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I. INTRODUCTION

Target tracking is an essential requirement for
surveillance systems employing one or more sensors,
together with computer subsystems, to interpret
the environment. Typical sensor systems, such as
radar, infrared (IR), and sonar, report measurements
from diverse sources: targets of interest, physical
background objects such as clutter, or internal error
sources such as thermal noise. The target tracking
objective is to collect sensor data from a field of view
(FOV) containing one or more potential targets of
interest and to then partition the sensor data into sets
of observations, or tracks that are produced by the
same object (or target). Note that the term target is
used in a general sense. Once tracks are formed and
confirmed (so that background and other false targets
are reduced), the number of targets of interest can
be estimated and quantities, such as target velocity,
future predicted position, and target classification
characteristics, can be computed for each track.
Since most surveillance systems must track

multiple targets, multiple target tracking (MTT) is
the most important tracking application. Fig. 1, taken
from [1], shows the basic elements of a typical MTT
system. Assume that tracks have been formed from
previous data and a new set of input observations
becomes available. In general observations can be
received at regular intervals of time (scans or data
frames) or they can occur irregularly in time. Here,
we will use the general term scan to refer to any
set of input measurements that were all produced
at the same time. Then, the input observations are
considered for inclusion in existing tracks and for
initiation of new tracks. First, a gate, based upon
the maximum acceptable measurement plus tracking
prediction error magnitudes, is placed around the
predicted track. Only those observations that are
within the track gate are considered for update of
the track. When closely spaced targets produce
closely spaced observations there will be conflicts
such that there may be multiple observations within
a track’s gate and an observation may be within
the gates of multiple tracks. This is handled by
the Observation-to-Track Association and Track
Maintenance functions.
Fig. 2, also taken from [1], shows a typical conflict

situation in which track gates are placed around
the predicted positions (P1, P2) of two tracks, and
three observations (O1, O2, O3) satisfy the gates
of either (or both) of the tracks. The conventional
data association method is denoted the global nearest
neighbor (GNN) approach. It finds the best (most
likely) assignment of input observations to existing
tracks, which for example, would probably be O1
to track 1 and O2 to track 2. The term global is
used to refer to the fact that the assignment is made
considering all possible (within gates) associations
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Fig. 1. Basic elements of a conventional MTT system.

Fig. 2. Example of typical data association conflict situation.

under the constraint that an observation can be
associated with at most one track. This distinguishes
GNN from the archaic (but apparently still used in
some systems) nearest neighbor (NN) approach in
which a track is updated with the closest observation
even if that observation may also be used by another
track.
Only those tracks that are included in the best

assignment are kept. Unassigned observations, in this
case O3, initiate new tracks. Track confirmation and
deletion are typically determined by rules, such as 3
detections in 4 frames of data for confirmation and
N consecutive misses (typically N = 4 to 7) for track
deletion.
Inherent in the standard GNN assignment is the

assumption that an observation was produced by a
single target. Tracks that do not share any common
observations will be defined to be compatible. Thus,
only compatible tracks can appear in the same
assignment solution. Relaxation of this constraint
to allow for the provision of unresolved targets that
produce a single measurement will be discussed later.
Once observations are assigned to tracks, these

tracks are updated during the filtering process.
Conventional systems typically use a single Kalman
filter. However, as discussed below, modern systems
should use the interacting multiple model (IMM)
approach in which several Kalman filters, tuned to
different types of target maneuver, are run in parallel
[1, 2]. Finally, all tracks are predicted to the time
of the next set of measurements. The Kalman filter

prediction covariances provide the uncertainty, in the
predicted state estimate, that is required for the gating
and association processes.
The GNN approach, which only considers the

single most likely hypothesis for track update and
new track initiation, only works well in the case of
widely spaced targets, accurate measurements, and
few false alarms in the track gates. For example, from
results given in [1], even if the true target return is
present, a single uniformly distributed false alarm
in a three dimensional radar measurement space
(typically range and 2 angles) reduces the probability
of correct association to about 0.85. Thus, in about
one out of 6 track update attempts a false alarm
will be chosen rather than the correct target return.
For the more usual case of multiple closely spaced
targets and where missed true target detections occur,
the probability of false track update is much worse.
Experience indicates that often a single false update
will lead to track loss and two consecutive false
updates will usually lead to track loss.
The fact that misassociation represents an

additional error source for a Kalman filter tracker
was recognized in the very early stages of tracker
development [3—5]. One approach that was proposed
to improve GNN performance was to increase
the Kalman filter covariance matrix to reflect this
additional source of uncertainty [3, 4]. A similar
approach, based upon work by R. Fitzgerald, also
reduces the gain for uncertain association conditions,
Sec. 6.12.1 of [1].
A second approach, which has become the Joint

