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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological change character-

ized by the accumulation of triglycerides in hepatocytes and has frequently been associated with 

obesity, type 2 diabetes mellitus, hyperlipidemia, and insulin resistance. It is an increasingly 

recognized condition that has become the most common liver disorder in developed countries, 

affecting over one-third of the population and is associated with increased cardiovascular- and 

liver-related mortality. NAFLD is a spectrum of disorders, beginning as simple steatosis. In 

about 15% of all NAFLD cases, simple steatosis can evolve into non-alcoholic steatohepatitis, 

a medley of inflammation, hepatocellular injury, and fibrosis, often resulting in cirrhosis and 

even hepatocellular cancer. However, the molecular mechanism underlying NAFLD progression 

is not completely understood. Its pathogenesis has often been interpreted by the “double-hit” 

hypothesis. The primary insult or the “first hit” includes lipid accumulation in the liver, followed 

by a “second hit” in which proinflammatory mediators induce inflammation, hepatocellular 

injury, and fibrosis. Nowadays, a more complex model suggests that fatty acids (FAs) and their 

metabolites may be the true lipotoxic agents that contribute to NAFLD progression; a multiple 

parallel hits hypothesis has also been suggested. In NAFLD patients, insulin resistance leads to 

hepatic steatosis via multiple mechanisms. Despite the excess hepatic accumulation of FAs in 

NAFLD, it has been described that not only de novo FA synthesis is increased, but FAs are also 

taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secre-

tion of very-low-density lipoproteins has been reported. This review discusses the molecular 

mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that 

contribute to NAFLD.

Keywords: non-alcoholic fatty liver disease, molecular pathways, insulin resistance, fatty acid 

metabolism

Introduction
Non-alcoholic fatty liver disease (NAFLD) is a major public health issue due to its 

high prevalence worldwide, and ranges widely from 11% to 46%,1–3 and has potentially 

serious sequelae.4 The prevalence increases to 58% in overweight individuals and can 

be as high as 98% in non-diabetic obese individuals.5

NAFLD is an inclusive term that takes in a spectrum of liver pathologies from simple 

steatosis (SS) to non-alcoholic steatohepatitis (NASH). NASH involves hepatocellular 

injury and inflammation of the liver.6

Whereas SS is characterized by a relatively favorable clinical course, NASH much 

more frequently progresses to cirrhosis and hepatocellular carcinoma.7,8 NAFLD should 

be suspected in individuals who are either obese, diabetic, or have metabolic syndrome.9 

Moreover, NAFLD is considered a hepatic manifestation of metabolic syndrome and 
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a risk factor for type 2 diabetes mellitus, dyslipidemia, and 

hypertension.10,11 The majority of patients with NAFLD are 

asymptomatic and the disease may be detected via routine 

blood tests showing elevated liver enzymes or when an 

ultrasound is performed for various reasons and detects liver 

steatosis. Secondary causes of hepatic steatosis or elevated 

liver enzymes, such as excess alcohol consumption, medica-

tions, toxins, lipodystrophy, autoimmune and inflammatory 

diseases, nutrition (malnutrition, total parenteral nutrition, 

severe weight loss, and refeeding syndrome), viral hepatitis, 

and metabolic liver disease should be excluded by reviewing 

the patient’s history and proper investigation.9,12

Although it is still not possible to diagnose NAFLD based 

solely on blood work, elevated transaminases can be used as 

a first step.13 An aspartate aminotransferase–alanine amino-

transferase ratio ,1 is also seen in NAFLD14 and supports 

NASH. However, it is important to note that patients with 

normal transaminases and liver steatosis on imaging may also 

have NASH.15 Ultrasonography is a noninvasive tool that is 

used in the detection of liver steatosis. Other imaging tech-

niques such as computed tomography and nuclear magnetic 

resonance imaging can also detect liver steatosis, but neither 

of these more expensive techniques provide more informa-

tion than ultrasonography,16,17 except for fat quantification.18 

Diagnosis for NASH is confirmed when a liver biopsy shows 

the presence of perilobular inflammation, or the presence 

of hepatocyte ballooning, Mallory’s hyaline, and acidophil 

bodies with or without fibrosis. Noninvasive tests such as 

Fatty Liver Index, NAFLD fibrosis score, FibroMeter, and 

Fibroscan19 may suggest the presence of NASH by detecting 

fibrosis. Research is ongoing to assess surrogate markers for 

NASH such as CK18, but this remains experimental.20,21

Regarding the management of NAFLD, weight manage-

ment through improvements in diet and increased physical 

activity can help to improve liver histology as well as delay 

disease progression.22–24 Lifestyle interventions may not be 

effective in certain cases, and thus other approaches must 

be considered. Pharmacological treatment has been studied 

in this population, specifically insulin-sensitizing agents 

(metformin and thiazolidinediones [TZDs]); however, there 

are conflicting results. Clinical studies could not demonstrate 

the effectiveness of metformin in the treatment of NAFLD.25 

On the other hand, TZDs that are peroxisomal proliferator-

activated receptor γ (PPARγ) agonists promote hepatic fatty 

acid (FA) oxidation and decrease hepatic lipogenesis.26,27 

In NAFLD patients, TZDs have been shown to decrease 

hepatic fat and decrease cellular injury. However, discon-

tinuing TZD therapy resulted in NASH recurrence and 

long-term use of TZDs can result in medical complications 

such as edema, congestive heart failure, osteoporosis, and 

weight gain.28,29 The use of statins in NAFLD patients with 

dyslipidemia can improve liver function tests,30 as well as 

steatosis.31  Furthermore, statins seem to be safe in NAFLD/

NASH patients with dyslipidemia.32 However, there is a lack 

of evidence for the use of statins in the treatment of NASH 

patients without dyslipidemia.33 Further research is necessary 

to document the effect of other strategies, such as bariatric 

surgery, antioxidants, and fish oil in NAFLD.

Because there are currently no effective therapies for 

NAFLD apart from weight loss, ongoing research efforts 

are focused on understanding the underlying pathobiology 

of hepatic steatosis with the intention of identifying novel 

therapeutic targets. In this sense, this review analyses some 

of the molecular mechanisms that underlie the pathophysio-

logical changes of hepatic lipid metabolism in NAFLD: the 

contribution of lipid metabolism, the influence of inflamma-

tion, and the role of lipotoxicity and cannabinoid receptors 

in NAFLD.

Contribution of lipid  
metabolism to NAFLD
The liver plays a major role in lipid metabolism, importing 

free FAs (FFAs) and manufacturing, storing, and exporting 

lipids; derangements in any of these processes can lead to 

the development of NAFLD.34 FAs are involved in many 

important cellular events, such as synthesis of cellular mem-

branes, energy storage, and intracellular signaling pathways. 

