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Simulated annealing is a stochastic local search method, initially introduced for global combinatorial mono-objective optimisation
problems, allowing gradual convergence to a near-optimal solution. An extended version for multiobjective optimisation has been
introduced to allow a construction of near-Pareto optimal solutions by means of an archive that catches nondominated solutions
while exploring the feasible domain. Although simulated annealing provides a balance between the exploration and the exploitation,
multiobjective optimisation problems require a special design to achieve this balance due to many factors including the number of
objective functions. Accordingly, many variants of multiobjective simulated annealing have been introduced in the literature. 	is
paper reviews the state of the art of simulated annealing algorithm with a focus upon multiobjective optimisation 
eld.

1. Introduction

Simulated annealing is a probabilistic local search method
for global combinatorial optimisation problems that allows
gradual convergence to a near-optimal solution. It consists
of a sequence of moves from a current solution to a better
one according to certain transition rules while accepting
occasionally some uphill solutions in order to guarantee a
diversity in the domain exploration and to avoid getting
caught at local optima. 	e process is managed by a certain
cooling schedule that controls the number of iterations.
Simulated annealing has shown robustness and success for
many applications and has received signi
cant attention
since its introduction. Consequently, multiobjective simu-
lated annealing has been introduced with the aim to allow a
construction of near-Pareto optimal solutions bymeans of an
archive in which nondominated solutions are gradually gath-
eredwhile exploring the feasible domain. Although simulated
annealing provides a balance between the exploration and the
exploitation, multiobjective optimisation problems require a
special design to achieve this balance due to many factors
including the number of objective functions. Accordingly,
many variants of multiobjective simulated annealing have
been introduced in the literature.

	is paper reviews and discusses simulated annealing
algorithm for multiobjective optimisation and delineates
some algorithm variants.

2. Overview on Mono-Objective
Simulated Annealing

Simulated annealing is a meta-heuristic that dates back to

the works of Kirkpatrick et al. [1] and Černý [2] having
shown that the Metropolis algorithm [3] (an algorithm of
statistical physics that consists in constructing a sequence of
Markov chains for sampling from a probability distribution.
	e algorithm is o�en used under an extended version
called Metropolis-Hastings algorithm.) can be used to obtain
optimal solution of optimisation problems by considering
the energetic state as objective function and thermodynamic
equilibrium states as local optima. Simulated annealing
mimics the metallurgical process of careful annealing that
consists in cooling a heated metal or alloy until reaching the
most solid state called the ground state. Simulated annealing
is considered as an extension of the hill climbing algorithm
which consists of a sequence of transitions across solutions
while improving a certain energetic objective function at
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Figure 1: Flowchart of the mono-objective simulated annealing algorithm.

each iteration until reaching the global optimum. Simulated
annealing has introduced an occasional acceptance mech-
anism of uphill solutions in order to explore the feasible
domain intensively and to avoid getting caught at local
optima.	e process is managed by a certain cooling schedule
that controls the temperature variation during the algorithm
process. Figure 1 presents the generic simulated annealing
algorithm �owchart.

	e generic simulated annealing algorithm consists of
two nested loops. Given a current solution and a 
xed
temperature, the inner loop consists, at each iteration,
in generating a candidate neighbouring solution that will
undergo an energy evaluation to decide whether to accept
it as current. Occasionally, some nonimproving solutions
are accepted according to a certain probabilistic rule. 	e
loop is controlled by an equilibrium condition that limits the
number of iterations at every temperature level. It refers to a
thermal equilibrium when the algorithm is not expected to

nd more improving solutions within the current explored
neighbourhood. 	e outer loop consists in decreasing the
temperature level according to a certain cooling scheme.
	e temperature is supposed to be iteratively decreased until
reaching a cooling condition that o�en corresponds to a 
nal

temperature due. 	e algorithm involves therefore two main
considerations, namely the neighbourhood structure and the
cooling schedule.

Neighbourhood structure refers to a set of conceptual
considerations regarding both the representation and the
generation mechanism of neighbouring solutions. It is sup-
posed to be proper to the problem under consideration
and to provide a restricted number of possible transitions.
For ease handling, solutions of optimisation problems are
usually considered in a certain indirect representation that
consists of a 
nite number of components within a certain
con
guration. 	us, two solutions are neighbours if their
con
gurations are similar; that is, the two con
gurations
di�er in few components only or may have close energy
values. Neighbourhood structure consists rather in de
ning
the candidate solutions that the algorithm may move to at
each iteration. Even o�en underestimated in early studies
[4, 5], the neighbourhood structure choice has a signi
cant
impact on the neighbourhood size and even on the simulated
annealing performance. Moreover, it may a�ect the concept
of local optimality itself [6, 7], thereby identifying a local opti-
mum for every neighbourhood. Accordingly, the algorithm
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Table 1: Summary of classical cooling schemes.