Probabilistic Data Association (JPDA) method,
“hedges” for uncertain association conditions by
allowing a track to be updated by a weighted (by
probability) sum of all observations in its gate [2, 5].
This also means that an observation may contribute
to the update of more than one track. Thus, for the
example of Fig. 2, observations O1, O2, and O3
would all contribute to the update of track 1 and
observations O2 and O3 would contribute to the
update of both tracks.
Both the augmented GNN approach and the JPDA

method increase the Kalman filter track covariance
matrix to account for the association uncertainty.
However, as illustrated in [6], increasing the Kalman
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filter covariance matrix to account for uncertain
association can exacerbate the problem whereby
an increased covariance matrix leads to even more
false observations in the track gate, etc. Also, the
JPDA method suffers from a coalescence problem
whereby tracks on closely spaced targets will tend to
come together [7]. For example, from Fig. 2, since
observations O2 and O3 will contribute to the updates
of tracks 1 and 2, these tracks will be drawn together.
The problems that result from relatively simple

upgrades to the GNN method and the recent dramatic
increases in computational capabilities have led to a
near universal acceptance of the multiple hypothesis
tracking (MHT) approach as the preferred data
association method for modern systems. MHT
is a deferred decision logic in which alternative
data association hypotheses are formed whenever
observation-to-track conflict situations, such as shown
in Fig. 2, occur. Then, rather than choosing the best
hypothesis or, in effect, combining the hypotheses as
in the JPDA method, the hypotheses are propagated
into the future in anticipation that subsequent data will
resolve the uncertainty.
Sections II and III will discuss the basic principles

and commonly used implementations of MHT. Section
IV discusses how modern filtering techniques (in
particular IMM) can be combined with MHT. Section
V outlines some important current applications of
MHT and Section VI gives areas of development and
extension.

II. MHT BASICS

The manner in which MHT forms multiple
hypotheses and manages these hypotheses is
illustrated by again referring to the example given in
Fig. 2 and by referring to the overall structure shown
in Fig. 3. As an example, assume that tracks T1 and
T2 with predicted positions P1 and P2, represent
a hypothesis (H1) prior to the receipt of the three
observations (O1, O2, O3) on the current scan. Then,
there are 10 feasible hypotheses that can be generated
from the initial single hypothesis. For example, the
two most likely hypotheses would both update T1
with O1 but would update T2 with either O2 or O3.
Another, unlikely but feasible, hypothesis would be
that all observations represent new sources (false
alarms or other previously undetected targets) so
that neither T1 nor T2 would be updated and all
observations would start new tracks.

Reid’s Algorithm

Although Singer, Sea, and Housewright
[8] introduced the basic idea of propagating
multiple hypotheses for a single target in a false
alarm background, Reid [9] first developed a

Fig. 3. MHT logic overview.

complete algorithmic approach. Reid’s algorithm
defines a systematic way in which multiple data
(observation-to-track) association hypotheses can be
formed and evaluated for the problem of multiple
targets in a false alarm (and/or clutter) background.
Again using the example of Fig. 2, Reid’s algorithm
is illustrated by defining H1 to be the hypothesis
containing T1 and T2 before the receipt of the three
observations. Next, define a newly formed track

T3 (T1, O1) = track 3 formed from the
association of T1 with O1

with similar definitions for T4 (T2, O2) and T5
(T2, O3). Also define NT1, NT2, and NT3 to be the
new tracks initiated from O1, O2, and O3. Then, 3 of
the feasible 10 hypotheses that can be formed are

H1: T1, T2, NT1, NT2, NT3

H2: T3, T4, NT3

H3: T3, T5, NT2

...

