of extreme surge events (λ). The prefix “d-” means “first time-derivative of”,
and the prefix “d2-” means “second time-derivative of”. The discontinuous red line shows the selected
combination of climate patterns in (a) h0 and (b) λ.

−
3
9
6
5

−
3
9
6
0

−
3
9
5
5

−
3
9
5
0

N
A
O

d
N
A
O

d
2
N
A
O

E
A
W

R

d
E
A
W

R

d
2
E
A
W

R

S
C

d
S
C

d
2
S
C

N
A
O
 +

 d
2
N
A
O

Climate index

A
IC

(a)

1
0
4
4
0

1
0
4
7
0

1
0
5
0
0

1
0
5
3
0

N
A
O

d
N
A
O

d
2
N
A
O

E
A
W

R

d
E
A
W

R

d
2
E
A
W

R

S
C

d
S
C

d
2
S
C

Climate index

A
IC

(b)

Figure 9. Akaike Information Criterion (AIC) indices common to both strategies, since they share
the same structure of the location parameters. They compare the effect of different climate indices:
North Atlantic oscillation (NAO), East Atlantic-West Russian pattern (EAWR), and Scandinavian
pattern (SC) on the location parameter x0 of a generalized Pareto distribution fit to (a) the surge
level at the peak of the extreme surge event (Sp) and (b) the duration of the extreme surge event (D).
The prefix “d-” means “first time-derivative of”, and the prefix “d2-” means “second time-derivative
of”. The discontinuous red line shows the selected combination of climate patterns on x0.

In Strategy #1, the climate indices that presented the strongest influence on the value of the scale
parameter β of Sp were a combination of dSC and d2SC (see Figure 10). Its Cr = −0.85 was comparable
to its Orel = 0.207. Thus, negative values of a combination of dSC and d2SC (mainly meaning an
accelerating shift of negative SC) led to larger variance of Sp. The combination of climate indices that
presented the strongest influence on the value of the scale parameter β of D was NAO. Its Cr = 0.16
was, comparable to Orel = 4.187. Therefore, positive values of NAO led to a larger variance of D.
The modeled τ from the dependence structure proposed in Lin-Ye et al. [21] is shown in Figure 11.
This plot presents discontinuities in time-slices that did not have enough extreme surge events to
be fit by a stationary copula. These values of τ ranged between 0.1 and 0.37, thus showing low to
moderate correlation.

In Strategy #2, the climate indices that showed the strongest influence on the scale parameters β

of Sp and D were EAWR and NAO, respectively (see Figures 12 and 13). Cr for the β of Sp was 0.120,
while Orel = 0.207 (the same one as for Sp in Strategy #1). Cr was comparable to Orel , here. Then,
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a positive EAWR led to larger variance of Sp. Cr for D was 0.071, while Orel = 4.187 (the same one
as for D in Strategy #1). Cr was significantly smaller than Orel , here. Then, the variance of D was not
affected by the proposed climate patterns.
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Figure 10. Strategy #1. Akaike Information Criterion (AIC) indices. They compare the effect of
different climate indices: North Atlantic oscillation (NAO), East Atlantic-West Russian pattern (EAWR),
and Scandinavian pattern (SC) on the scale parameter β of a generalized Pareto distribution fit to
(a) the surge level at the peak of the extreme surge event (Sp) and (b) the duration of the extreme
surge event (D). The prefix “d-” means “first time-derivative of”, and the prefix “d2-” means “second
time-derivative of”. The discontinuous red line shows the selected combination of climate patterns
on β.
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Figure 11. Strategy #1. Kendall’s τs of the dependence parameter of a Gumbel Archimedean
copula at the different model points. Each color line represents a node from Figure 1. This plot
presents discontinuities in time-slices that do not have enough extreme surge events to be fit by a
stationary copula.
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Figure 12. Strategy #2. Akaike Information Criterion (AIC) indices. They compare the effect of
different climate indices: North Atlantic oscillation (NAO), East Atlantic-West Russian pattern (EAWR),
and Scandinavian pattern (SC) on the scale parameter β of a generalized Pareto distribution fit to
(a) the surge level at the peak of the extreme surge event (Sp) and (b) the duration of the extreme
surge event (D). The prefix “d-” means “first time-derivative of”, and the prefix “d2-” means “second
time-derivative of”. The discontinuous red line shows the selected combination of climate patterns
on β.
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Figure 13. Strategy #2. Akaike Information Criterion (AIC) indices. They compare the effect of different
climate indices: North Atlantic oscillation (NAO), East Atlantic-West Russian pattern (EAWR), and
Scandinavian pattern (SC) on Kendall’s τ of the dependence parameter of a Gumbel Archimedean
copula. The discontinuous red line shows the selected combination of climate patterns on τ.