Denotation General functional form Iterative formula Authors

Linear �� = �0 − �� �� = ��−1 − � Strenski and Kirkpatrick [9]

Geometric �� = ���0 �� = ���−1 Kirkpatrick et al. [1]

Logarithmic �� = �0
ln (� + 1) �� = ln (�)

ln (� + 1)��−1 Geman and Geman [10]

Hybrid �� = {{{{{
�01 + � if � ≤ �

���0 if � > � �� = {{{{{
�� + 1��−1 if � ≤ �

���−1 if � > � Sekihara et al. [11]

Exponential �� = �01 + ���0 �� = ��−11 + ���−1 Lundy and Mees [12]

Adaptive �� = � (�) ��−1 Ingber [13]

	e table notations are summarised as follows:
�0 is the initial temperature value.
�� is the temperature value for the �th iteration.
� and � are two constants such that � ∈ [0, 1] and � > 0.
� is a function depending on the candidate solution 	� that takes a value less than 1 if 	� improves the objective function in comparison to the best solution
found so far and greater than 1 otherwise.

purpose is to hopefully reach, at each temperature level, the
local optimum before reaching the equilibrium condition.

	e cooling schedule controls the temperature decrease
in the course of the algorithm. It consists of four enti-
ties, namely, an initial temperature, a 
nal temperature, an
equilibrium condition, and a cooling scheme that consists
of a decreasing sequence of temperature. Whilst the 
nal
temperature is supposed to be preset to zero or around,
the choice of the other parameters is rather challenging and
strongly related to the case under investigation; no speci
c
rule does exist for all situations and preliminary experiments
are o�en required. 	e equilibrium condition is a parameter
that limits the number of iterations at every temperature
level. It could be merely preset to a certain upper bound on
that number, plausibly proportional to the current solution
neighbourhood cardinality. In order to utterly mimic the
careful annealing, thereby receiving satisfactory solutions,
any parameters choice should ensure that the process starts
at a su�ciently high temperature value and terminates at
su�ciently low temperature value according to a su�ciently
slow cooling scheme.

	e choice of an appropriate cooling scheme is crucial
in order to ensure success of the algorithm. A wide range
of cooling schemes have been introduced in the literature
that are either monotonic or adaptive. A cooling scheme is
a function of iteration index that depends more o�en on
the previous temperature value and the initial temperature.
Monotonic schemes consist of static decrease of temperature
at every iteration independently of the quality of the found
solutions nor the current explored neighbourhood structure,
whereas adaptive cooling schemes involve a mechanism of
decreasing the temperature in accordance to the quality
of transitions. 	erefore, more satisfactory moves occur
more the decrease hop is larger. 	is would imply some
reannealing occurrences allowing more diversi
cation and
intensi
cation. A summary of classical schemes is presented
in Table 1. Nevertheless, Triki et al. [8] have demonstrated

based on an empirical study that almost all classical cooling
schemes are equivalent; that is, they can be tuned to result in
similar decrease of the temperature during the course of the
algorithm.

During the course of the algorithm, two kinds of accep-
tance are involved, namely, a regular acceptance correspond-
ing to the case when an improving solution is found, and a
probabilistic acceptance corresponding to the case when a
nonimproving solution is found that would imply diversi
ca-
tion and escape from local optima.Given a candidate solution�, the acceptance of the candidate move to � is expressed by
means of the Metropolis rule given by the following formula:

P (Accept �) = min(1; exp (−Δ��� )) (1)

where Δ� is the move energetic variation and � is the
current temperature. � is called Boltzmann constant and
o�en assumed to be equal to 1. 	is rule tolerates fre-
quent acceptance occurrences of uphill solutions at high
temperature levels. 	at is, almost all candidate solutions
would be accepted if the temperature is high, whereas only
improving solutions would be accepted if the temperature
is low. Furthermore, given that the exponential function is
increasing, the acceptance rule favours small deteriorations
than large ones. 	e algorithm is supposed to stop when
one of the two following cases is due: the temperature level
attains the 
nal temperature or either the process results on
a solution for which no improving solution could be found
within a reasonable number of annealing cases. A criterion
responsible for dealing with both cases is called a cooling
condition.