(1)

Tracks are defined to be compatible if they have
no observations in common. As illustrated by the
example above, assuming T1 and T2 share no
observations, MHT hypotheses are composed of
sets of compatible tracks. Again note, as discussed
in more detail later, the formulation can ideally
be expanded in order to address the problem of
closely-spaced unresolved targets that may produce
a single measurement that should be assigned to the
multiple tracks that may have been formed on these
unresolved targets. Using Reid’s algorithm approach,
hypotheses are carried over from the previous scan.
Then, on the receipt of new data, each hypothesis is
expanded into a set of new hypotheses by considering
all observation-to-track assignments for the tracks
within the hypothesis. Again, as new hypotheses are
formed, the compatibility constraint for tracks within a
hypothesis is maintained.

Track and Hypothesis Evaluation

The evaluation of alternative track formation
hypotheses requires a probabilistic expression that
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includes all aspects of the data association problem.
These aspects include the prior probability of target
presence, the false alarm density, the detection
sequences and the dynamic (kinematic) consistency
of the observations contained in the tracks. Reid
[9] presents such a probabilistic expression. A
mathematically equivalent, but computationally
preferable, approach is the log-likelihood ratio, LLR
(or track score) first proposed in the pioneering paper
by Sittler [10], later detailed in [11] and summarized
below.
A likelihood ratio (LR) for the formation of

a given combination of data (including a priori
probability data) into a track can be defined using
a recursive relationship that follows directly from
Bayes’ rule

LR =
p(D jH1)P0(H1)
p(D jH0)P0(H0)

¢
=
PT
PF

(2)

Hypotheses H1 and H0 are the true target and false
alarm hypotheses with probabilities PT and PF ,
respectively, and D is the data, so that

p(D jHi) = probability density function
evaluated with the received
data under the assumption that
Hi is correct

P0(Hi) = a priori probability of Hi
(such as expected density of
true targets in a given area for H1)

Note that the inclusion of a priori probabilities in
(2) means that LR might formally be defined to be
a probability ratio. However, following the original
formulation of [10], we will refer to it as a likelihood
ratio.
A true target is most generally defined to be an

object that will persist in the tracking volume for
at least several scans. Thus, this definition includes
objects, such as persistent clutter, that may not be
of interest to the tracking system but that should be
tracked in order to minimize their interference with
tracks on targets of interest. False alarms (or false
targets) refer to erroneous detection events (such as
those caused by random noise or clutter) that do not
persist over several scans.
It is convenient to use the log likelihood ratio

(LLR) or track score [10, 11] such that

LLR = ln[PT j PF] (3)

Then, LLR can be directly converted to the probability
of a true target through

PT=PF =
PT

1¡PT
= eLLR

PT = e
LLR=[1+ eLLR]

(4)

Thus, the LLR (track score) is all that needs to be
computed (and maintained) in order to assess the
validity of a track. Finally, as discussed further
below, the track score can be used directly for
track confirmation as an application of the classical
sequential probability ratio test (SPRT).
The track score, L(k), at scan k, can be placed in a

convenient recursive form [1, 11]

L(k) = L(k¡ 1)+¢L(k)

¢L(k) =
½
ln(1¡ P̂D); no update on scan k

¢Lu(k); track update on scan k

(5)

The loss in track score when a detection opportunity
is missed is a function of the expected probability
of detection (P̂D). As discussed in more detail in
[1, 11], the gain, ¢Lu, in track score upon update
is a function of the residual error (the difference
between the measurement and the prediction) and
its covariance matrix, the expected density of false
returns, as well as P̂D. In addition, if signal intensity
(such as signal-to-noise ratio, SNR) is measured, it
may also be used in the track score.
Given the individual track scores, the hypothesis

score is the sum of scores of all tracks contained
in that hypothesis. Then, given hypothesis scores,
the hypothesis probabilities can be computed
[1, 11]. Finally, a track may be contained in multiple
hypotheses so that its probability is the sum of
probabilities of all hypotheses which contain it. For
the example of (1), the probability of T3 would be the
sum of probabilities for hypotheses H2, H3 and all
other hypotheses that contain it.
To summarize, relatively simple computations

can be performed to determine hypothesis and track
probabilities. A theoretical objection that may be
raised is that in order to compute these probabilities,
such as through the track score as defined above, it is
typical to assume very approximate Gaussian models
for target dynamics and measurement error statistics,
uniform distributions for false alarms (clutter and
noise) and new targets and a nominal P̂D. However, all
developers of practical MHT systems make essentially
the same assumptions and, as discussed further
below, results show that MHT with these assumptions
performs substantially better than any other developed
approach.

