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Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic 	ne particulate matter (or
PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact
of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and
geophysical characteristics, which complicate the implementation of themost advancedmodels of weather forecast.�us, this paper
proposes amachine learning approach based on six years ofmeteorological and pollution data analyses to predict the concentrations
of PM2.5 from wind (speed and direction) and precipitation levels. �e results of the classi	cation model show a high reliability in
the classi	cation of low (<10�g/m3) versus high (>25�g/m3) and low (<10 �g/m3) versus moderate (10–25�g/m3) concentrations
of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong
winds or high levels of precipitation). �e high correlation between estimated and real data for a time series analysis during the
wet season con	rms this 	nding. �e study demonstrates that the use of statistical models based on machine learning is relevant
to predict PM2.5 concentrations from meteorological data.

1. Introduction

�e e�ects of rapid growth of the world’s population are
re�ected in the overuse and scarcity of natural resources,
deforestation, climate change, and especially environmental
pollution. Currently, more than half of the global population
lives in urban areas, and this number is expected to grow to
about 66% by 2050, mostly due to the urbanization trends
in developing countries [1]. According to the latest urban air
quality database, 98% of cities in low and middle income
countries withmore than 100,000 inhabitants do notmeet the
WorldHealthOrganization (WHO) air quality guidelines [2].

A recent study using a global atmospheric chemistry
model estimated that 3.3 million annual premature deaths
worldwide are linked to outdoor air pollution, which is ex-
pected to double by 2050, mostly due to anthropogenic 	ne
particulate matter (aerodynamic diameter < 2.5 �m; PM2.5)
[3]. Over the last decade, evidence has been growing that

exposure to 	ne particulate air pollution has adverse e�ects
on cardiopulmonary health [4].

A recent air quality study in Quito, the capital of Ecuador,
concurs that long-term levels of 	ne particulate pollution are
not only exceeding the WHO’s recommended levels of

10 �g/m3 but also are higher than the national standards of

15 �g/m3 [5]. And even though the overall levels of 	ne par-
ticulate pollution have been decreasing due to active e�orts
of the local and national governments in the last decade,
in some locations of the city the air quality has continued to
deteriorate. �e latter re�ects the global trends of urbaniza-
tion and motorization.

In addition to the impact of urbanization and rapid
population growth, the pollution levels in the cities are mod-
ulated by meteorological factors [6]. Most importantly, the
depth of mixing layer (the lower layer of troposphere mixing
surface emissions) o�en depends on solar radiation and thus
temperature in the area. �e shallower the mixing depth is,
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the less diluted the daily emissions get. �erefore, tempera-
ture shows a reducing impact on 	ne particulatematter levels,
through convection [7]. In addition, the formation and evolu-
tion of photochemical smog are dependent on solar radiation
and temperature; meanwhile, wind speed tends to help
ventilate air pollutants and/or transport them to other areas,
even if the emission sources are not present in that region
[8, 9].�is can result in increased levels of air pollution down-
wind from the original source, which directly depends on
the wind direction [8]. Increased relative humidity has been
shown to make even 	ne particles heavier, helping the dry
deposition process of removal, while precipitation has a direct
e�ect of scavenging by wet deposition [7, 8]. In addition,
some studies di�erentiate between the seasons, as di�erent
parameters have di�erent e�ects during the year, due to the
combination of conditions [8, 9]. �us, it is clearly impos-
sible to rely on a single parameter to fully understand the
urban pollution, especially if the study area is in a nonho-
mogeneous and complex terrain. �is fact justi	es the elab-
oration of models that take into account heterogeneous data
to predict air quality.

Currently, three major approaches are used to forecast
PM2.5 concentrations: statistical models, chemical transport,
and machine learning. Statistical models, which are mainly
based on single variable linear regression, have shown a nega-
tive correlation between di�erent meteorological parameters
(wind, precipitation, and temperature) and PM concentra-
tions (PM10, PM2.5, and PM1.0) [7]. Chemical transport and
Atmospheric Dispersion Modeling are numerical methods,
and the most advanced ones are WRF-Chem and CMAQ.
�ese models can be used to predict atmospheric pollution,
but their accuracy relies on an updated source list that is very
di�cult to produce [10]. In addition, complex geophysical
characteristics of locations with complex terrain complicate
the implementation of these models of weather and pollution
forecast mostly due to the complexity of the air �ows (wind
speed and direction) around the topographic features [11,
12]. Unlike a pure statistical method, a machine learning
approach can consider several parameters in a single model.
�e most popular classi	ers to forecast pollution from mete-
orological data are arti	cial Neural Networks [13–15]. Other
successful studies use hybrid or mixed models that combine
several arti	cial intelligence algorithms, such as fuzzy logic
and Neural Network [16], or Principal Component Analysis
and Support Vector Machine [17], or numerical methods and
machine learning [10].