Simulated annealing has shown signi
cant success for
many applications and has received signi
cant attention since
its introduction. Moreover, it is problem-dependent and the
choice of appropriate parameters is rather a challenging task.
More detailed review can be found in [14–19].
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3. Multiobjective Simulated Annealing

3.1. Multiobjective Optimisation and Metaheuristics. Multi-
objective optimisation, also called multicriteria or multiat-
tribute optimisation, deals with problems involving more
than one objective function to be simultaneously optimised.
	e objective functions under consideration are o�en in con-
tradiction (or con�icting) in such a way no improvement on
any objective function is possible without any deterioration
in any one of the others—otherwise the problem is said to
be trivial and is reduced to a mono-objective optimisation
problem. Given � objective functions �
 : R

n �→ R for� = 1, . . . , �, a multiobjective optimisation problem (o�en
said to be bi-objective if� = 2 and many-objective if� ≥ 4)
can generally be formulated as

minimise (�1 (�) , . . . , �� (�))
subject to � ∈ � (MOP)

where � ⊂ R
n, called the feasible domain, is a set of

equalities and inequalities of the decision vector variable�. 	e optimality concept in multiobjective optimisation is
based on the dominance binary relation which serves as a
comparison function between feasible solutions. A solution
is said to be dominating another one if the former improves
at least one objective function value compared to the latter
without any deterioration in the other objective function
values. Given � and � two feasible solutions of (MOP), that is�, � ∈ �, the following alternatives are possible:

(i) � ≺ �; that is, � dominates �, if �
(�) ≤ �
(�) for
all � = 1, . . . , � and (�1(�), . . . , ��(�))✁=(�1(�), . . . ,��(�))

(ii) � ∼ �; that is, � and � are equivalent, if �
(�) = �
(�)
for all � = 1, . . . , �

(iii) � ? �; that is, � and � are noncomparable, if there
exist � and � such that �
(�) < �
(�) and ��(�) >��(�)

A nondominated solution is de
ned then as one for
which no feasible solution exists that dominates it—it corre-
sponds to the best trade-o� between all considered objective
functions. Compared to mono-objective optimisation, the
optimality is typically attained by means of a set of non-
dominated solutions, called Pareto set, rather than a single
solution. Pareto set is usually referred to by means of its
image, called Pareto front or Pareto frontier, which serves as a
graphical representation of dimension� − 1 of optimality in
the objective space, that is, the space constituted by objective
functions. Each Pareto optimal solution is said to refer to a
preference structure or either a utility function. Furthermore,
the Pareto solutions are said to be noncomparable; that is, no
preference can be stated between any pair of them. Despite
the mathematical signi
cance of this concept of optimality, a
wide range of investigations have been deemed in economics
giving rise to many advances in the utility theory that deal
with preference structures in accordance with the users
(customers) satisfaction. Nevertheless, 
nding all the optimal
solutions for a multiobjective optimisation problem is rather

challenging and di�cult, at least in comparison with mono-
objective optimisation case.

A variety of techniques have been addressed in the
literature to deal with multiobjective optimisation that can
be classi
ed into three approaches: a priori, a posteriori, and
progressive. An a priori approach consists of a transformation
of the mathematical multiobjective model into a mono-
objective one. Many methods have been introduced from
this perspective, namely, goal programming, aggregation
or scalarisation, and lexicographical, which return typically
one (Pareto) optimal solution of the original model. An a
posteriori approach consists of a construction of the Pareto
set. Yet, such a construction is usually di�cult and compu-
tationally consuming. 	us, approximation algorithms are
plausibly suggested in this case. 	ey consist in constructing
a subset of the Pareto set, or otherwise a set of e�ciently
nondominated (or near-Pareto optimal) solutions, that is,
feasible solutions that are not dominated by any solution that
can be alternatively computed in reasonable computational
cost. 	e construction of the actual or an approximating
Pareto set is sometimes referred to as Pareto optimisation.
As to progressive approach, also called interactive approach,
it is a hybridisation of the two aforementioned approaches
where the decision-maker provides a kind of guidance to
the algorithm execution. It consists actually of an a priori
approach that involves an a posteriori partial result learning
and preference de
ning as long as the algorithm progresses.
More details about progressive optimisation can be found in
[20, 21].

Due to the success of metaheuristics in mono-objective
optimisation, especially for combinatorial problems where
information about the problem (in terms of the feasible
domain, called in this context the search space) is o�en
accessible, metaheuristics have been widely adapted to cope
with multiobjective combinatorial problems as well. Con-
trary to the constructive techniques, metaheuristics are
solution-based allowing, therefore, a manageable compro-
mise between the quality of solution (e�ciency) and the exe-
cution time (number of iterations). Moreover, metaheuristics
are expected to bring a generic and adaptable framework
for a wide range of problems. Vector evaluated genetic
algorithm [22] has been the 
rstmultiobjectivemetaheuristic
proposed in the literature consisting of an adaptation of the
genetic algorithm to the multiobjective optimisation case.
	enceforth many other multiobjective metaheuristics have
been developed that include multiobjective Tabu search [23],
multiple ant colony system for vehicle routing problems with
time windows [24], multi-objective simulated annealing [25],
and multiobjective scatter search [26].