Practical Issues

As illustrated by the simple example given above,
there is clearly a potential combination explosion in
the number of hypotheses (and tracks within those
hypotheses) that an MHT system can generate. Thus,
a number of techniques have been developed to keep
this potential growth in check. These techniques,
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Fig. 4. Family (node) structure with N-scan pruning.

outlined next, include clustering, hypothesis and track
pruning (deletion), and track merging.
The operation of clustering is performed to reduce

the number of hypotheses that must be generated and
evaluated. Clusters are collections of tracks that are
linked by common observations. A cluster can include
tracks that do not share observations directly. Thus, if
track 1 shares an observation with track 2 and track 2
shares an observation with track 3, all three tracks are
in the same cluster.
Clustering, in effect, decomposes a large problem

into a set of smaller problems. Once clustering has
been performed, the processing within each cluster
can be done independently from other clusters. Thus,
processing efficiencies can be achieved using a
parallel processing structure whereby the processing
for each cluster can be assigned to a separate
processor. Then, within each cluster, hypotheses are
evaluated and low probability hypotheses and tracks
are deleted.
The key principle of the MHT method is that

difficult data association decisions are deferred
until more data are received. Thus, an important
implementation feature used by all MHT developers
is the family (or node) structure illustrated in Fig. 4.
This structure provides a convenient mechanism
for implementing a deferred decision logic and for
presenting a coherent output from the MHT tracker to
the user.
Fig. 4 shows how MHT track branches are formed

and illustrates how a convenient structure for track
pruning can be defined. Using this structure, a family
is defined as a set of tracks with a common root node.
Alternatively, what we define to be a family (of tracks
all emanating from a single ancestor, or root node)
can also be considered to be a target tree. Each branch
represents a different data association hypothesis for
the target and nodes are defined to be points where
one track forms two or more branches. Because each
branch track within the family (target tree) has at least
one common node (the root node), these tracks are
all incompatible with each other and can represent at
most one target.

Based upon current data (including scan k),
irrevocable decisions are made in the past (for the
example this is scan k¡2). Specifically, one approach
finds the tracks from families F1 and F2 that are in
the best current (scan k) hypothesis and goes back
N scans (in this case N = 2) to establish a new root
node. For example, if track 2 of F1 is in the best
hypothesis, the new root node is track 2 at scan k¡ 2.
Subject to other tests, beyond the scope of this paper,
if F2 does not have a track in the best hypothesis, the
entire family would be deleted.
Note that the entire branch of F1 leading to tracks

1, 4, and 8 has been deleted. However, track 9 has
been maintained even though track 2 was in the best
hypothesis. This method is denoted N-scan pruning
(or can be defined as an N-scan sliding window) and
we have, for convenience of presentation, chosen
N = 2 for the example. In practice, our experience
is that N should generally be chosen to be at least
5. Also, rather than scans in the past, the decision is
probably best made using N observations in the past
but the basic principle is the same. Firm decisions are
made in the past based upon later data.
Fig. 5, adapted from [12], shows the relationship

between the families (track hypotheses for a given
target) and the global (multiple track) hypotheses
that are formed as collections of compatible tracks.
A global hypothesis is formed by choosing at most a
single track from each family.
The family representation of Fig. 4 also provides

a convenient way to present MHT data to a user
who typically wants one track per target, not a set
of alternative tracks with probabilities. The tracks
in the output trackfile are linked to the families
and, at any given time, the most likely track in the
family is presented to the user. This can lead to some
apparent inconsistencies in the output as MHT branch
probabilities change with the receipt of more data.
For example, it may be that track 1 of F1 was the
most likely track at scan k¡ 1 but track 2 is the most
likely track at scan k. Thus, a possible alternative
is to provide an average state estimate, computed
using the branch track probabilities, along with a
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Fig. 5. Formation of hypotheses from tracks in families.

covariance that reflects the spread in the branch track
state estimates. This approach is particularly useful
for an agile beam radar system, discussed below, for
which data association uncertainty should be used in
the resource allocation logic.