Recent studies show that the machine learning approach
seems to overcome the other two methods for forecasting
pollution [9, 10].�is is the reason why it is increasingly used
to predict air quality [13, 17–21]. However, the data mining
does not only di�er from one study to another, in terms of
classi	cation algorithms, but also regarding the used features.
Some of them consider a quite exhaustive list of meteoro-
logical factors [15, 16], whereas others proceed with a careful
selection [13, 14, 17, 22] or do not even use climatic parameters
at all [18]. Sincemachine learning is a very promisingmethod
to forecast pollution, we propose applying this approach
to predict PM2.5 concentration in Quito. �is prediction is
based on a selection of meteorological features for two main

reasons: 	rst because amodel using onlymeteorological data,
which can be easily obtained in any urban area, is cheaper
than an air quality monitoring system and second because a
general model that may work for any city is not realistic [10],
which implies that a selection of meteorological parameters
must be performed in order to 	nd the bestmodel for the cap-
ital city of Ecuador. Quito is located in the Andes cordillera in
the tropical climate zone, characterized by two seasons with
di�erent accumulation of precipitation.However, the temper-
ature, the pressure, and even the amount of solar radiation do
not vary much during the year. Moreover, the wind direction
and speed highly depend on the topographic features of com-
plex terrain in which a city is positioned and usually present
one of the biggest challenges in forecasting weather and
air quality. �erefore, this research aims to study the con-
nectivity between three selected meteorological factors, wind
speed, wind direction, and precipitation, and PM2.5 pollution
in two districts located in northwestern Quito.

In this work, we 	rst present a spatial visualization of
the distribution of 	ne particulate matter trends according to
wind (speed and direction) and precipitation parameters in
two locations in Quito.�is part includes a description of the
preparation of the data for classi	cation. �en, various
machine learning models are exploited to classify di�erent
levels of PM2.5, namely, Boosted Trees and Linear Support
Vector Machines. Finally, a Neural Network regression and a
time series analysis are applied to provide insight about the
parametric boundaries, in which the classi	cation models
perform adequately. In the 	nal section, we draw up themain
conclusions and suggestions for future work.

2. Data Collection

2.1. Site Description. Unlikemost of South America, themost
urbanized continent on the planet (81%), Ecuador, is one
of the few countries in the region with only 64% of total
population living in urban areas [23]. However, the rate of
urbanization has increased over the past decade. Quito
sprawls north to south on a long plateau lying on the east side
of the Pichincha volcano (alt. 4,784m.a.s.l., meters above sea
level) in the Andes cordillera at an altitude of 2,850m.a.s.l.
(see Figure 1). According to the 2010 census, Quito’s metro

area is currently 4,217.95 km2 with a population over 2,239,191
and is expected to increase to almost 2.8 million by 2020,
making the city the most populous city in the country,
overgrowing Guayaquil [24]. �e city is contained within a
number of valleys at 2,300–2,450m.a.s.l. and terraces varying
from 2,700 to 3,000m.a.s.l. altitude. Due to Quito’s location
on the Equator, the city receives direct sunlight almost all year
round, and, due to its altitude, Quito’s climate is mild,
spring-like all year round. �e region has two seasons, dry
(June–August, average precipitation 14mm/month) and wet
(September–May, average precipitation 59mm/month), with
most of the rainfall in the a�ernoons. Quito’s temperature
is almost constant, around 14.5∘C, with the prevailing winds
from the east. However, due to a complex terrain, thewinds in
the city are highly variable most of the year (dry season is
windier), challenging weather prediction in the region.
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Figure 1: Topographic map (b) of Quito’s urban area (green areas) and Google maps images (a) of the air quality measurement sites (red
dots) Cotocollao and Belisario.

For the purpose of this study, the two northwestern air
quality monitoring points are presented: Cotocollao and
Belisario (see red dots in Figure 1). �ese districts were
chosen to show the variation and complexity of the prediction
of 	ne particulate matter trends even within a relatively small
area of Quito with similar topographical characteristics (ap-
proximately the same altitude and directly east of the Pichin-
cha volcano).

2.2. Air Quality Measurements Monitoring Network and
Instrumentation. �e municipal o�ce of environmental
quality, Secretaria de Ambiente, has been collecting air quality
and meteorological data since May 1, 2007, in several sites
around the city.�emeasurement sites run by the Secretaria
de Ambiente are located in representative areas throughout
the city, varying by altitudes depending on municipal dis-
tricts. We used the real meteorological and PM2.5 concen-
tration data from the two most northwestern automatic
data collection stations: Belisario (alt. 2,835m.a.s.l., coord.
78∘29�24��W, 0∘10�48��S) and Cotocollao (alt. 2,739m.a.s.l.,
coord. 78∘29�50��W, 0∘6�28��S) (see Figure 1). �ese two sites
are approximately 9 km apart from each other. �e Belisario
measurement site is less than 100m west of a busy road
(Avenida America), 200m northwest of a busy roundabout,
and less than 1,000m to the east of a major outer highway
(Ave. Antonio Jose de Sucre), which runs along the west
side of the city, intended to reduce the tra�c inside the city
(Figure 1).�e Cotocollao monitoring site is located in a resi-
dential area, with only a few busier streets, and the same outer
highway (Ave. Antonio Jose de Sucre) 250m to the north.
Both monitoring sites are inside of the “Pico y Placa” zone,
implemented in 2010, which, based on the last number of car

license plates, limits rush hour tra�c reducing the number of
personal vehicles by approximately 20%during theweekdays.

�e monitoring stations are positioned on the roofs of
relatively tall buildings. Fine particulate matter (PM2.5) mea-
surements are conducted using instrumentation validated by
the Environmental Protection Agency (EPA) of the United
States. For PM2.5 �ermo Scienti	c FH62C14-DHS Contin-
uous, 5014i (EPA Number EQPM-0609-183), was used. �e
detection limit for this instrument is 5�g/m3 for one-hour
averaging. �e aerosol data is collected at 10 s intervals, and
from this then 10min, 1-hour, and 24-hour averages are
calculated.�e latter averaging data is presented in this work.
Wind velocity is measured using MetOne/010C and wind
direction using MetOne/020C instrumentation. �e wind
speed sensor and wind direction starting threshold is
0.22m/s, and the accuracies are 0.07m/s and 3∘, respectively.
�e precipitation is measured using MetOne/382 and �ies
Clima/5.4032.007 equipment. All meteorological parameters
have been validated using Vaisala/MAWS100 weather station.