Metaheuristics adaptations have been developed into two
main paradigms: one run and multiruns. One-run-based
techniques consist in adapting the original metaheuristic to
return a set of solutions at only one execution. One of the
important advantages of this paradigm is that it follows the
main principle of metaheuristics consisting of dealing with a
solution at each iteration, rather than a solution component,
which refers in the multiobjective optimisation case to a set
of solutions with a certain level of e�ciency. Yet, the number
of returned solutions is rather uncontrollable. Indeed, if the
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potential near-optimal solutions are archived progressively,
each solution returned should undergo an evaluation phase
where it is compared to the previous archived potential
near-optimal solutions, in order to eliminate any dominated
one. If the near-optimal solutions are returned unsteadily
at the algorithm termination, for example, for population-
based meta-heuristics like genetic algorithms, the solutions
are compared to each other at this stage.

Inspired from the a priori multiobjective approach,
multiruns-based techniques consist in applying the original
metaheuristic on a certain aggregation of the objective func-
tions under consideration. At each run, the metaheuristic is
expected to reach one near-optimal solution of the problem
that satis
es a certain preference structure. 	e algorithm
is assumed to be executed as many times as the required
number of near-optimal solutions. Unfortunately, there is
no guarantee that two di�erent preference structures lead
to two distinct near-optimal solutions. Once again, the
gathered solutions are compared to each other to eliminate
any dominated one. Nevertheless, the near-optimal solutions
found should be diverse, that is, dispersed on the Pareto front.
Das and Dennis [27] showed that evenly spread solutions are
not guaranteed evenwith an evenly distributed set of weights.
	us, although the concept that multiruns-based techniques
follow is quite simple, determining e�ective and pertinent
preference structures in advance is not straightforward at
least for a whole range of multiobjective problems.

3.2. Principles of Multiobjective Simulated Annealing. Mul-
tiobjective simulated annealing originates from the works
of Sera
ni [28] where many probabilistic acceptance rules
have been designed and discussed with the aim at increasing
the probability of accepting nondominated solutions, that is,
solutions nondominated by any generated solution so far.
Two alternative approaches have been proposed in conse-
quence. Given� objective functions �
 assigned to� scalar-
valued weights  
 for � = 1, . . . , �, and a candidate solution�, the 
rst approach consists in accepting with certainty
only improving solutions, thereby accepting with probability
less than 1 any other solution. 	is strong acceptance rule
allows deep exploration of the feasible domain and has been
expressed as follows:

P (Accept �) = �∏

=1

min(1; exp( 
Δ�
� )) (2)

	e second approach consists in accepting with certainty
any either dominating or noncomparable solution, allowing
diversity in the exploration of the feasible domain. 	is weak
acceptance rule is expressed in the following form:

P (Accept �) = min(1; max

=1,...,�

(exp ( 
Δ�
� ))) (3)

	e two alternatives lead to quite di�erentMarkov chains
for which nondominated solutions were proved to have

higher stationary probability. A composite acceptance rule
has been proposed consisting of the following formula:

P (Accept �)
= � �∏

=1

min(1; exp ( 
Δ�
� ))
+ (1 − �)min(1; max


=1,...,�
(exp ( 
Δ�
� )))

(4)

where � ∈ [0, 1] and �/ 
 is considered as a temperature�
 related to each objective function �
, that is, like each
objective function has its own annealing scheme. Besides,
each considered occurrence of weights ( 
)
=1,...,� is assumed
to correspond to a certain preference structure. In order to
guarantee entire exploration of the Pareto set, a slow random
variation of the weights has been proposed in consequence at
every iteration.

3.3. MOSA Methods. Multiobjective Simulated Annealing
method (MOSA) is a class of simulated annealing extensions
to multiobjective optimisation exploiting the idea of con-
structing an estimated Pareto front by gathering nondomi-
nated solutions found while exploring the feasible domain.
An archive is considered that serves for maintenance of
those e�cient solutions. Accordingly, many multiobjective
simulated annealing paradigms have been proposed in the
literature [25, 29–34] that have in common the suggestion of
considering a variation of a certain composite energy o�en
as a linear combination of the considered objective functions.
Under certain choice of acceptance probabilities, asymptotic
convergence to the Pareto solutions set has been proved [35].