 However, chronically elevated FFAs can disturb diverse met-

abolic pathways and induce insulin resistance (IR) in many 

organs. Hepatic fat accumulation has been strongly associ-

ated with IR.35,36 IR in the peripheral adipose tissue enhances 

lipolysis and increases the delivery of adipose-derived FFAs 

to the liver. In particular, obesity increases tumor necrosis 

factor α (TNFα) production in adipocytes, facilitates adipo-

cyte IR, and increases lipolysis rate.37 Thus, the circulating 

pool of FFAs is increased in obese individuals and accounts 

for the majority of liver lipids in NAFLD.38

Under physiological conditions, triglyceride (TG) syn-

thesis is stimulated to dispose of the excess of FFAs. The 

TGs can then be stored as lipid droplets within hepatocytes 

or secreted into the blood as very-low-density lipoprotein 

(VLDL).39 Rodent studies have shown that the mechanisms 

leading to the excessive accumulation of hepatic TGs are 

associated with an increased supply of FFAs from peripheral 

adipose tissue to the liver and an enhanced de novo lipid syn-

thesis via the lipogenic pathway. Conversely, liver disposal 
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via β-oxidation and VLDL export are moderately affected.40 

At the cellular level, defects in the insulin signaling pathways 

contribute to the increase of FFA flux in the liver, which in 

turn activates a series of signaling cascades and leads to the 

phosphorylation of several substrates.41 Despite TGs being 

the main lipids stored in the liver of patients with NAFLD, 

large epidemiological studies suggest that they might exert 

protective functions. TG synthesis seems to be an adap-

tive, beneficial response in situations where hepatocytes 

are exposed to potentially toxic TG metabolites.42–44 FFAs 

and cholesterol, especially when accumulated in the mito-

chondria, are considered the “aggressive” lipids leading to 

TNFα-mediated liver damage and reactive oxygen species 

(ROS) formation.45,46 These lipids could also be present in 

a non-steatotic liver and act as early “inflammatory” hits, 

leading to the whole spectrum of NAFLD pathologies. The 

concept of lipotoxicity and involved lipid species has been 

introduced: abundant FAs cause lipotoxicity via the induction 

of ROS release, which causes inflammation, apoptosis, and 

thus, the progression to NASH and fibrogenesis.46–48

In summary, TG accumulation in the cytoplasm of 

hepatocytes, as the hallmark of NAFLD, arises from an 

imbalance between lipid acquisition (FA uptake and de 

novo  lipogenesis) and removal (mitochondrial FA oxidation 

and export as a component of VLDL particles) and accom-

panies multiple pathophysiological mechanisms in NASH 

(Figure 1). In order to control the progression of NAFLD, 

it is important to understand the regulatory mechanisms of 

lipid accumulation in the human liver.

Hepatic FA uptake
One of the sources for hepatic FAs is FFA recruitment from 

the blood stream. FFAs are derived from lipolysis in adipo-

cytes, which usually occurs in the fasting state, promoted by 

catecholamines, natriuretic peptides, and glucagon, and are 

usually repressed by insulin.49 However, the IR state (obesity, 

metabolic syndrome) goes along with increased adipocyte 

lipolysis, leading to abundant FFAs in the plasma pool inde-

pendently from the nutritional status.50 FFAs are then taken 

up by the hepatocytes in a facilitated fashion rather than by 

passive processes.51 FA uptake into the liver contributes to 

the steady balance of hepatic TGs, as well as the pathogen-

esis of NAFLD. The rate of FA uptake from plasma into 

cells depends on the FA concentration in the plasma and the 

hepatocellular capacity for FA uptake, which also depends 

on the number and activity of transporter proteins on the 

sinusoidal plasma membrane of the hepatocyte. The main 

plasma membrane transporters for FFAs are FA transporter 

protein (FATP), caveolins, FA translocase (FAT)/CD36, and 

FA-binding protein (FABP).52–56

FATP

Six FATP isoforms have been identified in mammalian cells, 

which contain a common motif for FA uptake and fatty acyl-

CoA synthetase function.57 Of these isoforms, FATP2 and 

FATP5 are highly expressed in the liver, and are utilized as 

major FATPs for the normal physiological context. In mouse 

hepatocytes, adenovirus-mediated knockdown of FATP2 or 

genetic deletion of FATP5 significantly decreases the rates 

of FA uptake.58 Indeed, FATP5 knockout mice have shown 

resistance to diet-induced obesity and hepatic TG accumu-

lation.58 In humans, a promoter polymorphism in the liver-

specific FATP5 is associated with features of the metabolic 

syndrome and steatosis.59

Caveolins

Caveolins consist of three protein family members termed 

caveolins 1, 2, and 3. They are found in the membrane 

structures called caveolae, which are important for protein 

trafficking and the formation of lipid droplets. Caveolin 1 

knockout mice exhibited lower TG accumulation in the liver 

and showed resistance to diet-induced obesity, showing the 

importance of this protein in TG synthesis.60 Some authors 

Insulin Glucose

FFAs

 FFAs

Triglycerides

ApoB
De novo lipogenesis

Chylomicron
VLDL

β-oxidation

Figure 1 Hepatic steatosis.

Notes: The hallmark of NAFLD is triglyceride accumulation in the cytoplasm 

of hepatocytes as a result of an imbalance between lipid input and output: 1) an 

increase in FFAs uptake derived from the circulation due to increased lipolysis from 

adipose tissue and/or from the diet in the form of chylomicrons; 2) an increase in 

glucose and insulin levels in response to carbohydrate intake that promotes de novo 

lipogenesis; 3) a decrease in FA mitochondrial oxidation; 4) a decrease in triglyceride 

hepatic secretion by packaging with ApoB into vLDLs. in NAFLD patients, enhanced 

acquisition of FAs through uptake and de novo lipogenesis are not compensated by 

FA oxidation or production of vLDL particles.

Abbreviations: ApoB, apolipoprotein B; FFAs, free fatty acids; FA, fatty acid; 

NAFLD, non-alcoholic fatty liver disease; vLDL, very-low-density lipoprotein.
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suggest there is an involvement of caveolin 1 in abnormal 

lipogenesis and mitochondrial function typical of steatotic 

hepatocytes in NAFLD.61

FAT/CD36

It is well-known that FFAs are taken up into cells by passive 

diffusion and by protein-mediated mechanisms involving a 

number of FA transporters, of which FAT/CD36 is the best 

characterized. FAT/CD36 is expressed in a wide variety 

of cells including macrophages, adipocytes, myocytes, 

enterocytes, and hepatocytes. This transmembrane pro-

tein plays an important role in facilitating the uptake and 

intracellular trafficking of FFAs, as well as esterification 

into TGs in heart and skeletal muscle cells; this function 

is largely dependent on its translocation from intracellular 

depots to the plasma membrane. Insulin, muscular contrac-

tions, and the transcription factor Forkhead box protein 

O1 (FoxO1) induce FAT/CD36 translocation and enhance 

FFA uptake.62

Hepatic FAT/CD36 expression is normally weak, but 

its expression is enhanced in rodents with fatty liver.63 

Moreover, some authors have demonstrated that FAT/CD36 

mRNA levels increase concomitantly with hepatic TG con-

tent in different animal models of liver steatosis.64,65 Further 

studies have shown that FAT/CD36 is a common target gene 

of liver X receptor (LXR), pregnane X receptor, and PPARγ 

in promoting hepatic steatosis in a murine model.66 However, 

little is known about the significance of FAT/CD36 in human 

liver diseases. In morbidly obese patients with NAFLD, 

Greco et al showed that hepatic FAT/CD36 mRNA levels 

were positively related to liver fat content67 and Bechmann 

et al found a significant correlation between hepatic FAT/

CD36 mRNA and apoptosis in patients with NASH.68 Other 

authors have described that hepatic FAT/CD36 upregulation 

is significantly associated with IR, hyperinsulinemia, and 

increased steatosis in patients with NASH.62

FABPs

The FABPs are a group of molecules that coordinate inflam-

matory and metabolic responses in cells.69 These proteins are 

a family of 14- to 15-kDa proteins that bind with high affinity 

to hydrophobic ligands such as saturated and unsaturated long-

chain FAs (LCFAs).70 Two isoforms of FABPs, aP2 (FABP4) 

and mal1 (FABP5) are the isoforms coexpressed in adipocytes 

and macrophages.71 The expression of these FABP isoforms 

is controlled transcriptionally during adipocyte differentia-

tion and is regulated by PPARγ agonists, insulin, and FAs. 