3. Data Preparation

In this section the method for the preparation of the data
is presented, in order to proceed with the classi	cation. It
includes re	ning steps to discard useless data, transforma-
tions to visually examine and understand the data, and
creation of an averaged intensitymap of the PM2.5 concentra-
tions with respect to the selected meteorological parameters
(wind and precipitation).

3.1. Data Re�nement. For this study we analyzed the data of
six years, starting June 2007 and ending July 2013. �e two
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Figure 2: Data distribution for (a) Cotocollao and (b) Belisario, in terms of wind direction, wind speed, precipitation, and PM2.5
concentrations (color scale). �e inner circle represents wind speeds up to 2m/s and the outer circle represents wind speeds up to 4m/s.

datasets (one for eachmonitoring point) are composed out of
2,223 instances. Each data point consists of 4 parameters
indicating daily values of precipitation accumulation (mm),
wind direction (0–360∘), wind speed (m/s), and observed 	ne
particle concentrations (�g/m3).

�e datasets are cleaned by discarding data points that
include any missing values. �ese data points represent 2.8%
and 2.4% of the total data for Belisario and Cotocollao,
respectively. It has been demonstrated that missing data of
these magnitudes do not in�uence the classi	cation perfor-
mance [25]. In addition, considering the very low number
of missing values, it is preferable to remove them instead
of performing an interpolation, taking into account the
following: (i) we proceed with an analysis on discrete vari-
ables (day-by-day) and not a time series forecasting and (ii)
the PM2.5 concentrations are very inconstant from one day
to another. Weekend days are also removed from the dataset
because the distribution of PM2.5 concentrations during the
weekdays and weekends is very di�erent for Quito. �is
could introduce an additional level of complexity in data
classi	cation as during theweekdays there are clear rush hour
peaks (morning and evening), while on Saturdays PM2.5 lev-
els increase between late morning and late a�ernoon hours.
In addition, Sundays can be identi	ed by a drop of PM2.5
concentration. �ese patterns are dictated by human activity
changes during the week, therefore, clearly showing PM2.5
dependability on tra�c. A�er cleaning, the 	nal datasets are
composed of 1,527 instances for Belisario and 1,536 instances
for Cotocollao.

3.2. Data Transformation. To represent the data according to
a wind rose plot, the linear scale of wind direction (0–360∘)
is transformed from polar to Cartesian coordinates where
angles increase clockwise and both 0∘ and 360∘ are north

(N) (see Figure 2).�ismathematical transformation (see (1))
permits a more accurate feature representation of the data for
wind direction around the north axis. Otherwise, wind
direction angles slightly higher than 0∘ and slightly lower than
360∘ would be considered as two opposing directions. �is is
useful for classi	cation models that are implemented in the
next stage. �is relates to machine learning models that
improve performance if there are continuous relationships
between parameters (optimization: smoother clustering task)
[26]. �is transformation ensures both valid and more infor-
mative representation of the original data. In addition, this
representation can be completed by the precipitation levels,
which are plotted on the �-axis (Figure 2). �e color range is

mapped from concentrations 0�g/m3 to >25 �g/m3. �e

threshold of 25 �g/m3 indicates the values fromwhich the 24-
hour concentrations of PM2.5 are harmful according to inter-
national health standards.

� = sin(Wind Direction

360∘ ⋅ 2�) ⋅Wind Speed,
	 = cos(Wind Direction

360∘ ⋅ 2�) ⋅Wind Speed.
(1)

A visual inspection of the transformeddata shows that the
wind directions corresponding to precipitation are north
(N) for Cotocollao (Figure 2(a)) and east (E) for Belisario
(Figure 2(b)). �e stronger winds tend to take place between
south (S) and southeast (SE) for Cotocollao and between
southwest (SW) and SE in Belisario. As expected, in both
cases these stronger winds seem to account for relatively low
levels of PM2.5.

3.3. Trend Analyses. In order to obtain general trends in the
distribution of the PM2.5 concentrations as a function of
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wind speed and wind direction, the data are used to generate
convolutional based spatial representations. Convolution-
based models for spatial data have increased in popularity as
a result of their �exibility in modeling spatial dependence
and their ability to accommodate large datasets [27]. �is
generated Convolutional Generalization Model (CGM) [28]
is an averaged value of the PM2.5 pollution level (PL), inwhich
the regional quantity of in�uence per data point ismodeled as
a 2D Gaussian matrix (see (2)). A Gaussian convolution is
applied (i) to spatially interpolate data, in order to get a
2D representation from the points’ coordinates calculated in
(1) and (ii) to smooth the PL concentration values of this
representation. A Gaussian kernel is used because it inhibits
the quality of monotonic smoothing, and as there is no prior
knowledge about the distribution, a kernel density function
with high entropy minimizes the information transfer of the
convolution step to the processed data [29].�is 2DGaussian
matrix is multiplied by the PL of the given data point and
added to the CGM at the coordinates corresponding to the
wind speed and direction of this point. �en, the quantity of
in�uence is added to the point. �e 	nal step is to divide the
total amount of each cell by the quantity of in�uence, which
results in a generalized average value.