The τ computed with the methodology described in Marra and Radice [41] is shown in Figure 14.
It ranged between 0.1 and 0.26. There was the same phase at all model points, but the amplitudes
depended on the point. The climate index that presented the greatest influence on the copula was
NAO (see Figure 13). Its Cr = −4.104 was greater than its Orel = 1.193. Therefore, a negative NAO

led to greater dependence between Sp and D.
The VGAM used to estimate all the parameters complied with the corresponding assumptions

(see Section 3.2). Finally, the Barcelona tidal gauge was used for the validation. For the years 1993–2016,
the Aitchison distance corresponding to Sp was 1.14. The corresponding Kullback–Leibler divergence
was 0.15. The module of Sp was of the order of one, that meant that the PDFs of the measured
and modeled had strong similarity. Then, the statistical characterization of projected Sp resembled
that of observed Sp, in the years 1993–2016. Regarding the event duration, measured and modeled
durations were at the same order of magnitude. On average, the measured surge was above 16 cm at
around 275 h/year. The minimum storm surge modeled was around 24 h, and the most extraordinary
events lasted for almost 500 h. Please note that the proposed definition was that the surge was above
the modeled threshold, which ranged around 15 cm.
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Figure 14. Strategy #2. Dependence parameter τ of the Gumbel Archimedean copula at different model
points, under the climate change scenario RCP8.5. Each color line represents a node from Figure 1.

5. Discussion

HYPSE outputs represent the general behavior of storm surges at the Catalan cast. Previous research
with different GCMs, scenarios, and hydrodynamic models have shown similar trends [13,15]. Modeling
surges at the NW Mediterranean requires atmospheric forcings with a relative high horizontal resolution.
Hence, GCMs’ usual resolution is insufficient for handling the orographic effects presents in the study
Area [73]. In this contribution, the COSMO-CLM model was needed for downscaling the GCM forcings.
Otherwise, common extreme wind regimes such as Mistral or Tramontana could not be properly assessed.
Extreme winds have a prominent role in the local surge due to wind setup [34,35].

The sensibility analysis on the threshold h0 showed that a h0 equal to the 95th quantile would lead
to similar values of D as using the 90th quantile, whereas there would be an insufficient amount of
samples to calculate the joint probability density. Therefore, the 90th quantile of Sp can be considered
an adequate threshold (h0).

The threshold h0 and the frequency λ are directly linked to SC. Usually, if the h0 rises, λ should
decrease, but it seems that SC first leads to a higher λ, and then, this value is not reduced sufficiently
by a rising h0. It can be observed that NAO also has a great influence on λ (see Figure 8). It is similar
to the Gulf of Lions, where a higher λ is reported for negative NAO [74].

Sp and D presented significant variance, but had a constant running mean in the years 1950–2100
(see Figure 4). This is reflected by the results in Table 1, which shows low dependence on the selected
climate patterns for both Sp and D statistical means. Another result for D is that it can take large
values of approximately 20 days. This might be caused by the fact that the selected threshold h0,
set low to avoid excluding an excessive amount of extreme surge events, had the limitation that on
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rare occasions, it could be too permissive in the selection of extreme surge events. From Figure 4, it
seems that the running variance of Sp and D would be larger from 2030 to 2100. That is, the variance
of these two variables seemed to increase with time. This could be explained by the effect of NAO,
EAWR, and SC on the scale parameters β of the GPDs of these two variables.

Table 1. Most influential climate indices on parameters. The variables are: surge level at the peak
of the extreme surge event (Sp) and duration of the extreme surge event (D). The climate indices
are: North Atlantic oscillation (NAO), East Atlantic-West Russian pattern (EAWR), and Scandinavian
pattern (SC). The prefix “d-” means “first time-derivative of”, and the prefix “d2-” means “second
time-derivative of”. Cr is a coefficient from the vectorial generalized additive model and can be
compared to the relative order of magnitude of the variable to the climate index.

Sp D

Both strategies

Storm surge
threshold

SC
(Cr = 0.134)

Frequency λ
SC

(Cr = 0.156)

Location
parameter (x0) of
the generalized

Pareto
distribution

– –

Strategy #1:
Lin-Ye

Scale parameter
β of

the generalized
Pareto

distribution

dSC + d2SC
(Cr = −0.85)

NAO (Cr = 0.16)

Strategy #2:
Marra-Radice

β EAWR (Cr = 0.120) –

Kendall’s τ of
the copula

NAO (Cr = −4.104)

The combination of climate indices that had the most influence on the GPD and copula parameters
varied from Strategies #1 to #2 (see Table 1). This might be the effect of full non-stationarity in Strategy
#2. In the case of doubt, Strategy #2 should prove more reliable and flexible. Its dependence structure
did not depend on time, rather on large-scale climate patterns. Hence, in the case of strong negative
NAO, there would be more probability of high duration surges jointly with high sea levels at the surge
peak. Furthermore, note that, in Strategy #1 (see Figures 9 and 10), the values of AIC are significantly
different between the location parameter x0 and the scale parameter β of GPD. This does not happen
in Strategy #2 (see Figures 12 and 13), where the AIC value for the location parameter x0, the scale
parameter β, and even Kendall’s τ of the dependence parameter are similar in order of magnitude.
This is because, in Strategy #1, a quantile regression VGAM is used to obtain the location parameter
x0, while a VGLM is used to obtain the scale parameter β. In Strategy #2, however, one single
type of model, the probit model, characterizes location parameter x0, the scale parameter β, and
the dependence parameter at the same time. The AIC (and the BIC, which produces similar values for
this methodology) is an information measure of models. Its value can easily be of different orders of
magnitude for different models, while sharing a similar order of magnitude for the same model.

