
Models in Conflict – Towards a Semantically
Enhanced Version Control System for Models?

Kerstin Altmanninger

Department of Telecooperation, Johannes Kepler University Linz, Austria
kerstin.altmanninger@jku.at

Abstract. For a widespread success of the model-driven paradigm, ap-
propriate tools such as “Version Control Systems” (VCS) are required to
adequately support a model-based development process. First attempts
to model-based versioning, however, perform conflict detection mainly
on basis of a syntactic representation of models without exploiting their
semantics. Consequently, in this paper the approach towards a seman-
tically enhanced VCS is presented which enables for semantic conflict
detection allowing not only a more precise conflict detection but also the
determination of a conflict’s reason, which can simplify the merge pro-
cess. This is achieved by introducing the concept of semantic views which
explicate a certain aspect of a modeling language’s semantics relevant for
conflict detection.

1 Motivation

The shift from code-centric to model-centric software development places models
as first class entities in “Model-driven Development” (MDD) processes. “Version
Control Systems” (VCS) are essential when the development process proceeds in
parallel. In case the employed modeling tools are not tightly coupled to the VCS,
certain approaches that rely on pessimistic methods (e.g., locking) or tracking
model modifications (e.g., operation-based mechanisms) are not applicable. In-
stead a loosely-coupled and optimistic VCS has to be provided which operates
in a state-based manner [1].

2 Problem

The challenges emerging when realizing a loosely coupled, optimistic and state-
based VCS span from model comparison over conflict detection and conflict
resolution to model merging [2, 3]. First, model comparison should not rely on
text- or tree based VCS [4–6] since they do not take the logical structure of
models into account which is required for effective model comparison. Hence ex-
isting graph-based approaches have to be employed. Second, conflict detection

? This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-810806.

2 Kerstin Altmanninger

does not only need to consider the syntactical structure of models but should
also “understand” the models semantics to be able to properly identify conflicts.
But, full formal specifications of the semantics [7] underlying a model are not
feasible since only certain aspects are relevant to support the process of con-
flict detection. Third, conflict resolution requires appropriate identification of
the reasons of conflicts especially when going beyond just supporting syntacti-
cal conflict detection. Model merging, finally, must produce one consistent new
model which can be facilitated by model transformations.

3 Approach

In the light of the aforementioned challenges, a semantically enhanced, graph-
based VCS for models is proposed. As the core mechanism for representing cer-
tain aspects of the model’s semantic so-called “views of interest” are introduced
with which syntactic sugar can be eliminated and hidden concepts can be made
explicit.

The basis of the approach is the metamodel which describes the syntax of the
models which have to be versioned. Additionally, to be able to provide semantic
conflict detection a metamodel representing a certain view of interest has to be
defined. On basis of those metamodels a transformation can be specified such
that the rules of a model transformation relate the elements of the metamodel
(abstract syntax) to which the original model conforms to and the elements of the
metamodel representing the definition of the view of interest. As a consequence
of the transformation realizing a semantic mapping, conflict detection can be
carried out on both, model and semantic view. Conflicts that are determined
purely upon the comparison of two versions of a model are syntactical conflicts
whereas a semantic conflict is detected between the representations of such a
model’s versions in a semantic view. The actual finding of conflicts in both
the original model and the view works analogous to the graph-based detection
of structural conflicts in existing VCS like [8–11]. Accordingly, four possible
combinations of scenarios that can occur when a model’s semantic views are
incorporated into conflict detection can be identified.

Fig. 1 depicts a simplified “Business Process Execution Language” (BPEL)
example. The metamodel contains Activities which are either contained ordered
in a Sequence or are explicitly connected to another preceding Activity by a
Link. The metamodel of a concrete semantic view defined upon BPEL eliminates
the “syntactic sugar” of Sequence expressing everything in terms of Activity and
Link. The model transformation between those metamodels can then be executed
on concrete models to create the necessary semantic view on the working copies
during the 3-way-conflict detection process. Fig. 1 also shows examples for the
four possible combinations of scenarios (A−D) during conflict detection between
three model versions (the last revision in the repository V and the two model
versions V ′ and V ′′ edited by model developers).

Preceding work in this area [1] concentrates on different conflict detection
strategies and states OCL expressions for the identification of conflict sets.