CGM (rows, colums) = PL 136
[[[[[[[[
[

1
4
6
4
1

]]]]]]]]
]

[1 4 6 4 1] . (2)

�e general tendencies are as follows: (i) strong winds
result in low PM2.5 concentrations and (ii) the strongest
winds generally come from the similar direction (SE for
Cotocollao and S for Belisario).�e results of CGMs for both
sites are shown in Figure 3 as an overlay on top of the geo-
graphic location of their respectivemonitoring stations.Main
highways are indicated in green. �e highest concentrations
of PM2.5 (from yellow to red) tend to be brought by the
winds coming from these main highways. It is to note that
higher wind speeds for Cotocollao tend to be on the axis of
Quito’s former airport (grey-green area, center of themap, see
Figure 3), currently transformed into a city park. �is tra�c
and structure free corridor seems to accelerate wind speeds,
whichmay explain the reduction of PM2.5 concentrations due
to better ventilation of this part of the city.

During the study, average PM2.5 concentrations in Coto-

collao and Belisario are 15.6�g/m3 and 17.9 �g/m3, respec-
tively, both exceeding the national standards. During the
studied six years, the area of Belisario was more polluted with
more variation in PM2.5 concentrations (higher deviation,
see Figure 4) and more turbulent (Figure 3) than Cotocollao.
�ese factors could be the result of Belisario being more
urbanized.

4. Classification Models

Machine learning models are used to separate the data in
di�erent classes of PM2.5 concentrations. Supervised learning
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Figure 3: CGM visualization, positioned on top of the geographic
location of the respective monitoring stations (northwestern part
of Quito). �e northern CGM visualization is Cotocollao and the
southern one is Belisario. Main highways are represented in green.
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Figure 4: Distribution of PM2.5 concentrations (June 2007 to July
2013) for Cotocollao and Belisario. Dashed black line represents the
national standards and the class seperation boundary (15�g/m3).

techniques are applied to create models on this classi	cation
task. Here we introduce Boosted Trees (BTs) and Linear Sup-
port Vector Machines (L-SVM). A BT combines weak learn-
ers (simple rules) to create a classi	cation algorithm, where
each misclassi	ed data point per learner gains weight. A
following learner optimizes the classi	cation of the high-
est weighted region. Boosted Trees are known for their
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Table 1: Binary classi	cation with class separation at 15�g/m3.
Model

Location

Belisario Cotocollao

BT 83.2% 67.6%

L-SVM 79.8% 66.3%

insensibility to over	tting and for the fact that nonlinear
relationships between the parameters do not in�uence the
performance. A L-SVM separates classes with optimal dis-
tance. Convex optimization leads the algorithm to not focus
on local minima. As these two models are well established
and inhibit di�erent qualities, they are used in this section.All
computations and visualizations are executed in MathWorks
Matlab 2015. Toolboxes for the classi	cations, the statistics,
andmachine learning processes are used in all the stages. Fur-
thermore,Matlab’s integrated tools for distribution 	tting and
curve 	tting are applied for the di�erent analyses. �e initial
parameters provided by theMatlab toolbox so�ware are used
in this work. ADAboost learningmethodwith a total amount
of 30 learners and a maximum number of splits being 20 at
a learning rate of 0.1 are the default parameters for the BT.
�e SVM is initialized with a linear kernel of scale 1.0, a box
constrained level of 1.0, and an equal learning rate of 0.1.

Fluctuations in yearly PM2.5 concentrations are not taken
into account in this classi	cation process as a previous
analysis showed a small variation in 	ne particulate matter
pollution levels during the studied period [5]. A binary clas-
si	cation is performed to set a baseline comparison between
the di�erent sites. �en, a three-class classi	cation is carried
out to assess the separability between three ranges of concen-
trations of PM2.5 (based on WHO guidelines) and provide
insight into general classi	cation rules.

4.1. Binary Classi�cation. In this 	rst classi	cation two class-

es are used, which represent values above and below 15 �g/m3.
�e latter value is selected as it is the National Air Quality
Standard of Ecuador for annual PM2.5 concentrations (equiv-
alent to WHO’s Interim Target-3) [30]. Due to the normal
distribution of the datasets, as shown in Figure 4, a higher
accuracy for Belisario than Cotocollao is expected, partially
because of a priori imbalanced class distribution. A previous
study using the same classi	cation shows an accuracy of
only 65% for Cotocollao by applying the trees.J48 algorithm,
which is a decision tree implementation integrated in the
WEKA machine learning workbench [5].

Classi	cation with both BT and L-SVM shows similar
results. Table 1 presents the results of this 	rst classi	cation.
�e implementation of the classi	cation for Belisario outper-
forms that of Cotocollao. It also suggests that the extreme lev-
els (low and high) of PM2.5 could be more straightforward to
classify with the current parameters, implying a higher class
separability for the Belisario dataset (wider distribution).

Tables 2 and 3 show that the concentrations above 15 �g/m3
for both sites are better classi	ed than those below the
15 �g/m3 boundary.�is is less surprising for Belisario due to

Table 2: Confusion matrix of binary classi	cation for Cotocollao
using a BT. Rows represent the true class and columns represent the
predicted class.

Class <15 >15 TPR/FNR

<15 51.1% 48.9%
51.1%
48.9%

>15 20.3% 79.7%
79.7%
20.3%

Table 3: Confusion matrix of Binary classi	cation for Belisario
using a BT. Rows represent the true class and columns represent the
predicted class.