The functions of cytoplasmic FABPs include  enhancement of 

FFA solubility and transport to specific enzymes and  cellular 

 compartments (to the mitochondria and peroxisomes for 

oxidation; to the endoplasmic reticulum [ER] for reesterifica-

tion; into lipid droplets for storage; or to the nucleus for gene 

expression regulation).71,72 Disruption or pharmacological 

blockade of FABP4 protects mice from dyslipidemia, athero-

sclerosis, IR, and fatty liver in the context of either a high-fat 

diet or genetically induced obesity.73 The definitive biology 

and function of FABPs in human physiology and disease 

are still not fully clarified.69,73 Few studies have assessed the 

involvement of hepatic FABP4 expression in NAFLD. Greco 

et al and Taskinen et al have described FABP4 as being upregu-

lated in subjects with high liver fat content.67,74 The expression 

of FABP4 and FABP5 in the liver was correlated with hepatic 

fatty infiltration in NAFLD patients.75

Recent studies have also suggested that hepatic FA uptake 

via FATPs can be a novel therapeutic strategy for NAFLD. 

Adenovirus-mediated knockdown of FATP2 or FATP5 

reduced hepatic TG accumulation in high-fat fed mice.76,77 

Moreover, both deoxycholic and ursodeoxycholic acid have 

shown promise as inhibitors of FATP5-mediated FA uptake, 

suggesting that they may improve hepatic steatosis in high-

fat fed mice.78

PPARγ
PPARγ is a master transcriptional regulator of adipogenesis 

and plays an important role in the process of lipid storage.79 

Thus, PPARα and PPARγ have opposing functions in the 

regulation of fat metabolism; PPARα promotes utilization, 

while activation of PPARγ promotes storage. Indeed, as 

increased PPARγ expression has been found in steatotic 

livers, it has been suggested that the role of PPARγ in the 

activation of lipogenic genes may contribute to the develop-

ment of steatosis. Nevertheless, several studies have shown 

that PPARγ overexpression can prevent the progression of 

hepatic steatosis in murine models, and treatment with the 

PPARγ agonist rosiglitazone has been shown to have simi-

lar effects. The protective effects of PPARγ could be due 

to higher insulin sensitivity in adipose tissue and skeletal 

muscle leading to a reduction in FFA deposition in the liver. 

Adiponectin has also been shown to be increased by PPARγ, 

which also contributes to insulin sensitivity as well as upregu-

lating PPARα expression, which leads to further hepatic FA 

oxidation. Furthermore, PPARγ expression has been shown 

to have anti-inflammatory and anti-fibrotic effects in stellate 

cells, macrophages, and epithelial cells. Westerbacka et al 

have described that PPARγ was overexpressed in the fatty 

liver of obese human subjects.75
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Activation of PPARγ in adipose tissue has been proposed 

to promote the relocalization and storage of fat in adipose 

tissue, protecting peripheral tissues from lipotoxicity.

Regarding this, the TZDs have proven to be effective 

drugs for improving insulin sensitivity and treating type 2 

diabetes. Moreover, pioglitazone and rosiglitazone are highly 

effective in improving NAFLD outcomes in patients.80 

 Unfortunately, the clinical use of TZDs against NAFLD has 

been hampered by side effects.

De novo lipogenesis
The process in which the liver synthesizes endogenous FAs is 

called de novo lipogenesis. This includes de novo synthesis of 

FAs through a complex cytosolic polymerization in which glu-

cose is converted to acetyl-CoA by glycolysis and the oxidation 

of pyruvate. Acetyl-CoA carboxylase (ACC1) then converts 

acetyl-CoA into malonyl-CoA. Finally, FA synthase (FAS) 

catalyzes the formation of palmitic acid from malonyl-CoA 

and acetyl-CoA.81–83 Depending on the metabolic state, FAs are 

then processed to TGs and stored or rapidly metabolized.

Dietary fats are packed in chylomicrons and hydrolyzed, 

releasing FAs of which approximately 20% are delivered 

to the liver.7 In the fasting state, a decline of insulin levels 

stimulates adipocyte TG hydrolase, thereby releasing FFAs 

that are transported to the liver. In the liver, FFAs derived 

from peripheral tissue, endogenous synthesis, or diet, can 

be used for: 1) energy and ketone body production via 

mitochondrial β-oxidation; 2) sterified and stored as TGs 

in lipid droplets; or 3) packaged with apolipoprotein B into 

VLDL that is secreted into the circulation.83,84 In NAFLD 

patients, enhanced acquisition of FAs through uptake and 

de novo lipogenesis are not compensated by FA oxidation 

or production of VLDL particles (Figure 1).

The rate of de novo lipogenesis is regulated primarily at 

the transcriptional level. Several nuclear transcription factors 

are involved such as LxRα, sterol regulatory element-binding 

protein 1c (SREBP1c), carbohydrate-responsive element-

binding protein (ChREBP), and farnesoid X receptor (FxR); 

and enzymes (ACC1, FAS, and steroyl CoA desaturase 1 

[SCD1]). Postprandially, plasma glucose and insulin levels 

rise, which promote activation of lipogenesis through the acti-

vation of ChREBP and SREBP1c, respectively.34,85 In humans, 

NAFLD has been associated with increased hepatic expres-

sion of several genes involved in de novo lipogenesis.86,87

LXRs

LXRs are ligand-activated transcription factors that belong 

to the nuclear receptor (NR) superfamily.88 There are two 

LXR isoforms termed α and β. LxRα is mainly expressed 

in the liver, adipose tissue, and intestine, whereas LxRβ is 

ubiquitously expressed.89 In addition to modulating choles-

terol metabolism, LXRs have been characterized as major 

regulators of hepatic FA biosynthesis.90 A major function of 

LxRα in the liver is the stimulation of de novo lipogenesis, 

through the induction of SREBP1c, ACC1, FAS, and SCD1 

(Figure 2).91–93

Several authors have described an enhanced expression 

of LxRα and SREBP1c in NAFLD.87,94,95

SREBP1c

SREBPs are a family of membrane-bound transcription 

factors. SREBPs are synthesized as 125 kD precursors 

embedded in the ER. Proteolytic cleavage then allows the 

accumulation of active SREBP in the nucleus.