Models in Conflict 3

No Semantic Conflict Semantic Conflict

Metamodel

A1 A2L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3A0 L0-1

A3

V

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A4L3-4

V

Metamodel of
View Definition

A1 A2 A3L1-2

V'

V"

L2-3

A0 A1 A2L0-1 L1-2 A3L2-3

A1 A0 A2L1-0 L0-2 A3L2-3

V

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A5L3-5

V

A1 A2 A3

S1

A2 A3

S1

A1 A2 A3

S1

L0-1

V' V"

V

A4A1A0

A1 A2 A3

S1

A1 A2 A3

S1

A4 A1 A2 A3

S1

L3-5 A5

V' V"

V

A1 A2 A3

S1

A1
A1 A0 A2

S1

A3

V' V"

A0

A2S2 A3

S1

V

A1 A2 A3

S1

A1

A3

S1

A4
A1 A2 A3

S1

A4

V' V"

A2

S2

V

A B

C D

Transformation

Syntax

Syntax

Syntax

Syntax

Sem.
View

Sem.
View

Sem.
View

Sy
nt

ac
tic

 C
on

fli
ct

No
 S

yn
ta

ct
ic

Co
nf

lic
t

{ordered}

{ordered}

contains
Activity
id
value

Link
id

Process
id

source
target

hashas
* *1

1
*

Sequence

{ordered}

{ordered}

contains
Activity
id
value

Activity
id
value

Link
id

Process
id
Process
id

source
target

hashas
* *1

1
*

SequenceSequence

Activity
id
value

Link
id

Process
id

source
target

hashas
* *

1
1

{ordered}

Activity
id
value

Activity
id
value

Link
id
Link
id

Process
id
Process
id

source
target

hashas
* *

1
1

{ordered}

Sem.
View

No Semantic Conflict Semantic Conflict

Metamodel

A1 A2L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3A0 L0-1

A3

V

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A4L3-4

V

Metamodel of
View Definition

A1 A2 A3L1-2

V'

V"

L2-3

A0 A1 A2L0-1 L1-2 A3L2-3

A1 A0 A2L1-0 L0-2 A3L2-3

V

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A5L3-5

V

A1 A2 A3

S1

A2 A3

S1

A1 A2 A3

S1

L0-1

V' V"

V

A4A1A0

A1 A2 A3

S1

A1 A2 A3

S1

A4 A1 A2 A3

S1

L3-5 A5

V' V"

V

A1 A2 A3

S1

A1
A1 A0 A2

S1

A3

V' V"

A0

A2S2 A3

S1

V

A1 A2 A3

S1

A1

A3

S1

A4
A1 A2 A3

S1

A4

V' V"

A2

S2

V

A B

C D

Transformation

Syntax

Syntax

Syntax

Syntax

Sem.
View

Sem.
View

Sem.
View

Sy
nt

ac
tic

 C
on

fli
ct

No
 S

yn
ta

ct
ic

Co
nf

lic
t

{ordered}

{ordered}

contains
Activity
id
value

Link
id

Process
id

source
target

hashas
* *1

1
*

Sequence

{ordered}

{ordered}

contains
Activity
id
value

Activity
id
value

Link
id

Process
id
Process
id

source
target

hashas
* *1

1
*

SequenceSequence

Activity
id
value

Link
id

Process
id

source
target

hashas
* *

1
1

{ordered}

Activity
id
value

Activity
id
value

Link
id
Link
id

Process
id
Process
id

source
target

hashas
* *

1
1

{ordered}

Sem.
View

Fig. 1. Overview on the conflict detection process.

Through the definition of views of interest the proposed system can find conflicts
more precisely during the conflict detection process since it is now possible to
identify whether a conflict occurs due to syntactic differences or differences in
the respective view. Consequently, previously falsely indicated syntactic conflicts
can be avoided and previously undiscovered semantic conflicts can be found.

4 Prototypical Implementation

A first prototype realizing the approach presented has already been implemented.
The prototype is open with respect to the usage of different modeling environ-
ments, using XMI as an exchange format. Furthermore, the proposed VCS relies
on metamodeling techniques and MDD standards like the “Eclipse Modeling
Framework” (EMF) [12], the “Atlas Transformation Language” (ATL) [13] and
the EMF reference implementation of “Service Data Objects” (SDO) [14] for
computing change summaries between two models. These standards are provid-
ing flexibility of the approach to operate on virtually any modeling language.
The realized prototype is extensible to include the semantics definitions needed
for advanced conflict detection [1] thus realizing a light-weight semantic VCS.