Class <15 >15 TPR/FNR

<15 49.0% 51.0%
49.0%
51.0%

>15 5.1% 94.9%
94.9%
5.1%

the earlier mentioned class imbalance. For Cotocollao, how-
ever, the poor performance for this class can indicate that this
class is less distinctive; thus the model optimizes the class
above 15 �g/m3. Note that it is crucial to be able to classify

nonattainment (PM2.5 > 15 �g/m3) instances, as wrongly
identi	ed nonviolating national standards (PM2.5 < 15�g/
m3) levels would be a less costly error.

In Figure 5(a) Receiver Operating Characteristic (ROC)
curves comparison is shown for the binary classi	ers pre-
sented in Table 1, namely, the BT and L-SVM classi	ers.
Figure 5(a) depicts the ROC curves for Cotocollao dataset
and Figure 5(b) the ROC curves for Belisario dataset. Once
the classi	ers models are built for every dataset, a validation
set is presented to the model, in order to predict the class
label. It is also of interest to have the classi	cation scores of the
model which indicate the likelihood that the predicted label
comes from a particular class. �e ROC curves are con-
structed with this scored classi	cation and the true labels in
the validation dataset (Figure 5).

ROC curves are useful to evaluate binary classi	ers and to
compare their performances in a two-dimensional graph that
plots the speci	city versus sensitivity. �e speci	city mea-
sures the true negative rate, that is, the proportion of negatives
that have been correctly classi	ed: true negatives/negatives =
true negatives/(true negatives + false positives). Likewise, the
sensitivity measures the true positive rate, that is, the propor-
tion of positives correctly identi	ed: true positives/positives
= true positives/(true positives + false negatives). �e area
under the ROC curve (AUC) can be used as a measure of
the expected performance of the classi	er, and the AUC of a
classi	er is equal to the probability that the classi	er will
rank a randomly chosen positive instance higher than a
randomly chosen negative instance [31]. Figure 5(b) shows
the performance of the BT and L-SVM classi	ers for the
Belisario dataset. �e BT outperforms the L-SVM classi	er
in all regions of the ROC space, with [AUC(BT) = 0.72] >
[AUC(L-SVM) = 0.66], which means a better performance
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Figure 5: ROC curves for Cotocollao (a) and Belisario (b).

for the BT classi	er. �e BT classi	er has a fair performance
separating the two classes in the Belisario dataset.

In Figure 5(a) the ROC curves and AUC are presented for
the Cotocollao dataset. Again, BT performs better than the
L-SVM classi	er with [AUC(BT) = 0.59] > [AUC(L-SVM) =
0.56].�is time the classi	ers for the Cotocollao dataset have
a poor performance separating the two classes, with a perfor-
mance just slightly better when compared to a random clas-
si	er with AUC = 0.5.�e classi	cation result is clearly better
for Belisario than for Cotocollao. �us, a three-class classi-
	cation should identify if for both sites; the extreme concen-
trations could be better classi	ed than themoderate ones and
clarify the low performance for Cotocollao.

4.2. �ree-Class Classi�cation. To further analyze the di�er-
ences of multiple categories of concentration levels, a three-
class classi	cation is performed using WHO’s guidelines for
pollution concentrations as class boundaries. According to
these guidelines, health risks are considered low if PM2.5 <
10 �g/m3 (long term, annual WHO’s recommended level),

moderate if 10 �g/m3 > PM2.5 < 25 �g/m3, and high if

PM2.5 > 25 �g/m3 (short term, 24-hour WHO’s recom-
mended level). �e objective is to identify if these main
pollution thresholds are indeed well separable and thus the
weather parameters can account for PM2.5 pollution in these
three ranges of air quality.

In both studied districts the classes < 10 �g/m3 and >25�g/m3 are relatively small with approximately 10% of the

data compared to the class 10–25 �g/m3. Due to this fact, an
alternative BT algorithm is used to take into account these
imbalanced classes. �is RusBoosted Tree (RBT) approach

Table 4: Confusion matrix of three-class classi	cation for Cotocol-
lao using aRBT. Rows represent the true class and columns represent
the predicted class.

Class <10 10–25 >25 TPR/FNR

<10 76.3% 16.3% 7.4%
76.3%
23.7%

10–25 28.3% 28.8% 42.9%
28.8%
71.2%

>25 6.3% 20.3% 73.4%
73.4%
26.6%

endeavors to 	nd an even distribution of performance for
all classes instead of 	nding a global optimum [32]. �is
leads to a better representation of the separability. �e true
positive versus false negative rate (TPR/FNR) is shown for
each class in the confusion matrices of Cotocollao (Table 4)
and Belisario (Table 5).

Tables 4 and 5 show that the correctness in classifying

concentrations < 10 �g/m3 seems to perform adequately.
Also, the correct classi	cation for concentrations > 25 �g/
m3 in Cotocollao is fair. However, the false positive rate of
this classi	cation is extremely high, because 42.9% of the

10–25 �g/m3 class gets classi	ed as class > 25 �g/m3. For
Belisario, the separation of classes 10–25 �g/m3 and >25 �g/
m3 is de	cient. In both cases, only the extreme low values can
be classi	edwell.�us, the hypothesis of the extreme concen-
trations in PM2.5 being more straightforward to classify (see
Section 4.1) is only partially veri	ed.