III. ALTERNATIVE MHT IMPLEMENTATIONS

Although the same basic principles and
mathematical models apply to all, there are several
different approaches to MHT implementation.
The first (hypothesis-oriented) approach follows
the original work of Reid, outlined above. The
computational feasibility of this approach has been
greatly enhanced by the use of Murty’s algorithm
[13] to more efficiently generate hypotheses [14].
An alternative, track-oriented approach [1, 12] does
not maintain hypotheses from scan to scan. As tracks
are updated on each scan they are reformed into
hypotheses. An innovative implementation of the
track-oriented approach is the multidimensional (or
multiple frame) assignment method [15, 16]. Finally,
a Bayesian MHT approach has been proposed by
van Keuk and Koch and associates [6, 17, 18]. The
methods are briefly summarized below.

m-Best Implementation of Reid’s Algorithm

As illustrated above, Reid’s algorithm forms
a large number of hypotheses that are collections
of compatible tracks. These hypotheses are carried
from one scan to the next where newly received
observations are used to update the tracks in different
ways. Thus, each hypothesis carried from the previous
scan may give rise to many new hypotheses (most

of which will later be discarded based upon low
probability) as the tracks contained within the
hypothesis are updated in different ways. This
potential explosion of new hypotheses that may
result from an indiscriminate expansion of the
old hypotheses has been a barrier to the practical
implementation of Reid’s algorithm. Thus, a method
to only generate “good” hypotheses is required and
has been provided by the work of Cox et al. [14].
As discussed in [14], an efficient implementation

of Reid’s algorithm can be achieved using Murty’s
method for finding the m-best solutions to the
assignment problem. Using this approach, given
mp(k¡1) hypotheses from the previous scan, the
number of hypotheses formed on the current scan
can be limited to m(k) when m is an input parameter
that could be set a priori or, presumably, could be
chosen adaptively. The important principle is that the
generation of many unconsequential, low probability
hypotheses, that resulted from earlier implementations
of Reid’s algorithm, is avoided.

Track-Oriented MHT

The track-oriented approach recomputes the
hypotheses using the newly updated tracks after each
scan of data are received. Rather than maintaining,
and expanding, hypotheses from scan to scan, the
track-oriented approach discards the hypotheses
formed on scan k¡ 1. The tracks that survive pruning
are predicted to the next scan k where new tracks are
formed, using the new observations, and reformed
into hypotheses. Except for the necessity to delete
some tracks based upon low probability or N-scan
pruning described above, no information is lost
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because the track scores, that are maintained, contain
all the relevant statistical data. The basic, currently
unresolved, issue is whether it is more efficient to
expand the old hypotheses using Murty’s method or
to reform the hypotheses using the updated tracks and
their compatibilities with other tracks.
A strong argument for the track-oriented approach

to MHT can be made by noting that the combinatories
of hypothesis formation are such that there are
typically many more hypotheses formed than tracks.
Typically, for difficult scenarios, there may be several
thousand comparable hypotheses formed from several
hundred tracks in a cluster. Then, the process of
maintaining a thousand (or more) hypotheses and
expanding these hypotheses using Murty’s method
to find the best thousand new hypotheses may be
prohibitive. On the other hand, our experience with
track-oriented MHT has shown that several hundred
tracks can easily be maintained and expanded into
new hypotheses for difficult scenarios. Typical
computational results for a difficult scenario with 100
closely spaced targets and a high radar update rate
indicate the feasibility of real-time operation for a
track-oriented MHT [19]. This study was performed
using a single 866 Mhz Pentium III computer. Newer
computers and/or parallel processing with several
computers would allow real-time tracking for even
more difficult scenarios.
Our implementation uses a relatively simple set of

heuristic search methods, based upon a breadth-first
method described in [1] and the A* search method
described in [20]. The multiframe assignment (MFA)
method, outlined next, represents a potentially more
accurate and efficient implementation of track-oriented
MHT.