Ulungu et al. [25, 36] have developed a MOSA method
that involves a potentially e�cient solutions list that catches
non-dominated solutions; it contains all the generated solu-
tions which are not dominated by any other generated
solution so far. 	e method uses weighted functions for
measuring the quality of transitions. Each scalarising func-
tion would induce a privileged search direction towards
a relative optimal solution. If that optimal solution is not
reached, some near-optimal solutions would be considered.
	e use of a wide diversi
ed set of weights has been proposed
with the aim to cover all the e�cient front. 	e potentially
e�cient solutions list is assumed to be updated a�er every
occurrence of a new solution acceptance, at which any
dominated solution is removed from the list. If no dominated
solution exists, the potentially e�cient solutions list increases
in cardinality.

Czyżak and Jaszkiewicz [30] have proposed a Pareto Sim-
ulated Annealing (PSA) procedure using a weak acceptance
criterion where any solution not dominated by the current
solution could be accepted. Inspired from genetic algorithms,
PSA is a population-based metaheuristic that considers at
each temperature a set of (sample) generated solutions to
be hopefully improved. Each solution from the sample is
improved in such a way the new accepted solution should be
distant from the closest solution to the former solution. 	is
approach is performed by increasing weights of objectives
according to which the closest solution is better than the
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Input: A cooling schedule "; a starting temperature � ←� �0; a starting sample of generated solutions S;
and an initial memory M←� S

Output: 	e archive M representing an approximation of the Pareto solutions set
1: repeat
2: for each � ∈ S do

3: repeat
4: Construct a neighbouring solution ��
5: if �� is not dominated by � then
6: Update M with ��
7: Select �� (if exists) the closest solution to �
8: Update weights of objectives in accordance with � and �� partial dominance
9: else
10: Accept �� with certain probability
11: end if
12: until Equilibrium condition
13: end for
14: Decrease temperature �
15: until Cooling condition
16: returnM

Algorithm 1: PSA procedure.

current solution, thereby decreasing the weights of objectives
according to which the closest solution is better than the
current solution. 	e new weights combination will be used
for the evaluation step in the next iteration as well as for the
probabilistic acceptance. 	e PSA procedure is summarised
in Algorithm 1.

PSA attempts to keep a kind of uniformity while improv-
ing the sample of generated solutions. 	at is, each sequence
of improving solutions related to a certain solution from
the starting sample should be moved away from the other
sequences of improving solutions related to the other ele-
ments of the starting sample. 	is would hopefully suggest
the sample cardinality conservation and thus allowing to
control the number of the returned e�cient solutions. Fur-
thermore, the fact that PSA deals, at each temperature, with a
sample of potential solutions, allows parallelisation.As shown
in Figure 2, when PSA is parallel, all the sample elements
are updated at the same time with the improving solutions
of all parallel annealing sequences. Baños et al. [37] have
investigated four alternative parallelisations of PSA in terms
of quality of the solutions and execution time. Moreover,
extensions to the fuzzy multiobjective combinatorial opti-
misation [38] and stochastic multiobjective combinatorial
optimisation [39] have been addressed in the literature.

With the same idea of using a population of solutions
as a starting archive, Li and Landa-Silva [40, 41] have
proposed an adaptive evolutionary multiobjective approach
combinedwith simulated annealing (EMOSA). It is a hybridi-
sation of the multiobjective evolutionary algorithm based
on decomposition (MOEA/D) proposed by Zhang and Li
[42], and simulated annealing metaheuristic. 	e proposed
method consists in considering a set of starting solutions
that is assumed to be evenly spread and where each solution
corresponds to an initial solution of a certain subproblem,
that is, a problem corresponding to an aggregation objective
function. Solutions evaluation is performed with respect

E2

Starting sample

Feasible domain

Pareto front

E1

Figure 2: Hypothetical improvement pattern of parallel annealing
chains in parallel PSA procedure.

to both weighted aggregation and Pareto dominance based
on the concept of $-dominance introduced by Laumanns
et al. [43]: the regular acceptance of candidate solutions
is performed in accordance to the improvement of the
corresponding aggregation function, while the update of the
nondominated solutions archive is performed using the $-
dominance. Besides, for each aggregation function, weights
are adaptively modi
ed at the lowest temperature in order to
assure search diversify.