There are different SREBP isoforms: SREBP1c and 

SREBP2 are expressed in the liver, while SREBP1a is 

expressed only at very low levels in the liver of adult mice, 

rats, and humans.96 SREBP1c, the predominant isoform in 

the liver, preferentially affects the transcription of genes that 

regulate de novo lipid synthesis, although SREBP2 regulates 

Insulin

FxR

LXR

SREBP1c

PPARα

ChREBP

ACC, FAS, SCD1

G6PC, GCKR

Glucose

SFA

MUFA

FAs/TGs

β-oxidation

Figure 2 Transcriptional control of lipogenesis and glycolysis.

Notes: The conversion of glucose into FAs through de novo lipogenesis is 

nutritionally regulated by glucose and insulin signaling pathways, which induce the 

expression of glycolytic and lipogenic genes synergistically in response to dietary 

carbohydrates. insulin activates the transcription factor SREBP1c, which induces 

lipogenic enzymes (ACC1, FAS, SCD1), while glucose activates the transcription 

factor ChREBP, which induces both lipogenic (ACCl, FAS, SCD1) and glycolytic 

(G6PC, GCKR) enzymes. ChREBP is also a direct target of LXRs, and modifies the 
ratio of MUFA/SFA in favor of MUFA by stimulating SCD1 activity. Recently, glucose 

was also identified as activating LXR’s genes. Hepatic FxR activation inhibits FA/TG 
synthesis by suppressing SREBP1c and LXRα activation, and inducing the expression 

of PPARα, which promotes mitochondrial oxidation of FAs.

Abbreviations: ACC, acetyl-CoA carboxylase; ChREBP, carbohydrate-responsive 

element-binding protein; FA, fatty acid; FAS, fatty acid synthase; FFAs, free fatty 

acids; FxR, farnesoid X receptor; G6PC, glucose 6-phosphatase; GCKR, glucokinase 

regulatory protein; LXR, liver X receptor; MUFA, monosaturated fatty acids; PPARα, 

peroxisomal proliferator-activated receptor alpha; SCD1, steroyl CoA desaturase 1; 

SFA, saturated fatty acids; SREBP1c, sterol regulatory element-binding protein 1c; 

TG, triglyceride.
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genes involved in cholesterol biosynthesis and metabolism. 

The SREBP1a isoform, despite its very low levels in the liver, 

transactivates both lipogenic and cholesterol genes.97

To date, the main regulation demonstrated for SREBP1c 

is at the transcriptional level. SREBP1c transcription is 

induced by two quite disparate stimuli: insulin, a hormone 

released in response to carbohydrate intake and leading to a 

parallel increase in both the membrane-bound precursor and 

the mature nuclear form, and LxRα, a transcription factor that 

acts as a cholesterol sensor.92,93,98–100 In response to feeding, 

SREBP1c binds to its lipogenic genes, such as ACC1, FAS, 

and SCD1, and to its own gene, thereby stimulating hepatic 

lipogenesis (Figure 2).96,101–105

Different authors have described an enhanced expres-

sion of SREBP1c and LxRα in NAFLD.87,94,95 However, 

Nagaya et al demonstrated the downregulation of the hepatic 

SREBP1c-mediated lipogenic pathway in advanced NASH 

patients; SREBP1c mRNA levels were inversely correlated 

with the fibrosis stage.106 These discrepancies might be 

explained by differences in the cohort of studied patients. 

For example, Higuchi et al94 included normal weight patients 

with NAFLD and Lima-Cabello et al95 included patients 

with NAFLD and with steatosis related to chronic hepatitis 

C virus infection in mildly overweight men and women. 

Moreover, Higuchi et al did not evaluate either histological 

findings nor protein levels or intracellular localization of 

SREBP1c.94

ChREBP

De novo lipogenesis is regulated by glucose and insulin 

signaling pathways in response to dietary carbohydrate 

intake to induce glycolytic and lipogenic gene expression. 

SREBP1c has emerged as a major mediator of insulin action 

on lipogenic genes. However, SREBP1c activity alone is 

not sufficient for the stimulation of glycolytic and lipogenic 

gene expression.107,108 Over recent years, it has been reported 

that the liver transcription factor ChREBP is required for 

the induction of glycolytic gene expression by glucose and 

that it acts together with SREBP1c to stimulate lipogenic 

genes.109–111 Interestingly, ChREBP was also identified as a 

direct target of LXRs, which are an important regulator of 

the lipogenic pathway through the transcriptional control 

of SREBP1c, ACC1, FAS, and SCD1.112–117 Oxysterols are 

known as ligands of LXRs, but glucose was also shown to 

activate LXRs and to induce their target genes, including 

ChREBP (Figure 2).107,118

Postprandial hyperglycemia raises the hepatic concentra-

tions of phosphorylated intermediates, causing activation 

of ChREBP, which binds to the promoter of its target genes 

as a heterotetramer with its ubiquitously expressed partner 

Max-like protein X (Mlx). ChREBP target genes include not 

only enzymes of glycolysis and lipogenesis that predispose 

to hepatic steatosis, but also glucose 6-phosphatase (G6PC), 

which catalyzes the final reaction in glucose production, 

and glucokinase regulatory protein (GCKR), which inhibits 

hepatic glucose uptake.119,120 Transcriptional induction of 

G6PC and GCKR manifests as hepatic glucose intolerance 

or IR.121 Studies using a dominant negative variant of Mlx 

identified target genes of ChREBP–Mlx that promote hepatic 

glucose intolerance when overexpressed.120

Study results of the role and impact of ChREBP in 

glucose and lipid metabolism have been confusing. Global 

ChREBP deficiency in C57BL/6J mice results in IR.122 On 

the other hand, ChREBP deficiency123,124 or expression 

of a dominant negative Mlx isoform125 in an obese ob/ob 

background decreases hepatic steatosis and other related 

metabolic alterations, including IR. Benhamed et al126 

hypothesized that these opposite phenotypes in these two 

murine models may reside in the fact that ChREBP controls 

both glycolysis and lipogenesis, and that the beneficial 

effect of ChREBP deficiency may only be apparent in the 

context of lipid overload. The authors showed that mice 

overexpressing ChREBP, on a standard diet, remained 

insulin sensitive, despite increased lipogenesis resulting in 

hepatic steatosis. However, mice that overexpress ChREBP, 

on a high-fat diet, showed normal insulin levels and 

improved insulin signaling and glucose tolerance compared 

with controls, despite having greater hepatic steatosis. This 

effect seems to be mediated by the fact that ChREBP modi-

fies the monounsaturated FAs/saturated FAs (MUFA/SFA) 

balance in favor of MUFA, by stimulating SCD1 activity. 

Taken together, these results demonstrated that increasing 

ChREBP, by buffering detrimental FAs and favoring lipid 

partitioning, can dissociate hepatic steatosis from IR, with 

beneficial effects on both glucose and lipid metabolism. 

Interestingly, ChREBP expression in liver biopsies from 

patients with NASH was higher when steatosis was greater 

than 50% and lower in the presence of severe IR,126 sup-

porting this conclusion.