Multi Dimensional (Multiframe) Assignment

Deb [15] and Poore [16] and their associates
independently recognized that the MTT data
association problem can be placed in a form where
a multi dimensional assignment approach that uses the
Lagrangian relaxation method is directly applicable.
Like track-oriented MHT, this approach forms and
maintains tracks from scan (frame) to scan and
reforms tracks into hypotheses after each new scan
of data are received. It also uses a sliding window
approach which is similar to the N-scan pruning
method used in conventional MHT and illustrated
in Fig. 4. The unique feature of this method is the
manner in which a Lagrangian relaxation method is
used to find the most likely hypothesis or a set of the
m-best hypotheses [21].
The input is a set of tracks with their scores and

their compatibilities with other tracks. Again, two
tracks are defined to be incompatible, and thus cannot
be in the same hypothesis, if they share one or more
observations. The process of arranging these tracks

into hypotheses can be formulated as an optimization
problem with the goal of maximizing the hypothesis
score (sum of all track scores in hypothesis) with
the constraints that no tracks in the hypothesis share
observations.
The basic principle of the Langrangian relaxation

approach is to replace constraints (in this case that
an observation can be used by at most a single track)
by Lagrange multipliers in the objective function
(in this case the sum of track scores) used in the
maximization. The “art” of this method involves
the proper choice of Lagrange multipliers so that
the solution formed from maximizing the objective
function approaches the best feasible solution, in
which each observation is used by at most a single
track.
This optimization is very complex and requires

sophisticated mathematics but we will (at least attempt
to) summarize the basic principles. Two solutions to
the hypothesis formation problem are obtained with
cost defined to be the negative of score. The first
solution, defined to be the relaxed or dual solution,
may not satisfy the constraints (that an observation
should be used once and only once). However,
Lagrange multipliers are introduced into this solution
and are chosen so that constraint violations are,
effectively, given high costs. Thus, the number of
constraint violations should be reduced over time with
successive iterations of the method.
A second solution, denoted the recovered or

primal solution, is obtained from the dual solution by
enforcing the constraints. For example, one method
for obtaining this solution starts with the assignment
of the first two scans of data that was obtained by the
dual solution. Then, it adds observations from the later
scans by solving an assignment matrix, that enforces
the constraints, on each later scan. Thus, a feasible,
but likely suboptimal, solution is obtained.
The costs of the dual solution, q(u), where u

represents the Lagrangian multipliers, and the primal
solution, v(z̄), represent bounds on the cost, v(z), of
the true, but unknown, solution

q(u)· v(z)· v(z̄)
where z and z̄ are the set of binary variables that
define which tracks are included in the true and the
primal solutions, respectively [1, 15, 16].
Successive iterations are performed by using

updated Lagrange multipliers in an attempt to increase
q(u) and decrease v(z̄) and a stopping rule is defined
so that the feasible primary solution is accepted when
q(u) and v(z̄) are “close enough,” or when time runs
out and a solution is required.
The multiscan assignment method outlined

above can be used to implement the N-scan pruning
method used for track-oriented MHT, as illustrated
in Fig. 4. Performing N-scan pruning requires a
solution to the N +2 scan assignment problem.
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Fig. 6. Implementation of N = 3 scan pruning using 5D assignment. (a) First five scans of observations. (b) Tracks formed from first
two scans and four scans of observations. (Adapted from notes by A. B. Poore.)

Fig. 6 illustrates the process for N = 3 (five-scan
assignment). Referring to Fig. 6(a), initially five scans
of data are collected with the observations on scan 1
effectively being the initial root nodes. The output of
the 5D assignment problem will be a set of tracks in
the most likely (solution) hypothesis. These tracks are
traced back N = 3 scans to their root nodes (tracks) on
scan 2. Then, all tracks that were in existence on scan
2 and that do not have one of these root node tracks
as their ancestor on scan 2 are deleted.
As illustrated in Fig. 6(b), the root nodes are taken

to be the tracks on scan 2 that were the ancestors
of the tracks in the most likely hypothesis. The next
scan of data is used to update the tracks that survived
pruning on the previous scan. The process continues
with, in general, new observations received on scan
k+1, a sliding window of observations received on
scans k,k¡ 1, : : : ,k¡N +1 and the root node tracks
on scan k¡N. This process is illustrated in Fig. 6(b)
for k = 5 and N = 3. See [22, 23] for more details on
efficient implementation.