Suppapitnarm et al. [32] proposed an extension to a
previous work conducted by Engrand [44] which consists in
using a logarithmic composite objective function:

∑


ln (�
) = ln(∏



�
) (5)

for a given number of objective functions �
, and an
acceptance probability formulation for a generated candidate
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E2

Feasible domainFeasible domain
Pareto set

Pareto front

E1

y

x

Objective spaceVariable space

y1

x1

E2(x1, y
S

S

1)

E1(x1, y1)

Figure 3: Hypothetical correspondence between variable space and objective space for a bi-objective minimisation problem.

solution � in reference to a given current solution ���
de
ned as follows:

P (Accept �) = exp(− 1�∑
 ln(
�
 (�)�
 (���))) (6)

	e lack of any weight assigned to objectives, in addition
to the multiplicative scheme of the considered composite
objective, would suggest that all objectives have the same
magnitude. 	is implies an acceptance issue in both regular
and probabilistic modes. Indeed, any weak dominating or
noncomparable solution is supposed to be accepted. How-
ever, the magnitude order of some objectives could a�ect
the acceptance in a way that favours some objectives over
others. Similarly, the probabilistic acceptance depends on the
relative change of all the objectives, thereby in�uenced by the
objectives with high magnitude order. Suppapitnarm et al.
have proposed to not use any aggregation objective function
for candidate solutions evaluation so that any decrease in any
objective will systematically result in regular acceptance. As
to the probabilistic acceptance, a probability rule that involves
a temperature parameter for each objective function has been
introduced as follows:

P (Accept �) = ∏



exp(−Δ�
�
 ) = exp(∑


− Δ�
�
 ) (7)

where Δ�
 is the energy variation of the objective function�
 between the candidate and the current solution and �
 is
the current temperature assigned to�
 which serves as weight
for the objective. From this perspective, some objectives
could be favoured independently of their magnitude order.
	e method enables a return to base strategy that consists
in recommencing the search periodically from an archived
nondominated solution. 	is strategy allows diversity in the
exploration of the feasible domain. Besides and in order to
allow intensi
cation in less explored regions, Suppapitnarm
et al. proposed to restart the search from the most isolated
solution from the archive. An isolation measurement has
been introduced in addition to a monitoring strategy for the
rate at which the return to base could be activated.

3.4. Domination-Based MOSA Methods. In the above meth-
ods, the quality of solutions at hand is measured in accor-
dance to the last accepted solution as a unique reference
criteria. An alternative to this approach would consist in
comparing generated solutions to the actual Pareto front as
well. Yet, it is crucial to determine a certain performance indi-
cator to characterise the closeness to the Pareto front. 	us,
many performance indicators have been introduced in the
literature that consist of either a certain distance to the Pareto
front, or the ratio of the volume dominated by the resultant
archive to that dominated by the Pareto front. Nevertheless,
this approach is faced to the prevailing lack of advanced
information about the actual Pareto front. Hence, algorithms
performance is o�en investigated using test problems that are
average computing cost optimisation problems with known
properties. Discussions on and construction of test problems
have been widely addressed in the literature within di�erent
contexts of multiobjective optimisation (e.g., [45–50]).

In concept, solutions are mainly con
gurations of deci-
sion variables; however, they could be considered as con-

gurations of objective functions as well. 	is gives rise to
two di�erent, but equivalent, representations of the feasible
domain. Figure 3 illustrates the correspondence between
the two representations in the decision space, which is
constituted by variables and, in the objective space, which is
constituted by objective functions (Note that the dimension
of the decision space and that of the objective space are not
necessary the same.). Given a Pareto front P of a certain
optimisation problem and an archive under evaluation A,
that are assumed, without loss of generality, to be 
nite, the
distance between any solution A from A to P, denoted
dist(A,P), is measured in the objective space by a Euclidean
distance based formula:

dist (A,P) = min
	P∈P

d (A, P) (8)

where 6 is the classical Euclidean distance. Yet, the naive
formulation of the distance between A and P

dist (A,P) = min
	A∈A

dist (A,P) = min
	A∈A,	P∈P

d (A, P) (9)

returns the distance between the nearest pairs fromA andP,
which does not re�ect the closeness between the two sets as
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E2E2

Feasible
domain

E1
E1

Objective space Objective space

Archive Archive

Pareto front

Pareto sample

Archive dominated area

Volume ratio

Figure 4: Hypothetical volume domination versus practical volume domination.

a matter of course; indeed, if only one solution is very close
to the Pareto set, the distance would be lower providing a
confusing closeness measurement. 	erefore, a sophisticated
distance formulation would consist in taking into account
the distances between all pairs from A and P (Either the
considered optimisation problem is discrete or continuous;
only a discrete sample of the actual Pareto front would be
available, and yet a discrete approximating Pareto frontwould
be solicited.). Accordingly, Smith [51] has proposed to use the
median of the Euclidean distance between pairs from the two
sets:

M (A,P) = median
	A∈�

{dist (A,P)} (10)

Besides, two metrics that have been widely used in the
literature are the generational distance [52], 9, and the
inverted generational distance [53], @9, that consist of the
following:

G (A,P) = 1|A|√ ∑
	A∈A

dist2 (A,P) (11)

IG (A,P) = 1|P|√ ∑
	P∈P

dist2 (P,A) (12)

where |A| and |P| are the cardinality ofA andP respectively.
Another example of metrics used in the literature is the
distance of Hausdor� consisting of the following:

H (A,P)
= max{ sup

	A∈A
inf
	P∈P

d (A, P) , sup
	P∈P

inf
	A∈A

d (A, P)} (13)

that has been used in an extended version in the works of
Schütze et al. [50] and Bogoya et al. [54].