Analyzing the wrongly classi	ed samples of class 10–25�g/m3 shows that, for samples classi	ed as <10 �g/m3, the
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Figure 6: Wrongly classi	ed samples of class 10–25 �g/m3 with their real value distributions for Cotocollao (a) and Belisario (b).

Table 5: Confusion matrix of three-class classi	cation for Belisario
using a RBT. Rows represent the true class and columns represent
the predicted class.

Class <10 10–25 25 TPR/FNR

<10 84.8% 9.5% 5.7%
84.8%
15.2%

10–25 12.3% 53.5% 34.2%
53.5%
46.5%

>25 6.5% 45.1% 48.4%
48.4%
51.6%

real values tend to be relatively close to 10 �g/m3. �is
evidence is even stronger for Belisario (Figure 6(b)), than for
Cotocollao (Figure 6(a)). �is indicates a changeover in val-
ues around the decision boundary. �e same does not apply
to the wrongly classi	ed samples that are grouped as>25 �g/m3. As shown in Figure 6 these values aremostly nor-

mally distributed around themean of class 10–25 �g/m3. Even
though for Belisario the mean is shi�ed, it is not evident

that wrongly classi	ed samples of class 10–25�g/m3 into class
25 �g/m3 tend to be closer to values of 25�g/m3, as this
shi� is mainly caused by the fact that the mean value of the
Belisario initial data is higher (see Figure 4).We can conclude
that the low performance for Cotocollao in the previous
section (Section 4.1) is mainly caused by the fact that the clas-

si	er tries to separate values in the range of 10–25 �g/m3 and>25 �g/m3, which are poorly separable according to the
three-class classi	cation.

�ese results show that values of 10–25�g/m3 and>25 �g/
m3 are not well separable and thus not largely in�uenced by
the used meteorological parameters. On the contrary, lower

values seem to be largely predictable by wind and precipita-
tion conditions. �is statement gains con	dence by looking
at the wrongly classi	ed data points discussed previously (see
Figure 6).

4.3. Classi�cation Rules. Binary classi	cation between all dif-
ferent classes with the use of RBTs provides general rules
for classifying the di�erent levels of PM2.5 in terms of the
parameter space. Here, the well performing rules in classi-

fying PM2.5 concentrations < 10 �g/m3 are discussed. �e
rules and their performance can be seen in Table 6.�is table
shows that rules separating classes < 10 �g/m3 versus 10–25�g/m3 and <10 �g/m3 versus >25 �g/m3 have a high percent-
age of accuracy. On the contrary, the separation between

10–25 �g/m3 and >25 �g/m3 is less accurate.
Figure 7 provides a visualization of the data according to

the class separation in Table 6 for the example of Cotocollao.
�e RBT classi	cation of the data as seen in Figures 7(a) and

7(b) creates two clusters for class < 10 �g/m3. In the case of
Belisario, the RBT classi	cations result in identifying only

one cluster for class < 10 �g/m3.
It is to note that, for Cotocollao, the performance increas-

es drastically comparing the binary classi	cations of <10 �g/
m3 versus 10–25 �g/m3 and <10 �g/m3 versus >25 �g/m3
(from 73.2% up to 88.9%, see Table 6). In contrast, the per-
formance for Belisario for these two classi	cations does not
di�er (from 86.7% to 88.8%). �is indicates that the data for
Cotocollao are less separable at the 10–25 �g/m3 class than for
Belisario.

To sum up the outcomes of the classi	cation models, the
binary classi	cation utilizing the National and International

Air Quality Standards as class labels (PM2.5 < 15 �g/m3,
PM2.5 > 15�g/m3) showed a high di�erence in performance
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Table 6: Classi	cation rules and pairwise comparisons between the di�erent classes and their respective performance.

Classi	cation
Location

Cotocollao Belisario

<10 �g/m3 versus
10–25�g/m3

Classi�cation rules

Wind speed > 2.5m/s
Wind direction = S-SE Wind speed > 2.2m/s

Wind direction = SE-SWWind direction = NW-NE
Precipitation > 15mm

Classi�cation performance

73.2% (Figure 7(a)) 86.7%

<10 �g/m3 versus
>25 �g/m3

Classi�cation rules

Wind speed > 2m/s
Wind direction = S-SE Wind speed > 2m/s

Wind direction = SE-SWWind direction = NW-NE
Precipitation > 1mm

Classi�cation performance

88.9% (Figure 7(b)) 88.8%

10–25�g/m3 versus>25 �g/m3 60.0% 64.1%
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Figure 7: Data split for three di�erent classes (see Table 6): (a) <10 �g/m3 versus 10–25 �g/m3 and (b) <10 �g/m3 versus >25 �g/m3. Both (a)
and (b) are results for Cotocollao mapped in terms of wind direction, wind speed, and precipitation. �e inner circle represents wind speeds
up to 2m/s and the outer circle represents wind speeds up to 4m/s.

between the two sites. In order to explain this di�erence and
themisclassi	cations, the analysis was re	ned to a three-class
classi	cation based on WHO’s guidelines regarding the con-
sequences of PM2.5 concentrations on health risks as low
(PM2.5 < 10 �g/m3), moderate (PM2.5 = 10–25 �g/m3), and
high (PM2.5 > 25 �g/m3). �is classi	cation showed high

performance in categorizing low concentrations in contrast to
high concentrations.Next, we propose a regression analysis to
pinpoint the upper boundary of PM2.5 values, for which the
weather parameters are still able to explain variation in
pollution levels that are not described by the classi	cation
analysis.
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Figure 8: Decrease in average prediction error with increasing parameter values (precipitation and wind speed) for Cotocollao (orange) and
Belisario (blue).