5 Related Work

The closest approach to the work presented in this paper is laid out by SemVer-
sion [15], which is itself based on RDF, proposing the separation of language
specific features (e.g., semantic difference) from general features (e.g., structural

4 Kerstin Altmanninger

difference or branch and merge). To perform the semantic difference the seman-
tics of the used ontology language (e.g., RDF Schema) are taken into account
in form of calculating a structural difference of two versions of an RDFS ontol-
ogy. SemVersion, however, is not flexible to operate on any modeling language
and furthermore does not provide version control functionalities. In terms of op-
timistic state-based VCSs, Odyssey-CVS [9] presents a graph-based system for
versioning UML elements, aiming to support UML-based CASE tools in evolving
their artifacts. Odyssey-CVS, therefore, is not flexible in the used modeling lan-
guage but open to incorporate with any modeling environment. Conflicts found
are identified purely on basis of a structural comparison of two versions of a
model without incorporating semantics. Ohst et al. [16] addresses the problem
of how to detect and visualize differences between versions of UML models such
as class or object diagrams. Their approach is loosely coupled to the modeling
environment and provides difference computation for UML models, only. The
proposed difference computation algorithm detects only structural differences
visualized to the developer and is not extensible to “understand” the semantics
of a model. VCSs which focus on models but are tightly coupled to the modeling
environment like e.g. [10, 11] are only remotely related.

Summarizing, current research areas in the field of VCSs for models are
often limited to specific modeling languages, tightly coupled to the modeling
environment and do not incorporate modeling language’s semantics in contrast
of the approach proposed.

6 Conclusion

In this paper a light-weight approach for incorporating semantics into VCSs
for models is proposed. By means of transforming a model into a semantic view,
syntactic sugar can be eliminated and hidden concepts can be explicated. Hence,
the joint use of model transformations expressing certain semantic aspects of a
modeling language, and the employment of graph-based comparison techniques
on models and views, allows for a more precise conflict detection (laid out in [1])
between versions of models. Thus, with a relatively small amount of effort for
establish the necessary transformations benefits in the conflict detection can be
gained.

6.1 Future Work

Future research, in the short distant prospect, will focus on the conflict de-
tection strategies (cf. [1]) and how to extend the conflict detection approach
to also operate on multiple views of interest. To be able to define such views
future researches, however, will deal with semantic view definition challenges.
Furthermore, it is necessary to investigate into conflict resolution concepts and
techniques and how to support the user in a loosely coupled scenario. During
evaluation it also needs investigation in the development of techniques how the
approach can be specifically fine-tuned towards different modeling languages.

Models in Conflict 5

6.2 Evaluation

For evaluating the feasibility of the approach it is planned to apply the approach
to a series of large-scale complex examples for exploring the approach’s limita-
tions. For this, appropriate examples stemming from real-world scenarios will be
identified. The overall evaluation will be conducted on basis of a comparative
analysis comparing the proposed prototype with existing graph-based VCS for
models like [8–11] applying quantitative measures.

References

1. Altmanninger, K., Bergmayr, A., Kotsis, G., Reiter, T., Schwinger, W.: Models
in Conflict – Detection of Semantic Conflicts in Model-based Development. In:
Proc. of the 3rd Int. Workshop on Model-Driven Enterprise Information Systems
(MDEIS). (2007) 29–40

2. Westfechtel, B.: Structure-Oriented Merging of Revisions of Software. In: SCM.
(1991) 68–79

3. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. Software
Eng. 28(5) (2002) 449–462

4. Subversion. http://subversion.tigris.org/
5. Concurrent Versions System. http://www.nongnu.org/cvs/
6. Bendix, L., Larsen, P.N., Nielsen, A.I., Petersen, J.L.S.: CoEd – A Tool for Version-

ing of Hierarchical Documents. In: ECOOP ’98: Proc. of the SCM-8 Symposium
on System Configuration Management. Volume 1439 of LNCS. (1998)

7. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”?
Computer 37(10) (2004) 64–72

8. Rational Software Architect. IBM Homepage (2007)
9. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a Flexible Version Control

System for UML Model Elements. In: Proc. of the 12th Int. Workshop on Software
Configuration Management (SCM), ACM Press (2005)

10. Nguyen, T.N.: A Novel Structure-Oriented Difference Approach for Software Arti-
facts. In: Proc. of the 30th Int. Computer Software and Applications Conference.
(2006) ISBN: 0-7695-2655-1.

11. Oda, T., Saeki, M.: Generative Technique of Version Control Systems for Software
Diagrams. In: Proc. of the 21st IEEE Int. Conf. on Software Maintenance. (2005)

12. EMF Homepage. http://www.eclipse.org/modeling/emf/ (2007)
13. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL – Eclipse Support for Model

Transformation. In: Proc. of the Eclipse Technology eXchange Workshop (eTX)
at ECOOP. (2006)

14. SDO Homepage. http://www.eclipse.org/modeling/emf/?project=sdo (2007)
15. Völkel, M.: D2.3.3.v2 SemVersion – Versioning RDF and Ontologies. http :

//www.aifb.uni − karlsruhe.de/Publikationen/showPublikation?publid = 1163
(January 2006)

16. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams.
In: Proc. of the 9th European Software Engineering Conference (ESEC). Number
ISBN: 1-58113-743-5, ACM Press (2003) 227–236