The ξ is always negative in the GPD at these model points, whereas the order of magnitude
of the location parameter x0 and the scale parameter β of the GPD are similar to each other. Thus,
the approximations in Equations (3) and (4) are applicable. A negative shape parameter is related to
probability distribution functions that have finite tails, which means that extreme values have a lesser
importance in these distributions.
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Instead of discussing x0 and β, it is equivalent to talk about the statistical mean and variance,
which are more easily related to physical phenomena. The mean of Sp and the variance of D (in
both strategies) are not affected by NAO, EAWR, nor SC (see Table 1), the same way that the scale
parameter x0 of the GPD is constant. However, there is some evidence of the effect of an external
forcing, possibly another climate pattern. This is out of the scope of this paper, but could be explored
in future work.

The temporal dynamics of SC seems to be key to the variance of Sp, in Strategy #1. It can
be deduced that periods of extraordinary positive gradients of SC would intensify the variability
of Sp. Moreover, a positive NAO would increase the variability of D. It should be noted that a
positive velocity of SC leads to extreme wave storm total energy [21], and a negative NAO is linked
to large SWH [23]. Therefore, periods with these characteristics are especially prone to damage
caused by the joint action of wave storms and extreme surge events. Other external enhancers to the
damage caused by Sp and D are coastal erosion and reduction of the beach width. The reduction of
the beach width occurs by modifying the responses of the coast to the propagation and intensification
of the extreme surge events over a long time.

The correlation between wave storms and extreme surge events has not been considered, as
the dependence density between wave storms and extreme surge events in the Catalan coast is
not entirely clear, in this case. This correlation might depend on the directionality and fetch of
the wave-storm [75,76]. The combined action of storm surges and wind waves may drive increased
coastal water levels [77], even under moderate return periods. Furthermore, if adding sea level
rise due to global warming, then coastal structures’ vulnerability is even more exacerbated [33,78].
Hence, it may be useful to find consistent relationships between the synoptic patterns and the main
hydrodynamic drivers. Such characterization may serve to create design scenarios that would address
moderate waves and surges, jointly with sea level rise. These scenarios may be more frequent (and,
probably, more harmful) than high return period wave storms and/or surges.

Incidentally, the relevant effect of NAO on Sp coincides with existent literature, which states
that the observed surge levels increase in the Catalan coast for negative NAO, because this condition
causes a shift of atmospheric storm tracks towards lower latitudes [28,79]. High observed surge levels
are also reported in the Gulf of Lions, for negative NAO [80].

SC does not present the same relevance in Strategy #2, where it is EAWR that has the strongest
influence on the variance of Sp. Positive EAWR leads to higher variance of D. Additionally, while in
Strategy #1, NAO is an influential climate index on the variance of D, in Strategy #2, the variance of D

does not depend on any of the proposed climate patterns. It is possible that SC lost its influence in a
non-stationary framework such as Strategy #2, where a wider time window is selected.

The Gumbel copula family, which describes the joint probability density among Sp and D,
is symmetric and has its own limitations [81]. However, due to the complexity of the non-stationary
model, a symmetric model allows for a simpler model, whereas some main results, such as the influence
of climate patterns on GPD and copula parameters, can be considerably close to reality, despite
this simplification.

Kendall’s τ, for both strategies, is below 0.37. It ranges from low to moderate (see Figures 11
and 14) and has constant moving means over time. In Strategy #2, the effect of NAO on τ at all these
model points is demonstrated and is evident, as all the time series of τ coincide closely in phase.
Specifically, a negative NAO leads to higher dependence among Sp and D. The coincidence in phase
can also be seen in Strategy #1, where τ is not related to any climate pattern. The τ in Strategy #1
shows more frequent fluctuations than the τ in Strategy #2. Moreover, both figures show that the Tossa,
Lloret, and Badalona model points denote greater variance. This is evident from the amplitude of
the time series, while Llanca and Marquesa present smaller amplitudes of τ. The main reason for this
might be the way that the low-sea level pressures and the extreme wind regime happen in this study
area. Cyclogenesis and propagation of such storm surges are the driving processes. It seems that, in
the northern part of the Catalan Coast, stronger surges and winds are propagated. The surges that
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occur in the southern part of the Catalan Coast come from milder wind fields and sea level pressure
anomalies. Hence, they tend to have lower anomalies.