5. Regression Analyses

In this section an additional machine learning analysis, based
on BT, L-SVM, and Neural Networks (NN), is used to per-
form a regression for both sites. Default parameters provided
by the Matlab toolbox so�ware are used to set up the models.
NN are appropriate models for highly nonlinear model-
ing and when no prior knowledge about the relationship
between the parameters is assumed. �e NN consist of 10
nodes in 1 hidden layer, trained with a Levenberg-Marquardt
procedure, in combination with a random data division.
Identifying the correlation between the real and predicted
values gives us the topological coherence between the input
and output parameter values. In addition, the error related to
the parameter values provides insight regarding the predic-
tion con	dence for determined weather conditions. Also, the
analysis of the data trend over time will inform on the appli-
cability of a time series forecasting. Finally, the CGM is used
to remark on the possibility of optimizing the regression.

5.1. Regression Models. A regression is performed with three

di�erent classi	ers. Bin sizes of 0.5 �g/m3 (0–35 �g/m3 range)
are used for the models that output discrete class values (BT
and SVM). �is relatively small bin size permits these
models to perform regression as their output values closely
approach continuous values.�e additional parameters of the
models are set up as explained in the binary and three-class
classi	cation (Sections 4.1 and 4.2). �e models are trained
with 10-fold cross-validation. �e test set is 20% of the

original data. Unlike the NN continuous output values, the
discrete output values of the other models can have an e�ect
on the classi	cation error.However, as the bin size is relatively
small, we expect the errors related to these types of output to
be marginal.

MSE = 1� ⋅
�∑
�=1
(	� − 	̂�)2 . (3)

�e mean squared error (MSE) is used to measure the
classi	cation performance (see (3)). �eMSE is the averaged
squared error per prediction. �e mean absolute percentage
error (MAPE) is used to express the average prediction error
in terms of percentage of a data point’s real value (see (4)).
�eMAPE function provides a more intuitive understanding
of the performance.

MAPE = ∑��=1 ����(	� − 	̂�) /	������ . (4)

An analysis of the con	dence levels in relation to the pre-
cipitation and wind speed parameters is shown in Figure 8.
�e prediction con	dence rises when the parameter values
increase. A level of con	dence is explained as the average
prediction error (absolute di�erence between the real and the
predicted values, root of MSE) at a certain interval with
respect to an input parameter. In Figure 8, 	tted lines repre-
sent the predicted data in terms of their absolute error with
respect to precipitation and wind speed for both sites. �e
decrease in errors can be seen with respect to increasing
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Figure 9: Neural Network’s regressive prediction of Cotocollao PM2.5 concentration (light grey) compared to the real data (dark grey) during
the wet season plotted against daily rain accumulation and wind speed thresholds, >1mm and >2.5m/s, respectively (see Table 6, thresholds
obtained from 3-class classi	cation). �e dashed black line represents the national standards for PM2.5 annual concentrations.

values of these speci	ed input parameters. It suggests that the
prediction of PM2.5 concentration ismore reliable for extreme
than moderate climatic conditions.

Figure 9 shows an example of the comparison of the
predictive models of PM2.5 concentration and the real PM2.5
concentration for Cotocollao during six months of a wet
season (	rst half of 2008). �e graph shows the 5-point box-
smoothed data to demonstrate the good prediction of the
tendency of the PM2.5 concentrations. Besides a certain gap,
the estimated values seem to fairly correlate with the real data.
�e correlation analysis shows a signi	cant positive corre-
lation between the real concentrations and the predicted
concentrations, �(130) = 0.5, � < 0.000. Also, the model
performance is relatively good throughout the study period.
�e correlation analysis for all of the data shows a signi	cant
positive correlation between the real and predicted PM2.5
concentrations, �(1534) = 0.34, � < 0.000.

�is visualization shows that the error of predicted
concentration seems to increase when PM2.5 concentration
increases. �e reduction in both real and estimated PM2.5
concentrations coincides with rain events and wind speeds
above the thresholds de	ned in Table 6 (>1mm and >2.5m/s,
resp.).

�e results of the MSE for the regression show that in
both city sites a NN performs the best (see Table 7). �e
correlation analysis shows that there is a logarithmic relation-
ship between the real particle concentration values and the
prediction (Figure 10). It means that there is an overpredic-
tion for low values and an underprediction for high values
and an overall decrease in correlation as values get higher.�e

correlation seems the best for values around 17�g/m3 forCot-
ocollao and 19 �g/m3 for Belisario.

To sum up, the present input parameters do not well
describe an increase in PM2.5 concentrations if these levels are
transcending values over 20�g/m3, as errors increase at this
point and prediction values stagnate.�us, additional param-
eters must be considered for the prediction of PM2.5 levels

Table 7: MSE andMAPE of the NN, L-SVM, and BT on regression.

Model
Location

Belisario Cotocollao

NN 22.1 (26%) 40.7 (40%)

L-SVM 26.8 (28%) 41.8 (41%)

BT 28.5 (30%) 44.4 (42%)

Table 8: MSE and MAPE of CGM and NN regression.

Model
Location

Belisario Cotocollao

CGM 15.6 (22%) 15.0 (25%)

NN 22.1 (26%) 40.7 (40%)

beyond this concentration threshold, since meteorological
factors alone are not able to account for the whole particulate
matter concentrations. For instance, considering human
activity (e.g., car tra�c), which is the main source of pollu-
tion, should contribute to the reduction of the overprediction
and underprediction observed in our model.