Furthermore, because insulin induces enzymes of 

 lipogenesis by activation of SREBP1c and represses G6PC 

through other transcriptional regulators, a mechanism of 

“selective IR” has been proposed to explain the simulta-

neous elevation of hepatic glucose production (or G6PC 

 expression) and lipogenesis in human type 2 diabetes or 

models of IR.127
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FxR

The FxR is a member of the NR superfamily and a receptor 

for bile acids. FxR activation leads to alterations in pathways 

involved in energy metabolism. It is mainly expressed in 

the liver, intestine, kidneys, and the adrenal glands, with 

less expression in adipose tissue and heart.128–130 FxR has 

emerged as a master regulator of lipid and glucose homeo-

stasis in the liver and of inflammatory processes at hepatic 

and extrahepatic sites. Also, a number of synthetic FxR 

agonists are being used for the treatment of different hepatic 

and metabolic disorders, resulting in a lower inflammatory 

and fibrogenic process.131,132

The generation of FxR knockout mice showed a clear role 

for FxR as the master regulation of bile acid homeostasis.133,134 

However, FxR knockout mice also revealed elevated levels 

of cholesterol and TGs in both the plasma and liver, sug-

gesting a key role for FxR lipid metabolism as well. In fact, 

it was demonstrated that FxR needs to be activated in order 

to reduce the expression of SREBP1c.135 More recently, in 

addition to bile acid and lipid metabolism, it has been shown 

that FxR also plays an important role in glucose metabolism, 

improving insulin sensitivity and glucose tolerance in a dia-

betic mice model.136,137

Regarding its role in lipid metabolism, the majority of 

literature seems to point to the fact that FxR activation is ben-

eficial in situations of excess, such as obesity and diabetes. 

FxR activation seems to reduce TGs levels by: 1) reducing 

FA synthesis in the liver, through the reduction of SREBP1c 

and LxR expression;138 2) inducing the expression of PPARα, 

which promotes FFA catabolism via β-oxidation; 3) increas-

ing TG clearance; and 4) increasing adipose tissue storage 

and altering adipokine patterns (Figure 2).139,140

Another hepatic protective mechanism of FxR activation 

has been shown to be maintenance of gut integrity against 

gut-derived endotoxins through the induction of antibacte-

rial factors such as angiogenin, inducible NO synthase, and 

interleukin-18 (IL18).131,132

Patients with NAFLD have lower protein and mRNA FxR 

levels, which has been attributed to higher TG synthesis and 

induced expression of SREBP1c and LxRα.138

ACC1 and FAS

In the process of FA synthesis, ACC1 converts acetyl-CoA, an 

essential substrate of FAs, to malonyl-CoA. FAS then utilizes 

both acetyl-CoA and malonyl-CoA to form palmitic acid 

(C16:0). Both are highly regulated by a transcriptional factor, 

SREBP1c, and play important roles in the energy metabolism 

of FAs. They are currently considered an attractive target for 

regulating the human diseases of obesity, diabetes, cancer, 

and cardiovascular complications. Dorn et al found that FAS 

expression was impaired in SS, while the absence of SS in 

hepatic inflammation did not affect FAS expression.141 In 

agreement with Dorn et al, several authors have described 

an enhanced expression of FAS in NAFLD.142 These authors 

have also described that ACC1 mRNA expression was higher 

in NAFLD. In support of increased FA synthesis in NAFLD, 

Morgan et al found that ACC1 and FAS mRNA expression 

were significantly higher in high-fat mice.143 All these find-

ings suggest that ACC1 and FAS might be a new diagnostic 

marker or therapeutic target for NAFLD.

FoxO1

FoxO1 is a transcription factor with an important role not 

only in glycogenolysis and gluconeogenesis, but also in lipid 

metabolism.

With regard to lipid metabolism, liver-specific transgenic 

expression of active FoxO1 induces the expression of genes 

involved in lipid transport and decreases the expression of 

important genes for glycolysis and lipid/sterol synthesis, 

resulting in lower postprandial TG concentrations compared 

to in wild-type mice.144 However, using a similar murine 

model, another group observed enhanced lipogenesis and 

liver steatosis.145 Similarly, adenoviral delivery of an active 

FoxO1 variant to the liver results in lipogenesis, hepatic 

steatosis, and reduced FA oxidation. These increases in 

lipogenesis result from a feedback loop that enhances insu-

lin signaling, thereby modulating lipid metabolism through 

SREBP1c in a FoxO1-independent manner.146

FoxO1 not only inhibits SREBP1c expression but also 

suppresses the expression of genes directly involved in FA 

synthesis, including FAS and adenosine triphosphate (ATP) 

citrate lyase.144

With regard to glucose metabolism, under fasting 

conditions, the liver provides energy by releasing glucose 

into the bloodstream. Initially, this results from the break-

down of liver glycogen stores (glycogenolysis), whereas 

with prolonged fasting, the primary source of glucose is 

 gluconeogenesis. Studies with adenoviral vectors in isolated 

hepatocytes confirm that FoxO1 stimulates the expression of 

gluconeogenic genes and suppresses the expression of genes 

involved in glycolysis, the shunt pathway, and lipogenesis, 

including glucokinase and SREBP1c. Taken together, these 

results indicate that FoxO1 proteins promote hepatic glucose 

 production through multiple mechanisms and contribute 

to the  regulation of other important metabolic pathways 

in adapting to fasting and feeding in the liver, including 
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 glycolysis, the pentose phosphate shunt, and lipogenic and 

sterol synthetic pathways.144

Chronic expression of an active FoxO1 mutant in the liver 

leads to increased expression of genes involved in gluconeo-

genesis, resulting in elevated plasma glucose and insulin lev-

els, which are not able to maintain normal  glycemia.144 Valenti 

et al suggest that increased FoxO1 activity may play a role in 

the pathogenesis of hepatic IR associated with NAFLD.147

Reduction of FoxO1 in both liver and white adipose tis-

sue using an antisense oligonucleotide-mediated approach 

improves glucose tolerance and both hepatic and peripheral 

insulin action in mice with diet-induced obesity.148  Consistent 

with these studies, FoxO1 haploinsufficiency is able to 

rescue the loss of insulin sensitivity in insulin receptor– 

haploinsufficient mice partly by reducing the hepatic expres-

sion of gluconeogenic genes.149

FA oxidation
Oxidation of FAs occurs within the mitochondria, peroxi-

somes, and the ER. It facilitates the degradation of activated 

FAs to acetyl-CoA. FAs are activated by acyl-CoA-synthetase 

to acyl-CoA in the cytosol, which is indispensable for enabling 

FAs to cross membranes and enter organelles. Short- and 

medium-chain FAs pass the mitochondrial membrane without 

activation. However, activated LCFAs are shuttled across 

the membrane via carnitine palmitoyltransferase-1 (CPT1). 

Malonyl-CoA, an early intermediate of de novo lipogenesis, 

is an inhibitor of CPT1. In the fed state, FA oxidation is 

inhibited and de novo lipogenesis promoted, allowing for 

storage and distribution of lipids. In general, short-, medium-, 

and long-chain FAs are oxidized within mitochondria 

(β-oxidation), while toxic, very-long-chain FAs are oxidized 

within peroxisomes. In diabetes or FA overload, cytochrome 

P450 (CYP4A)-dependent ω-oxidation of LCFAs occurs in 

the ER and induces ROS and lipid peroxidation. During the 

process of β-oxidation, electrons are indirectly donated to the 

electron transport chain to drive ATP synthesis. Acetyl-CoA 

can be further processed via the tricarboxylic acid cycle, or in 

the case of FA abundance, be converted into ketone  bodies. 