6. Conclusions

A hybrid approach was used to characterize extreme surge events at the Catalan coast. It consisted
of a process-based model and a statistical model. The process-based model generated projected surge
levels for the period 1950-2100, under the climate change scenario RCP8.5. Extreme surge events were
extracted from this time series through a non-stationary threshold h0, which defined a λ (frequency of
a Poisson’s process) of extreme events and produced the variables Sp (maximum surge level) and D

(duration), describing them.
A statistical model was proposed to characterize the maximum surge level and duration with

GPDs and their joint probability density with Gumbel-type Archimedean copulas. This statistical
model also relates these variables to indices of three climate patterns and their first two time-derivatives:
NAO, EAWR, and SC. Two different strategies were proposed for the statistical model. These two
strategies were based on the bivariate copula model methodology developed in Lin-Ye et al. [21]
(Strategy #1) and its non-stationary version Marra and Radice [41] (strategy #2), each. The strategies
shared all steps except the estimation and establishment of the relationship of the scale parameter
β of the GPD and Kendall’s τ to the climate indices. Strategy #1 estimates β through a VGLM and
characterized the joint probability density by concatenating standard stationary Archimedean copulas.
Strategy #2 integrated the estimation of β along with the non-stationary Archimedean copula, within a
bivariate probit model.

The results showed how SC and its dynamics strongly influenced the threshold and the event
frequency. Both parameters increased with positive SC. Maximum surge level and duration had
a constant moving mean from 1950 to 2100, while their running variance increased with time.
The constant moving mean of the two variables could be explained by the fact that they were not
sensitive to the proposed climate patterns. The increase in the running variance might be due to
the effect of different combinations of climate patterns on the scale parameter β of the GPD used to fit
each variable.

The location parameter x0 of the GPD was not influenced by any of the proposed climate indices.
According to Strategy #1, a combination of rapidly shifting negative SC led to an increase in the variance
of the maximum surge level, whereas the variance of duration increased with positive NAO. In Strategy
#2, the variance of maximum surge level increased with positive EAWR and the variance of duration
was independent of the proposed climate patterns.

In both strategies, the values of Kendall’s τ of the dependence parameter were below 0.4, ranging
from low to medium dependence among maximum surge level and duration. The τ in Strategy #1 had
a constant trend and was similar for all locations. τ in Strategy #2 presented the same phase for all
model points, but provided different amplitudes for each point. In this strategy as well, Kendall’s τ of
the two variables increased with negative NAO.

The big picture of the influence of the proposed climate patterns was that NAO and SC had a
strong influence on the threshold h0 and the frequency λ (according to Strategy #1), the variances of
the maximum surge level and duration, and (according to Strategy #2) the joint probability density.
The knowledge about this relationship between NAO and SC with maximum surge level and duration
could help with predicting changes in maximum surge level and duration, with previous knowledge
about these two climate patterns. Special attention must be paid to Strategy #2, which was the fully
non-stationary model. This could improve the design of coastal structures that have to withstand the
action caused by extreme surge events, as well as protection measures for mitigating coastal risk levels.

Author Contributions: Conceptualization, J.L.-Y. and M.G.-L.; methodology, J.L.-Y., M.G.-L., and V.G.; software,
J.L.-Y., P.L., and D.C.; validation, J.L.-Y, M.G.-L., and B.P.-G.; formal analysis, J.L.-Y., M.G.-L., P.L., M.O., and V.G.;
investigation, J.L.-Y., M.G.-L., P.L., and D.C. ; resources, P.L., D.C., and B.P.-G.; data curation, J.L.-Y., D.C., and
M.O.; writing, original draft preparation, J.L.-Y.; writing, review and editing, M.G.-L., M.O., P.L., B.P.-G., and V.G.;



Water 2020, 12, 472 20 of 23

visualization, J.L.-Y. and M.O.; supervision, V.G. and B.P.-G.; project administration, A.S.-A. and V.G.; funding
acquisition, A.S.-A. All authors read and agreed to the published version of the manuscript.

Funding: This research was funded by the European project CEASELESS(H2020-730030-CEASELESS),
the Spanish national project COBALTO(CTM2017-88036-R), the MINECO FEDER Funds co-funding
CODA-RETOS(MTM2015-65016-C2-2-R), and by the Agencia de Gestio d’Ajuts Universitaris i de Recerca
(AGAUR) of the Generalitat de Catalunya under the project “Compositional and Spatial Data Analysis” (COSDA)
(Ref. 2017SGR656;2017-2019). As a fellow group, we would also like to thank the Secretary of Universities and
Research of the department of Economics of the Generalitat de Catalunya (Refs. 2014SGR1253 and 2014SGR551).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to publish
the results.

Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion
CMIP5 Coupled Model Intercomparison Project 5
EAWR East Atlantic Pattern
GCM General Circulation Model
GPD Generalized Pareto Distribution
HYPSE Hydrostatic Padua Surface Elevation Model
NAO North Atlantic Oscillation
PDF Probability Distribution Function
RCM Regional Circulation Model
REDMAR RED de MAReográfos (Spanish Acronym for Puertos del Estado Tidal Monitoring Network)
SC Scandinavian Pattern
SWH Significant Wave Height
VGAM Vectorial Generalized Additive Model
VGLM Vectorial Generalized Linear Model

References

1. Bolaños, R.; Jordà, G.; Cateura, J.; López, J.; Puigdefàbregas, J.; Gómez, J.; Espino, M.The XIOM: 20 years of a
regional coastal observatory in the Spanish Catalan coast. J. Mar. Syst. 2009, 77, 237–260. [CrossRef]

2. Soomere, T.; Pindsoo, K. Spatial variability in the trends in extreme storm surges and weekly-scale high
water levels in the eastern Baltic Sea. Cont. Shelf Res. 2016, 115, 53–64. [CrossRef]