5.2. Optimization. �eCGM, as applied in Section 3.3, could
be used in classi	cation tasks. In this section a 10-fold
cross-validation on regression with this model is applied to
compare it with the best performing model (NN).

�e results show a substantial reduction in MSE with
the CGM regression compared to the NN regression for the
two city sites (see Table 8). It is to note that this diminution is
particularly high in the case of Cotocollao. It seems that the
model is able to better handle the dense (see Figure 4) and
noisy (as stated in Section 4.3) data of Cotocollao than the
NN. �e similar performance in both sites means that this
model has the potential to be applied in various situa-
tions with similar expected error rates. Further development
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should aid in qualifying the true robustness of this approach
by exploiting the possibility of modeling with other spatial
dependencies, such as density of measurements and day-
by-day shi�s, which represent the degree of freedom of
parameters related to readings of the previous day(s). �e
latter dependency could be combined with linear quadratic
estimation (LQE) techniques such as Kalman 	lters to im-
prove the precision.

6. Conclusions and Perspectives

�is study proposes a machine learning approach to predict
PM2.5 concentrations from meteorological data in a high-
elevation mid-sized city (Quito, Ecuador). Standard levels of
	ne particulate matter are classi	ed by using di�erent
machine learning models. �is classi	cation is performed on
six years’ records of dailymeteorological values of wind speed
(m/s), wind direction (0–360∘), and precipitation accumu-
lation (mm) for two air quality monitoring sites located in
Quito (Cotocollao and Belisario). Although these sites are
both in Quito’s urbanized area, they exhibit di�erences in
spread and dominance regarding wind features (speed and
direction) that account for high PM2.5 concentrations and
distribution of pollution levels over the years. �is could be
caused by the fact that Belisario ismore urbanized thanCoto-
collao and more importantly due to the extremely complex
terrain of the city.

For these two di�erent districts the results show a high

reliability in the classi	cation of low (<10 �g/m3) versus

high (>25 �g/m3) and low (<10 �g/m3) versus moderate

(10–25 �g/m3) PM2.5 concentrations. We found well de	ned
clusters, within the parameter space, for PM2.5 concentrations< 10 �g/m3. �e regression analysis shows that the used

parameters can predict PM2.5 concentrations up to 20�g/m3
and the accuracy of the predictions is improved in condi-
tions of strong winds and high precipitation for both Coto-
collao and Belisario.�ere is a signi	cant positive correlation
between the real concentrations and the predicted concen-
trations for all the study period. �e slightly higher corre-
lation during the rainy season con	rms that the model can
predict PM2.5 concentrations better for more extreme weath-
er conditions.

Using a convolutional based spatial representation (CGM)
to perform regression shows improving performance com-
pared to various used machine learning algorithms (NN, L-
SVM, and BT). In addition to this model, 	nding trends over
periods of time with the use of time series algorithms could
further improve the prediction and would make a long-term
forecasting of PM2.5 concentrations possible [13].

�emain contribution of this study is to propose an alter-
native approach to chemical transport numerical modeling,
such as WRF-Chem or CMAQ, the performance of which
depends on several input parameters (emission inventory,
orography, etc.) and the accuracy of built-in meteorological
models (WRF, MM5). �e application of numerical models
for complex terrain regions is challenging, since important
topographic features are not well represented [11, 33]. �is
produces imprecisions in not only forecasting air quality, but
also relevant meteorology [10, 12, 34, 35]. Here, the proposed
model provides a more reliable and more economical alter-
native to predict PM2.5 levels, as it only requires meteoro-
logical data acquisition. In addition, accurate meteorological
technology is far more a�ordable compared to air quality
sensors that can exceed the price over 100 times. Finally, this
model is based on the three basic meteorological parameters
(wind speed, wind direction, and precipitation), which have a
straightforward e�ect on pollution.�us, by considering that
our model has a good prediction e�ciency for a city of such
a complex topography, we argue that it could be success-
fully applied in other tropical locations (regions of reduced
changes in solar angle, temperature, and relative humidity).

Also, this work provides an insight into the main limi-
tations regarding PM2.5 prediction from meteorological data
andmachine learning.�e classi	cation and regression show

that concentrations > 20�g/m3 seem to be in�uenced more
by additional parameters than the meteorological factors
used in this study. For example, although daily temperature,
solar radiation, and pressure do not vary much during the
year, theymightmake a di�erence if analyzed during di�erent
times of the day, causing di�erent pollution levels in the city.
An interesting approach to tackle this limitation would be to
consider a hybrid model that would mix a numerical method
(WRF-Chem or CMAQ) with machine learning algorithms
[10].

Other climatic conditions and unusual impactful events
causing higher pollution levels (festivities, wild 	res, acci-
dents, seasonal variability, or natural calamities) could also

explain changes in PM2.5 concentrations exceeding 20�g/m3.
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Future work will consist of identifying the parameters or
events causing values above this threshold. Furthermore, we
intend to improve our CGM and use it to classify outliers and
	nd their cause. Considering the diverse machine learning
models used in air quality prediction, such asNeuralNetwork
[13–15], regression [18], decision trees, and Support Vector
Machine [17], we applied and testedmost of these classi	ers in
this study. Alternative approaches to improve the accuracy of
ourmodel would consist of performing a prediction based on
an ensemble of di�erent algorithms of data processing and
modeling [16, 17, 22].
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