PPARα and insulin signaling are again involved in the regu-

lation of FA oxidation and the formation of ketone bodies 

via transcriptional regulation of mitochondrial 3-hydroxy-3-

methylglutaryl (HMG)-CoA synthase.82

PPARα
In the liver, PPARα plays a pivotal role in FA metabolism 

by upregulating the expression of numerous genes involved 

in mitochondrial FA and peroxisome FA oxidation, as well 

as numerous other aspects of FA metabolism in the cell.150 

As a consequence, activation of PPARα can prevent and 

decrease hepatic fat storage.151–154 When PPARα sensing is 

inefficient, overnight or prolonged fasting leads to severe 

hepatic steatosis, as seen in PPAR-α-/- mice.155,156 PPARα-/- 

mice fail to upregulate FA oxidation systems in the liver and 

cannot oxidize the influxed FAs, and thus develop severe 

hepatic steatosis. PPARα-/- mice also develop severe steato-

hepatitis when maintained on a diet deficient in methionine 

and choline.153,157,158 Also of importance is that administering 

PPARα agonists to rats not only prevents the development of 

methionine- and choline-deficient diet-induced steatohepatitis 

by preventing intrahepatic lipid and lipoperoxide accumula-

tion, but also reverses hepatic fibrosis by decreasing the expres-

sion of fibrotic markers and reducing the number of stellate 

cells.153,157–159 The efficacy of these agonists in the treatment of 

NAFLD in human subjects has not yet been studied in depth. 

From the available data, no definitive conclusion can be made 

on the efficacy of PPARα agonists on NAFLD due to study 

limitations, such as small sample size, incomplete data, and the 

use of agonists in combination with other strategies.160

Besides governing metabolic processes, PPARα also reg-

ulates inflammatory processes, mainly by inhibiting inflam-

matory gene expression. Hepatic PPARα activation has been 

repeatedly shown to reduce hepatic inflammation elicited by 

acute exposure to cytokines and other compounds.161–165

In conclusion, PPARα activation plays a role in the 

modulation of hepatic steatosis due to its effects: upregulation 

of FA oxidation systems and the ensuing burning of energy, 

reduction in the toxicity of FAs, and its anti-inflammatory 

effect (Figure 3).153,155,156,158

CPT1

CPT1 is a regulatory enzyme in the mitochondria that 

transfers FAs from the cytosol to the mitochondria prior to 

β-oxidation (Figure 3). Inhibition of CPT1 has been shown to 

prevent IR induced by a high-fat diet, partly due to a reduction 

in some of the deleterious intermediates generated by incom-

plete FA oxidation and partly to a shift toward increased 

glucose oxidation for energy production.166 Kohjima et al 

showed that CPT1 expression in humans is reduced by 50% 

in NAFLD compared with that in the normal liver.142

Inflammation and NAFLD
It is well-known that the balance between pro- and anti-

inflammatory acting cytokines is fundamental in the control 

of systemic and hepatic insulin action, and as a consequence, 

in the development of NAFLD. IR is an important feature 
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PPARα

Energy combustion

Lipotoxicity

steatohepatitis

Excess energy

Hepatic steatosis

Figure 3 Fatty acid oxidation.

Notes: in the liver, mitochondrial, peroxisomal, and microsomal FA oxidation are regulated by PPARα and metabolize energy. increased sensing of PPARα results in energy 

burning and reduced fat storage. Decreased sensing of PPARα leads to a reduction in energy utilization and increased lipogenesis, resulting in steatosis and steatohepatitis.

Abbreviations: CPT1, carnitine palmitoytransferase-1; FA, fatty acid; PPARα, peroxisomal proliferator-activated receptor alpha.

NAFLD

Adipose tissue inflammation

ADIPOR2

Adiponectin

TNFα

TNFR

IL6RIL6

Figure 4 Cytokines and NAFLD.

Notes: The balance/imbalance of pro- and anti-inflammatory cytokines secreted by 
adipose may profoundly affect the liver. Hepatic adiponectin mRNA expression was 

lower in individuals with NAFLD. However, TNFα and iL6 mRNA expression were 

higher in these patients. NALFD is associated with more proinflammatory cytokines 
and with fewer anti-inflammatory cytokines.
Abbreviations: ADiPOR2, adiponectin receptor type 2; iL6, interleukin-6; NAFLD, 

non-alcoholic fatty liver disease; TNFα, tumor necrosis factor alpha; TNFR, tumor 

necrosis factor receptor; iL6R, interleukin-6 receptor.

of NAFLD and is caused by a variety of factors, including 

soluble mediators derived from adipose tissue and/or immune 

cells: the adipocytokines (Figure 4).167

Adiponectin
Adiponectin, one of the major products of adipocytes, is a 

prototypic anti-inflammatory and anti-diabetic adipocytokine, 

the actions of which are mainly exerted by the activation of 

adenosine monophosphate (AMP)-activated kinase and 

PPARα. Adiponectin has two specific receptors: adiponectin 

receptor type 1 and 2 (ADIPOR1 and 2). ADIPOR1 is widely 

expressed, whereas ADIPOR2 can be mainly observed in the 

liver.168 Serum levels of adiponectin are lower in individu-

als with obesity, type 2 diabetes, and in conditions of IR,169 

whereas adiponectin synthesis is induced by weight loss and 

PPARγ activation by its ligands, TZDs.28 In general, studies 

have suggested that adiponectin exerts anti-inflammatory 

effects, stimulates secretion of anti-inflammatory cytokines 

such as IL10 or IL1 receptor antagonist (IL1Ra), blocks 

nuclear factor κB (NF-κB) activation, and inhibits the release 

of TNFα, IL6, and chemokines.170,171

The liver is not a relevant source of circulating adiponec-

tin, but it is a major target organ for many of its effects. In 

mice with alcoholic and non-alcoholic fatty liver disease, 

administering recombinant adiponectin ameliorated necroin-

flammation and steatosis, partly via inhibition of the hepatic 

production of TNFα and the decrease in plasma concentration 

of this proinflammatory cytokine.172

In humans, adiponectin serum levels were lower in 

patients with NASH in comparison to matched controls and 

to patients with SS, independently of IR or the waist–hip 

ratio. IR and low adiponectin serum levels were associated 

with increased steatosis and necroinflammation, but not 
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with severe fibrosis, which was predicted only by IR.173 