3. Brown, J.D.; Spencer, T.; Moeller, I. Modeling storm surge flooding of an urban area with particular reference
to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour. Res. 2007, 43.
[CrossRef]

4. Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.;
Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise.
Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [CrossRef] [PubMed]

5. Zhang, H.; Cheng, W.C.; Qiu, X.X.; Feng, X.B.; Gong, W.P. Tide-surge interaction along the east coast of
the Leizhou Peninsula, South China Sea. Cont. Shelf Res. 2017, 142, 32–49. [CrossRef]

6. Ullmann, A.; Pirazzoli, P.A.; Tomasin, A. Sea surges in Camargue: Trends over the 20th century.
Cont. Shelf Res. 2007, 27, 922–934. [CrossRef]

7. Staneva, J.; Wahle, K.; Koch, W.; Behrens, A.; Fenoglio-Marc, L.; Stanev, E.V. Coastal flooding: impact of
waves on storm surge during extremes - a case study for the German Bight. Nat. Hazards Earth Sys. Sci.

2016, 16, 2373–2389. [CrossRef]
8. Sánchez-Arcilla, A.; García-León, M.; Gracia, V.; Devoy, R.; Stanica, A.; Gault, J. Managing coastal

environments under climate change: Pathways to adaptation. Sci. Total Environ. 2016, 572, 1336–1352.
[CrossRef]

9. Krien, Y.; Testut, L.; Islam, A.K.M.S.; Bertin, X.; Durand, F.; Mayet, C.; Tazkia, A.R.; Becker, M.; Calmant, S.;
Papa, F.; et al. Towards improved storm surge models in the northern Bay of Bengal. Cont. Shelf Res.

2017, 135, 58–73. [CrossRef]

http://dx.doi.org/10.1016/j.jmarsys.2007.12.018
http://dx.doi.org/10.1016/j.csr.2015.12.016
http://dx.doi.org/10.1029/2005WR004597
http://dx.doi.org/10.1073/pnas.1222469111
http://www.ncbi.nlm.nih.gov/pubmed/24596428
http://dx.doi.org/10.1016/j.csr.2017.05.015
http://dx.doi.org/10.1016/j.csr.2006.12.001
http://dx.doi.org/10.5194/nhess-16-2373-2016
http://dx.doi.org/10.1016/j.scitotenv.2016.01.124
http://dx.doi.org/10.1016/j.csr.2017.01.014


Water 2020, 12, 472 21 of 23

10. Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Sierra, J.P. Coastal Flooding and Erosion under a Changing
Climate: Implications at a Low-Lying Coast (Ebro Delta). Water 2020, 12, 346. [CrossRef]

11. Silva, A.T.; Naghettini, M.; Portela, M.M. On some aspects of peaks-over-threshold modeling of floods under
nonstationarity using climate covariates. Stoch. Environ. Res. Risk Assess. 2016, 30, 207–224. [CrossRef]

12. Du, T.; Xiong, L.H.; Xu, C.Y.; Gippel, C.J.; Guo, S.; Liu, P. Return period and risk analysis of nonstationary
low-flow series under climate change. J. Hydrol. 2015, 527, 234–250. [CrossRef]

13. Vousdoukas, M.I.; Voukouvalas, E.; Annunziato, A.; Giardino, A.; Feyen, L. Projections of extreme storm
surge levels along Europe. Clim. Dyn. 2016, 1–20. [CrossRef]

14. Conte, D.; Lionello, P. Characteristics of large positive and negative surges in the Mediterranean Sea and
their attenuation in future climate scenarios. Glob. Planet. Chang. 2013, 111, 159–173. [CrossRef]

15. Marcos, M.; Jordà, G.; Gomis, D.; Pérez, B. Changes in storm surges in southern Europe from a regional
model under climate change scenarios. Glob. Planet. Chang. 2011, 77, 116–128. [CrossRef]

16. Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric
Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [CrossRef]

17. Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation.
J. Marine Syst. 2009, 78, 28–41. [CrossRef]

18. Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier: Amsterdam,
The Netherlands, 2006; Volume 4.

19. Lionello, P.; Sanna, A. Mediterranean wave climate variability and its links with NAO and Indian Monsoon.
Clim. Dyn. 2005, 25, 611–623. [CrossRef]

20. Lionello, P.; Cogo, S.; Galati, M.; Sanna, A. The Mediterranean surface wave climate inferred from future
scenario simulations. Glob. Planet. Change 2008, 63, 152–162. [CrossRef]

21. Lin-Ye, J.; García-León, M.; Gràcia, V.; Ortego, M.I.; Lionello, P.; Sánchez-Arcilla, A. Multivariate statistical
modeling of future marine storms. Appl. Ocean Res. 2017, 65, 192–205. [CrossRef]

22. Trigo, R.M.; Osborn, T.J.; Corte-Real, J.M. The North Atlantic Oscillation influence on Europe:
Climate impacts and associated physical mechanisms. Clim. Res. 2002, 20, 9–17. [CrossRef]