It is straightforward that a multiobjective optimisation
should result in a set that is su�ciently covering as well as e�-
ciently close to the actual Pareto set. Deb et al. [55] proposed
a spread metric parameter to characterise the covering. Yet,
no performance indicator from the aforementioned has got
the general approval as an e�cient and accurate indicator for
both closeness and spreadmeasurement. Volumedomination

has been proposed in the literature [56–58] as a promising
alternative towards e�cient evaluation of the constructed
archive.

Hypervolume is a useful metric for characterising the
coverage of an archive as well as its closeness to the Pareto
front. 	is metric, which dates back to the works of Zitzler
and 	iele [58], consists in calculating in the objective
space the size of the area covered by the archive elements.
	e considered optimisation problem would be reduced to
maximising such measurement. Similarly, a certain ratio
of the volume dominated by the resultant archive to that
dominated by the Pareto front would be an alternative
performance indicator. Smith [51] has considered the area
dominated by the Pareto front and not dominated by the
archive under evaluation. Figure 4 illustrates the conceptual
areas delimited by the Pareto front and the archive. Of course,
the domination is related to the acceptance rule (weak or
strong). Yet, in practice, three areas can be di�erentiated,
namely, the area dominated by both the available Pareto
sample and the archive under evaluation (hatched grey zone),
the area dominated by the Pareto sample only (hatched dark
grey zone), and the unexplored area (grey zone).

Many MOSA methods have used one or more
dominance-oriented performance indicators in order to
provide an advanced metaheuristic. An early discussion has
been conducted by Nam and Park [59] where six acceptance
criteria have been suggested and evaluated. Besides, Smith
et al. [60] have proposed a composite energy function based
on domination as an alternative to the classical weighted
combination of objective functions.While the latter approach
allows a priori biasing guidance towards a certain region of
the Pareto front, thereby making the algorithm sensitive to
the weighting given to the competitive objective functions,
the proposed approach aims at eschewing any limiting
proposal on the feasible domain exploration in favour of
dominance concept.

Sankararao andYoo [61] proposed a robustmultiobjective
simulated annealing (rMOSA) with the aim to speed up
the convergence process and to get a uniform Pareto set
approximation. 	e method is developed with application to
chemical engineering problems.

A domination-based method, called Archived Multiob-
jective Simulated Annealing method (AMOSA), has been
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proposed [62] using a parameter called amount of domi-
nation. For a given number of objective functions �
 and
considering an archived solution � and a candidate solution�, the amount of domination between the two solutions is
given by the following:

Δ6D� (�, �) = ∏



��(	�) ̸=��(	�)

EEEE�
 (�) − �
 (�)EEEEF
 (14)

where F
 is the range of the ��ℎ objective function. 	is
domination amount represents a hypervolume for which
each side in the Euclidean plane, constituted by certain two
objective functions �
 and ��, is a rectangle delimited by the
points �, (�
(�), ��(�)), �, and (�
(�), ��(�)). At each
iteration, AMOSA constructs a candidate solution from a
current solution at hand that will undergo an evaluation in
respect of the archive as well as the current solution—an
average amount of domination Δ6D��V� is computed in
regard to either the solutions dominated by the candidate
solution or those dominating it. Any candidate solution that
is nondominated by the current solution or any other solution
from the archive is accepted as current and added to the
archive.Meanwhile, any dominated solution from the archive
is removed. If the candidate solution is dominated by a
certain number of solutions from the archive, the considered
acceptance rule consists of the following:

P (Accept �) = 11 + exp (Δ6D��V� (�) × �) (15)

where � is the current value of the temperature parameter.
If the candidate solution dominates the current solution
(which does not necessary belong to the archive) while it
is dominated by a certain number of archived solutions, a
transition to an archived solution is performed with certain
probability. Overall, the possible transitions consist in accept-
ing the candidate solution, keeping the current solution, or
moving to a solution from the archive. In order to decide
on the resultant archive size, AMOSA de
nes two limiting
parameters called hard limit and so� limit. 	e archive size
is allowed to increase up to the so� limit, a�er which the
number of solutions is reduced to the hard limit by means
of a certain clustering process.