Another study has shown that morbidly obese patients with 

IR undergoing bariatric surgery have lower mRNA adiponec-

tin expression in adipose tissue and lower serum levels of 

adiponectin than those without IR. This low expression of 

adiponectin may predispose patients to the progressive form 

of NAFLD or to NASH.174

Low mRNA expression of adiponectin and ADIPOR2 

was found in the liver of patients with NASH compared with 

those with SS. Moreover, ADIPOR2 expression was inversely 

related to alanine aminotransferase and the fibrosis stage.175 

More recently, Moschen et al demonstrated in a prospective 

study that rapid weight loss after bariatric surgery results in 

a significant improvement of both histological and biochemi-

cal liver parameters, which is accompanied by an increase 

of adiponectin serum levels, as well as hepatic mRNA adi-

ponectin expression.176

Altogether, there is now strong evidence that circulating 

adiponectin levels are lower in obesity and related human 

disorders, including NAFLD.176,177

TNFα and iL6
TNFα and IL6 are two important proinflammatory adipocy-

tokines and the expression of both is hugely increased in the 

fat cells of obese human subjects and patients with IR.178,179 

In patients with severe obesity, the mRNA expression of IL6 

and TNFα is clearer in adipose compared to liver tissue.180

TNFα was identified more than two decades ago as the 

first inflammatory molecule linked with IR.181 Higher serum 

levels of TNFα and soluble TNFα receptor 2 (TNFR2) have 

been found in patients with NASH compared with healthy 

subjects and these differences were independent of higher 

IR. However, no significant differences in TNFα and TNFR2 

were found between SS and NASH patients.173

Enhanced TNFα hepatic expression was recently dem-

onstrated in a group of obese patients with NAFLD. Crespo 

et al reported increased hepatic expression of TNFα and 

TNFR2 in patients with NASH compared to patients with SS. 

In these patients, more advanced fibrosis was also accompa-

nied by the increased hepatic expression of TNFα.182 In line 

with these results, TNFα plasma levels have been shown to 

correlate positively with the grade of liver fibrosis assessed 

by ultrasound-guided liver biopsy in patients with advanced 

stages of NAFLD.183

Furthermore, certain TNFα polygenetic polymorphisms 

have been found to have higher IR indices, a higher preva-

lence of impaired glucose tolerance, and higher susceptibility 

to the development of NAFLD and NASH.184,185

IL6 is a pleiotropic cytokine expressed in many inflam-

matory cells in response to different types of stimuli, regu-

lating a number of biological processes including IR and 

the regulation of inflammation. It is known to be the main 

stimulating factor for hepatocyte synthesis and the secretion 

of C-reactive protein in humans,186 and for this reason, it has 

been proposed as a potential mediator leading to NAFLD. 

However, the true mechanisms driving IL6 induced NAFLD 

remain unclear. 

Preliminary studies have found that IL6 plays a protective 

role in liver fibrosis by promoting hepatocyte proliferation 

and by protecting against oxidative stress and mitochon-

drial dysfunction.187 On the other hand, Wieckowska et al 

 demonstrated markedly increased IL6 expression in the liver 

of patients with NASH compared to those with SS or normal 

liver. Hepatic IL6 expression also correlated positively with 

the severity of inflammation and fibrosis. IL6 plasma levels 

that were measured in parallel in this study correlated well 

with liver IL6 expression.6 In another study, IL6 was evalu-

ated among several serum markers in NAFLD patients, and 

IL6 circulating levels were significantly increased in patients 

with NAFLD as compared to healthy controls, but not in 

NASH compared to SS.188

Weight loss resulted in a dramatic decrease of IL6 subcu-

taneous and hepatic expression with a subsequent reduction in 

expression of the hepatic suppressor of cytokine signaling 3 

(SOCS3) and improved insulin sensitivity. On the other hand, 

TNFα expression after weight loss only decreased in adipose 

tissue, not in hepatic tissue.180 This would suggest that the 

liver might be a key organ for adipose tissue-derived IL6 

and TNFα because continuous TNFα/IL6 exposure affects 

hepatic IR.189

visfatin
Visfatin, also termed pre-B cell colony enhancing factor 

(PBEF) or nicotinamide phosphoribosyltransferase (NAMPT) 

was first identified in 1994 as a protein secreted by activated 

lymphocytes, synergizing with IL7 and stem cell factor in 

early B cell formation.190 Although the first discovery of 

this molecule suggested primarily a cytokine function, its 

rediscovery as the key enzyme in generating nicotinamide 

adenine dinucleotide has considerably widened its biological 

perspective.191 Its extracellular functions (cytokine-like) are 

mainly proinflammatory as it potently induces various other 

proinflammatory cytokines such TNFα and IL6. Its intracel-

lular functions concentrate on regulating the activity of NAD-

consuming enzymes such as various sirtuins, thereby also 

affecting TNFα biosynthesis, cell lifespan, and longevity.
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Only a few reports have so far addressed the role of this 

adipocytokine in human NAFLD. In patients with NAFLD, 

visfatin shows higher serum concentrations and weight 

loss is associated with both a decrease in serum levels and 

a reduction in liver mRNA expression, suggesting that the 

fatty liver might indeed contribute to an observable increase 

in serum visfatin levels.176 In the same study, immunohis-

tochemistry staining for visfatin was carried out in 18 paired 

liver biopsies. The staining showed that visfatin was abun-

dantly expressed in hepatocytes; weight loss decreased this 

expression dramatically. Another report has demonstrated 

the correlation of visfatin serum levels with liver histology 

in NAFLD, and such high circulating levels could predict the 

presence of portal inflammation in NAFLD patients.192

A protective role of visfatin against hepatocyte inflam-

matory damage was suggested by Jarrar et al.193 In that study, 

serum visfatin circulating levels in NAFLD patients were 

higher than in healthy control individuals, both lean and 

obese without NAFLD. Furthermore, when NASH occurred, 

visfatin concentration decreased significantly compared with 

SS, but was still significantly higher than in obese or lean 

healthy subjects without NAFLD.

Our findings are in line with data reporting that circulat-

ing levels and hepatic expression of visfatin are significantly 

higher in a group of morbidly obese women compared to 

lean controls and morbidly obese women with normal liver 

histology. Moreover, serum visfatin correlated well with IL6 

and C-reactive protein.194

All these findings suggest that visfatin is a molecule 

with an important role in the pathophysiology of NAFLD 

and indicate that the liver could be a major source for this 

cytokine.

PPARδ
The PPARs family consists of three members: namely, 

PPARα, PPARβ/δ, and PPARγ. These receptors act as 

FA sensors that control many metabolic programs that are 

essential for systematic energy homeostasis. Today, due to 

its ubiquitous profile, much less is known about PPARδ than 

the other two in relation to human obesity and NAFLD.195

Oliver et al showed that IR obese rhesus monkeys nor-

malized fasting glucose and insulin, increased high-density 

lipoprotein cholesterol and reduced low-density lipoprotein 

(LDL) cholesterol after treatment with a potent and specific 

PPARδ agonist, the GW501516.196 Other studies in an animal 

model of adenovirus-mediated hepatic PPARδ overexpres-

sion showed that PPARδ regulates lipogenesis and glucose 

utilization for glycogen synthesis. These effects could result 

in hepatic protection from FFA-mediated damage, possibly 

due to the generation of protective MUFA and the lowering 

of lipotoxic SFA levels.197

Overweight and obese men subjected to the PPARδ 

agonists, GW501516 or MBX-8025, exhibited improved 

insulin sensitivity and decreased fasting plasma TGs, non-

esterified FAs, apolipoprotein B-100, and LDL-cholesterol, 

with diminished liver fat content quantified by magnetic 

resonance imaging.198,199

However, the final mechanisms underlying PPARδ effects 

in the liver of NAFLD patients still need further study.