23. Ulbrich, U.; Lionello, P.; Belusic, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, F.G.; Leckebusch, G.C.;
Luterbacher, J.; Maugeri, M.; Maheras, P.; et al. 5—Climate of the Mediterranean: Synoptic Patterns,
Temperature, Precipitation, Winds, and Their Extremes. In The Climate of the Mediterranean Region; Lionello, P.,
Ed.; Elsevier: Oxford, UK, 2012; pp. 301–346. [CrossRef]

24. Lionello, P.; Galati, M.B. Links of the significant wave height distribution in the Mediterranean sea with
the Northern Hemisphere teleconnection patterns. Adv. Geosci. 2008, 17, 13–18. [CrossRef]

25. Tsimplis, M.N.; Shaw, A.G.P.; Flather, R.A.; Woolf, D.K. The influence of the North Atlantic Oscillation on
the sea-level around the northern European coasts reconsidered: The thermosteric effects. Philos. Trans. A

Math. Phys. Eng. Sci. 2006, 364, 845–856. [CrossRef] [PubMed]
26. Woodworth, P.; Flather, R.A.; Williams, J.A.; Wakelin, S.L.; Jevrejeva, S. The dependence of U.K. extreme sea

levels and storm surges on the North Atlantic Oscillation. Cont. Shelf Res. 2007, 27, 935–946. [CrossRef]
27. Cid, A.; Menéndez, M.; Castanedo, S.; Abascal, A.J.; Méndez, F.J.; Medina, R. Long-term changes in

the frequency, intensity and duration of extreme storm surge events in southern Europe. Clim. Dyn.

2016, 46, 1503–1516. [CrossRef]
28. Lionello, P.; Conte, D.; Marzo, L.; Scarascia, L. The contrasting effect of increasing mean sea level and

decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea
in the mid 21st century. Glob. Planet. Chang. 2016, 151, 80–91. [CrossRef]

29. Wadey, M.P.; Haigh, I.D.; Brown, J.M. A century of sea level data and the UK’s 2013/14 storm surges: an
assessment of extremes and clustering using the Newlyn tide gauge record. Ocean Sci. 2014, 10, 1031–1045.
[CrossRef]

30. Wakelin, S.L.; Woodworth, P.L.; Flather, R.A.; Williams, J.A. Sea-level dependence on the NAO over the NW
European Continental Shelf. Geophy. Res. Lett. 2003, 30, doi:10.1029/2003GL017041.

31. Hemer, M.A.; Trenham, C.E. Evaluation of a CMIP5 derived dynamical global wind wave climate model
ensemble. Ocean Model. 2016, 103, 190–203, doi:10.1016/j.ocemod.2015.10.009. [CrossRef]

32. Trenberth, K.; Fasullo, J.; Shepherd, T. Attribution of climate extreme events. Nat. Clim. Chang.

2015, 5, 725–730. [CrossRef]

http://dx.doi.org/10.3390/w12020346
http://dx.doi.org/10.1007/s00477-015-1072-y
http://dx.doi.org/10.1016/j.jhydrol.2015.04.041
http://dx.doi.org/10.1007/s00382-016-3019-5
http://dx.doi.org/10.1016/j.gloplacha.2013.09.006
http://dx.doi.org/10.1016/j.gloplacha.2011.04.002
http://dx.doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
http://dx.doi.org/10.1016/j.jmarsys.2008.11.026
http://dx.doi.org/10.1007/s00382-005-0025-4
http://dx.doi.org/10.1016/j.gloplacha.2008.03.004
http://dx.doi.org/10.1016/j.apor.2017.04.009
http://dx.doi.org/10.3354/cr020009
http://dx.doi.org/10.1016/B978-0-12-416042-2.00005-7
http://dx.doi.org/10.5194/adgeo-17-13-2008
http://dx.doi.org/10.1098/rsta.2006.1740
http://www.ncbi.nlm.nih.gov/pubmed/16537143
http://dx.doi.org/10.1016/j.csr.2006.12.007
http://dx.doi.org/10.1007/s00382-015-2659-1
http://dx.doi.org/10.1016/j.gloplacha.2016.06.012
http://dx.doi.org/10.5194/os-10-1031-2014
http://dx.doi.org/10.1016/j.ocemod.2015.10.009
http://dx.doi.org/10.1038/nclimate2657


Water 2020, 12, 472 22 of 23

33. Campos, Á.; García-Valdecasas, J.M.; Molina, R.; Castillo, C.; Álvarez-Fanjul, E.; Staneva, J. Addressing
Long-Term Operational Risk Management in Port Docks under Climate Change Scenarios—A Spanish Case
Study. Water 2019, 11, 2153. [CrossRef]

34. Marcos, M.; Tsimplis, M.N.; Shaw, A.G.P. Sea level extremes in southern Europe. J. Geophys. Res. Oceans

2009, 114. [CrossRef]
35. Lionello, P.; Conte, D.; Reale, M. The effect of cyclones crossing the Mediterranean region on sea level

anomalies on the Mediterranean Sea coast. Nat. Hazards Earth Syst. Sci. 2019, 19, 1541–1564. [CrossRef]
36. De Michele, C.; Salvadori, G.; Passoni, G.; Vezzoli, R. A multivariate model of sea storms using copulas.