Suman et al. [63] have presented an extension of AMOSA
method on the basis of the orthogonal experiment design
(OED), called Orthogonal Simulated Annealing (OSA). 	e
main contribution of this method lies in the use of the OED
for guiding the selection of good neighbouring solutions,
by means of an orthogonal table and a fractional factorial
analysis. OED aims at allowing e�ective search while reduc-
ing computational cost. Figure 5 presents the OSA method
�owchart. 	e equilibrium condition is set to impose an
upper bound on the number of iterations that should be
performed for the same current solution at each temperature
level.

On the basis of AMOSA method, Sengupta and Saha
[64] proposed a reference point based many-objective sim-
ulated annealing algorithm, referred to as RSA. Rather than

moving from one solution to a neighbouring one, the work
introduced the archive-to-archive concept that consists in
moving from an archive of solutions to another one. 	e idea
is analogous to the use of population of solutions in genetic
algorithms. 	e method involves in addition a switching
strategy, called mutation switching, which consists in peri-
odically switching between di�erent mutation techniques.
Besides, the method uses the reference point based clustering
algorithm in order to get a uniform spread of the returned
archive.

Due to its computational e�ciency and simplicity, simu-
lated annealing has been widely used to solve multiobjective
optimisation problems, as well as mono-objective ones, in
various 
elds including clustering [65–67], jobshop problems
[68], and scheduling [69]. Besides, genetic algorithms and
particle swarm optimisation methods have received much
attention in the recent years, and many commercial solvers
permit simple implementation of suchmethods. Accordingly,
few hybridisations of multiobjective simulated annealing
with one of the aforementioned metaheuristics have been
introduced in the literature [70, 71] in addition tomany appli-
cations in supply chain [72, 73], distribution networks [74,
75], facility layout design [76, 77], design optimisation[66],
and scheduling [69, 78–80].

4. Summary and Concluding Remarks

Simulated annealing is a metaheuristic belonging to the local
search methods family. It guarantees gradual convergence to
a near-optimal solution and provides the ability of escaping
local optima and beingmemoryless. Due to its adaptability to
many combinatorial and continuous optimisation problems,
a wide range of adaptations have hitherto emerged. Such a
success has motivated an extension of the simulated anneal-
ing meta-heuristic to the multiobjective optimisation context
that consists in approximating the optimal solutions set by
means of an archive that holds the nondominated solutions
found while exploring the feasible domain. Accordingly,
many variants of multiobjective simulated annealing have
been introduced in the literature. Nevertheless, the following
remarks are observed:

(i) Compared to othermetaheuristics, simulated anneal-
ing is a powerful tool for many applications due to
its asymptotic convergence. However, the algorithm
process is rather slow especially for some cooling
schemes and using another heuristic seems to give
better result for problems with few optima.

(ii) 	e use of an archive within a sequential storage
process has emerged in almost all Pareto optimisa-
tion including swarm optimisation and evolutionary
algorithms (e.g., [81, 82]). 	e process involves an
updating mechanism that becomes restrictive when
the nondominated solutions number gets larger.
A discussion has been conducted on the use of
archive regarding the performance of metaheuristics
in Pareto optimisation [83].

(iii) Controlling the number of returned solutions keeps
challenging in multiobjective simulated annealing.
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Figure 5: Orthogonal simulated annealing �owchart.

Generally, all metaheuristics involving an archive to
represent an approximation of the actual Pareto solu-
tions set should strive for this archive to be bounded
and of limited size [84]. Yet, it may be di�cult to
decide on the archive cardinality in practice, and
the same metaheuristic may lead to a very concise
archive for a certain problem occurrence and to a
very large one for others. Knowles and Corne [84]

have addressed a theoretical study of metaheuristics
archiving, as a sequential storage process, leading
to the no signi
cant performance of any proposed
approach, so far, to control the archive size. Never-
theless, Gaspar-Cunha et al. [85] have proposed a
solution clusteringmechanismwith the aim to reduce
the returned near-Pareto front when it is of large
size.
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(iv) Tuning simulated annealing parameters is challeng-
ing in both single and multiple criteria optimisation.
As a wise choice of parameters would result on fairly
representative approximation of the Pareto-optimal
solutions set, many works [86–88] have required
preliminary experiments. Yet, experiments would
require some knowledge on the actual Pareto front in
terms of range or cardinality, which is not o�en the
case. 	e situation becomes more problematic if the
experiments would involve comparison with other
metaheuristics.
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annealing for fuzzy multi-objective combinatorial optimiza-
tion,” Journal of Heuristics, vol. 6, no. 3, pp. 329–345, 2000.

[39] W. J. Gutjahr, “Twometaheuristics for multiobjective stochastic
combinatorial optimization,” in Stochastic Algorithms: Founda-
tions and Applications, O. B. Lupanov, O. M. Kasim-Zade, A. V.
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