NAFLD and lipotoxicity
The pathogenesis of NAFLD is often interpreted by the 

“double-hit” hypothesis. The primary insult or the “first hit” 

is lipid accumulation in the liver,8,200 followed by a “second 

hit” in which proinflammatory mediators induce inflamma-

tion, hepatocellular injury, and fibrosis.201 This paradigm 

suggested TG accumulation to be the “first hit” that predis-

poses to further liver damage in the pathogenesis of NASH, 

but has recently been replaced by a more complex model as 

emerging evidence points to FAs and their metabolites as the 

true lipotoxic agents.202 Interestingly, lipid accumulation and 

altered composition of phospholipids within ER membranes 

further promotes ER stress and IR in obese mice.203 Cytosolic 

TGs are therefore now considered to be inert, and in fact, 

lipid droplet accumulation seems to be hepatoprotective.204 

 However, TG accumulation and lipid droplet formation go 

hand in hand with pathophysiological mechanisms in NASH. 

FAs, as well as acyl-CoA and acetyl-CoA, have been iden-

tified as potential causes of lipotoxicity.205 FAs have been 

found to initiate the extrinsic apoptosis cascade and also to 

interfere with NR signaling, which might influence the extent 

of hepatocyte damage and further promote IR and ER stress.206 

Accordingly, β-oxidation of LCFA within peroxisomes and 

ω-oxidation within the ER are upregulated in NASH and 

contribute to lipotoxicity and ROS formation.142 This might 

be secondary to inhibition of mitochondrial β-oxidation due to 

an accumulation of malonyl-CoA and the inhibition of CPT1. 

In fact, recent studies indicate that activation of mitochondrial 

FA oxidation protects from steatosis and IR.207

It is known that FAs induce the production of TNFα. 

Hepatic TNF receptor expression correlates with the severity 

of NAFLD disease.182 Also, TNF receptor activation increases 

expression of SREBP1c, which induces hepatic lipogenesis 

and lipid accumulation.208 TNFα activation is further paral-

leled by death-receptor expression, which facilitates activa-

tion of the extrinsic apoptosis cascade. Apoptosis is indeed 
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the predominant form of hepatocellular injury in NASH. In 

fact, apoptotic activity within the unhealthy liver correlates 

with disease severity, and thus, cleaved cytokeratin-18 frag-

ments in the serum of NAFLD could effectively be utilized 

as surrogate markers for the progression of NAFLD.209 As 

previously mentioned, FA accumulation also leads to the 

induction of ER stress and ROS formation, which again 

promotes hepatic injury.210

On the other hand, other studies indicate that metabolic 

oxidative stress, autophagy, and inflammation are hallmarks 

of NASH progression. In this sense, CYP2E1, the principal 

isoform of the CYP450 enzyme, seems to be critically 

important in NASH development by promoting oxidative/

nitrosative stress, protein modifications, inflammation, and 

IR.211,212  Moreover, Das et al suggest that purinergic  receptor 

X7 (P2X7), upregulated by CYP2E1, might have a key 

role in autophagy induced by metabolic oxidative stress in 

NASH.213

In summary, while hepatic TG accumulation seems to 

be a benign symptom of hepatic steatosis, FA metabolites 

contribute to the progression of NAFLD to NASH. IR pro-

motes the recruitment of FFAs from the serum pool as well 

as intrahepatic FA accumulation, which induces apoptosis 

and ROS formation. FAs themselves also promote hepatic 

IR via TNF receptor activation, indicating a vicious cycle 

of lipid accumulation (Figure 1D). Other mechanisms could 

also contribute to liver damage. Regarding that, some authors 

have even suggested a “multiple parallel hits hypothesis” to 

explain the pathophysiology of NAFLD.41

Cannabinoid receptors  
(CB1, CB2) in NAFLD
The endocannabinoid (EC) system consists of cannabinoid 

receptors, endogenous cannabinoid ligands, and their biosyn-

thetic and degradative enzymes, and has recently emerged 

as a ubiquitous system with key functions in a variety of 

physiological settings. Over the last decade, the EC system 

has emerged as a pivotal mediator of acute and chronic liver 

injury. ECs regulate appetite behavior and are lipid mediators 

that produce similar effects to those of marijuana by acting 

on membrane-bound receptors.214 Cannabinoid receptors are 

localized mainly in the brain, but are also present in minor 

amounts in the liver and some other peripheral tissues (CB1) 

and in immune and hematopoietic cells (CB2).215,216

ECs may also regulate peripheral energy metabolism, as 

demonstrated by their CB1-mediated effect on lipoprotein 

lipase activity in adipocytes217 and their ability to stimulate 

lipogenesis in hepatocytes.218,219 Cannabinoids exert their 

effects through two different cannabinoid receptors: CB1 

and CB2. Under physiological conditions, the EC system is 

silent, since CB1 and CB2 receptors are faintly expressed. 

In contrast, induction of CB receptors and/or increased lev-

els of ECs are common features of liver injuries of diverse 

origins.220 Both receptors have been implicated in the devel-

opment of liver fibrosis secondary to various  etiologies. 

CB1-mediated EC tone is enhanced in experimental diet-

induced or genetic models of NAFLD, and is characterized 

by upregulation of adipose tissue and hepatocyte CB1 recep-

tors, and by increased liver synthesis of anandamide. The 

pathogenic role of CB1 receptors in NAFLD is supported by 

the resistance to steatosis of obese mice bearing a global or 

hepatocyte-specific CB1 deletion, or of rodents administered 

rimonabant or AM6545, a CB1 antagonist.221–223 Studies with 

cultured hepatocytes and liver slices further indicate that 

the steatogenic properties of CB1 arise from altered hepatic 

lipid metabolism, consisting of a combination of hepatocyte 

activation of SREBP1c-mediated lipogenesis, reduction of 

FA oxidation via inhibition of AMP kinase, and decreased 

release of TG-rich VLDL.221,222,224 In addition, the adipose 

tissue may largely contribute to the steatogenic process via 

CB1-induced release of FFAs by adipocytes (Figure 5).225

CB1

CB1

CB1
↓

−CPT1

VLDL

-TGs

TGs

+LPL

FFAs

FFAs

FFAs

TGs

De novo lipogenesis:

+ SREBP1c
+ ACC1 and FAs

β-oxidation

Dietary fats

Figure 5 Mechanisms of CB1 involved in hepatic lipid accumulation.

Notes: The activation of CB1 receptors in adipose tissue promotes LPL activity, 

which results in increased FFA release into the liver. The activation of hepatic 

CB1 receptors contributes to liver fat accumulation by increased de novo hepatic 

lipogenesis, decreased FA oxidation, and decreased secretion of TG-rich vLDL.

Abbreviations: ACC1, acetyl-CoA carboxylase; CB, cannabinoid; CPT1, carnitine 

palmitoyltransferase-1; FA, fatty acid; FAS, fatty acid synthase; FFA, free fatty acid; 

LPL, lipoprotein lipase; SREBP1c, sterol regulatory element-binding protein 1c; TG, 

triglyceride; vLDL, very-low-density lipoprotein.
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and ROS formation. Better understanding of the molecular 

pathways of liver injury should promote the development of 

diagnostic and therapeutic interventions aimed at reducing 

the morbidity and mortality associated with NAFLD.
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