Coast. Eng. 2007, 54, 734–751. [CrossRef]
37. Wahl, T.; Mudersbach, C.; Jensen, J. Assessing the hydrodynamic boundary conditions for risk analyses in

coastal areas: A multivariate statistical approach based on Copula functions. Nat. Hazards Earth Syst. Sci.

2012, 12, 495–510. [CrossRef]
38. Corbella, S.; Stretch, D.D. Simulating a multivariate sea storm using Archimedean copulas. Coast. Eng.

2013, 76, 68–78. [CrossRef]
39. Masina, M.; Lamberti, A.; Archetti, R. Coastal flooding: A copula based approach for estimating the joint

probability of water levels and waves. Coast. Eng. 2015, 97, 37–52. [CrossRef]
40. Woollings, T.; Blackburn, M. The North Atlantic jet stream under climate change and its relation to the NAO

and EA patterns. J. Clim. 2012, 25, 886–902. [CrossRef]
41. Marra, G.; Radice, R. Bivariate copula additive models for location, scale and shape. Comp. Stat. Data Anal.

2017, 112, 99–113. [CrossRef]
42. Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.;

Midgley, P. IPCC, 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis.

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.

43. Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Fogli, P.G.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A.
Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation
Model. J. Clim. 2011, 24, 4368–4384. [CrossRef]

44. Butterworth, S. On the theory of filter amplifiers. Wireless Eng. 1930, 7, 536–541.
45. Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. J.

2008, 17, 347–348. [CrossRef]
46. Lionello, P.; Mufato, R.; Tomasin, A. Sensitivity of free and forced oscillations of the Adriatic Sea to sea level

rise. Clim. Res. 2005, 29, 23–29. [CrossRef]
47. Egozcue, J.J.; Pawlowsky-Glahn, V.; Ortego, M.I.; Tolosana-Delgado, R. The effect of scale in daily

precipitation hazard assessment. Nat. Hazards Earth Sys. Sci. 2006, 6, 459–470. [CrossRef]
48. Yee, T.W.; Wild, C.J. Vector Generalized Additive Models. J. R. Stat. Soc. Series B. Methodol. 1996, 58, 481–493.

[CrossRef]
49. Fessler, J. Nonparametric fixed-interval smoothing with vector splines. Signal Process. IEEE Trans.

1991, 39, 852–859. [CrossRef]
50. Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; CRC Press: Boca Raton, FL, USA, 1990; Volume 43.
51. Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc.

Series C Appl. Stat. 2005, 54, 507–554. [CrossRef]
52. Yee, T.W.; Stephenson, A.G. Vector generalized linear and additive extreme value models. Extremes 2007,

10, 1–19. [CrossRef]
53. Coles, S. An introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; pp. 801–804.
54. Koenker, R. Quantile Regression; Econometric Society Monographs; Cambridge University Press:

Cambridge, UK, 2005.
55. Northrop, P.J.; Jonathan, P. Threshold modeling of spatially dependent non-stationary extremes with

application to hurricane-induced wave heights. Environmetrics 2011, 22, 799–809, doi:10.1002/env.1106.
[CrossRef]

56. Jonathan, P.; Ewans, K.; Randell, D. Joint modeling of extreme ocean environments incorporating covariate
effects. Coast. Eng. 2013, 79, 22–31. [CrossRef]

57. Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [CrossRef]

http://dx.doi.org/10.3390/w11102153
http://dx.doi.org/10.1029/2008JC004912
http://dx.doi.org/10.5194/nhess-19-1541-2019
http://dx.doi.org/10.1016/j.coastaleng.2007.05.007
http://dx.doi.org/10.5194/nhess-12-495-2012
http://dx.doi.org/10.1016/j.coastaleng.2013.01.011
http://dx.doi.org/10.1016/j.coastaleng.2014.12.010
http://dx.doi.org/10.1175/JCLI-D-11-00087.1
http://dx.doi.org/10.1016/j.csda.2017.03.004
http://dx.doi.org/10.1175/2011JCLI4104.1
http://dx.doi.org/10.1127/0941-2948/2008/0309
http://dx.doi.org/10.3354/cr029023
http://dx.doi.org/10.5194/nhess-6-459-2006
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02095.x
http://dx.doi.org/10.1109/78.80907
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x
http://dx.doi.org/10.1007/s10687-007-0032-4
http://dx.doi.org/10.1002/env.1106
http://dx.doi.org/10.1016/j.coastaleng.2013.04.005
http://dx.doi.org/10.1007/BF02294359


Water 2020, 12, 472 23 of 23

58. Tamura, Y.; Sato, T.; Ooe, M.; Ishiguro, M. A procedure for tidal analysis with a Bayesian information
criterion. Geophys. J. Int. 1991, 104, 507–516. [CrossRef]

59. Sklar, A. Fonctions dé Repartition à n Dimension et Leurs Marges; Université Paris 8: Paris, France, 1959.
60. Nelsen, R. An Introduction to Copulas; Springer Science & Business Media: New York, NY, USA, 2007.
61. Okhrin, O.; Okhrin, Y.; Schmid, W. On the structure and estimation of hierarchical Archimedean copulas.

J. Econom. 2013, 173, 189–204. [CrossRef]
62. Lin-Ye, J.; García-León, M.; Gràcia, V.; Sánchez-Arcilla, A. A multivariate statistical model of extreme events:

An application to the Catalan coast. Coast. Eng. 2016, 117, 138 – 156. [CrossRef]
63. Kendall, M. A new measure of rank correlation. Biometrika 1937, 6, 83–93.
64. Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework.

Hydrol. Earth Syst. Sci. 2011, 15, 3293–3305. [CrossRef]
65. Joe, H. Dependence Modeling with Copulas; Chapman and Hall/CRC: London, UK, 2014.
66. Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature: An Approach Using Copulas;

Springer Science & Business Media: Amsterdam, The Netherlands, 2007; Volume 56.
67. Kullback, S. Information Theory and Statistics; Courier Corporation: Chelmsford, MA, USA, 1997.
68. Aitchison, J. On criteria for measures of compositional difference. Math. Geol. 1992, 24, 365–379. [CrossRef]
69. Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data;

John Wiley & Sons: Hoboken, NJ, USA, 2015.
70. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B Methodol. 1982, 44, 139–177.

[CrossRef]
71. Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric logratio transformations

for compositional data analysis. Math. Geol. 2003, 35, 279–300. [CrossRef]
72. Pawlowsky-Glahn, V.; Egozcue, J.J. Geometric approach to statistical analysis on the simplex. Stoch. Environ.

Res. Risk Assess. 2001, 15, 384–398. [CrossRef]
73. Obermann-Hellhund, A.; Conte, D.; Somot, S.; Torma, C.Z.; Ahrens, B. Mistral and Tramontane wind

systems in climate simulations from 1950 to 2100. Clim. Dyn. 2018, 50, 693–703. [CrossRef]
74. Ullmann, A.; Moron, V. Weather regimes and sea surge variations over the Gulf of Lions

(French Mediterranean coast) during the 20th century. Int. J. Clim. 2008, 28, 159–171. [CrossRef]
75. Bertin, X.; Li, K.; Roland, A.; Bidlot, J.R. The contribution of short-waves in storm surges: Two case studies

in the Bay of Biscay. Cont. Shelf Res. 2015, 96, 1–15. [CrossRef]
76. Brown, J.M.; Wolf, J. Coupled wave and surge modeling for the eastern Irish Sea and implications for model

wind-stress. Cont. Shelf Res. 2009, 29, 1329–1342. [CrossRef]
77. Marcos, M.; Rohmer, J.; Vousdoukas, M.I.; Mentaschi, L.; Le Cozannet, G.; Amores, A. Increased Extreme

Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves. Geophys. Res. Lett.

2019, 46, 4356–4364. [CrossRef]
78. Mase, H.; Tsujio, D.; Yasuda, T.; Mori, N. Stability analysis of composite breakwater with wave-dissipating

blocks considering increase in sea levels, surges and waves due to climate change. Ocean Eng. 2013, 71, 58–65.
[CrossRef]

79. Tsimplis, M.N.; Álvarez-Fanjul, E.; Gomis, D.; Fenoglio-Marc, L.; Pérez, B. Mediterranean Sea level trends:
Atmospheric pressure and wind contribution. Geophys. Res. Lett. 2005, 32, L20602. [CrossRef]

80. Ullmann, A.; Pirazzoli, P.; Moron, V. Sea surges around the Gulf of Lions and atmospheric conditions.
Glob. Planet. Chang. 2008, 63, 203–214. [CrossRef]

81. Vanem, E. Joint statistical models for significant wave height and wave period in a changing climate.
Mar. Struct. 2016, 49, 180–205. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-246X.1991.tb05697.x
http://dx.doi.org/10.1016/j.jeconom.2012.12.001
http://dx.doi.org/10.1016/j.coastaleng.2016.08.002
http://dx.doi.org/10.5194/hess-15-3293-2011
http://dx.doi.org/10.1007/BF00891269
http://dx.doi.org/10.1111/j.2517-6161.1982.tb01195.x
http://dx.doi.org/10.1023/A:1023818214614
http://dx.doi.org/10.1007/s004770100077
http://dx.doi.org/10.1007/s00382-017-3635-8
http://dx.doi.org/10.1002/joc.1527
http://dx.doi.org/10.1016/j.csr.2015.01.005
http://dx.doi.org/10.1016/j.csr.2009.03.004
http://dx.doi.org/10.1029/2019GL082599
http://dx.doi.org/10.1016/j.oceaneng.2012.12.037
http://dx.doi.org/10.1029/2005GL023867
http://dx.doi.org/10.1016/j.gloplacha.2007.10.002
http://dx.doi.org/10.1016/j.marstruc.2016.06.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Theoretical Background and Methods
	The Process-Based Model
	Statistical Model
	Commonalities of the two strategies
	Differences of the Two Strategies for Modeling Dependence

	Validation of the Non-Stationary Statistical Model 

	Results 
	Process-Based Model
	Non-Stationary Statistical Models

	Discussion
	Conclusions
	References