Bayesian MHT

The technique denoted Bayesian MHT [6, 17, 18]
is designed to more closely represent the probability
density functions (PDF) of alternative data association
hypotheses. The PDF is represented as a Gaussian
mixture that represents the joint distribution of the
targets under track. Thus, the method effectively
requires knowledge, or assumption, of the number of
targets in track. Reference [18] addresses the problem
of estimating this number.

IV. MHT AND MULTIPLE MODEL FILTERING

It is widely accepted that accurate tracking of
dynamic targets requires the use of multiple Kalman
filter models. The basic idea of all multiple model
approaches, as applied to tracking maneuvering
targets, is that maneuvers are typically abrupt
deviations from basically straight-line target motion.
Because this process is very difficult to represent

with a single maneuver model, multiple models,
representing different potential target maneuver
states, are run in parallel and continuously evaluated
using filter residual histories. Bayes’ rule and the
residuals are used to determine the probabilities of
validity of the models. The output is then typically
a probability-weighted composite of the individual
filters.
There are two basic approaches that can be used

to combine MHT with multiple model filtering. The
first, outlined in [12], is to add a set of maneuver
hypotheses to the MHT data association hypotheses.
Thus, an additional set of hypotheses which differ
in target dynamics history will be formed. Use of
interacting multiple model (IMM) filtering appears
to be difficult for this approach.
IMM filtering has become generally accepted

as the best method for using multiple filter models
[2]. The unique feature of the IMM approach is
the manner in which the state estimates and the
covariance matrices are combined via the process
defined to be mixing. The basic principle is that
the currently more accurate (as determined by the
computed model probabilities) models transfer their
state estimates to the less accurate models. For
example, in the case of a maneuvering target, the
state estimates from the maneuver models, that should
follow the target motion fairly well, are transferred to
the nonmaneuver filter that otherwise would develop a
large lag.
In order to conveniently do IMM filtering within

an MHT framework, we believe that it is most
convenient to define tracks according to their data
association history. A similar approach is presented
in [24]. Then, the track score (or probability) is
computed using all component IMM filter models.
Thus, hypothesis formation and pruning are done on
the composite tracks, containing contributions from
all IMM filter models, rather than on the IMM model
tracks independently. Using this approach the mixing
process is conveniently done for each track, rather
than requiring mixing across tracks.
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Fig. 7. Score function approach as an application of SPRT.

Given that hypothesis formation and pruning
are performed using all the IMM filter models for
each track, the next issue is how to perform gating
and how to update the combined track score. One
approach is to form a composite track state estimate
and covariance matrix before gating and to perform
gating using the composite quantities.
The composite state estimate and covariance

matrix are formed from weighted (by the filter
model probabilities) sums of the state estimates
and covariance matrices of the individual filters.
Alternatively, using a second approach, each
filter model can be used separately for gating. In
this case, there will be separate state estimates
(and corresponding covariance matrices) that
will be individually compared with the candidate
observations. The observation-to-track gating test
will then be satisfied if the gating test is satisfied
for any filter model. Similarly, the track score can
be computed from the composite track residual (and
residual statistics) or a combined track score can be
computed using the individual residual data from the
different IMM filter models.
It has been our experience that the second

approach is preferred. During times of nonmaneuver,
the composite state and covariance matrix (and
resulting gate) may become so heavily weighted
towards the nonmaneuver models that an abrupt target
maneuver can lead to track loss. Finally, the extension
to the track score required when multiple filter models
are used is straight forward [1].

V. MHT APPLICATIONS

The actual practical implementation of MHT
has been impeded by the, currently incorrect [19],
perception that its complexity precludes real-time
application. Also, the security restrictions that
surround technologies, such as tracking, being
developed for current military applications and
company proprietary policies have greatly restricted
the ability of MHT tracker developers to publish and

compare their results, and to share ideas. Another
problem is that very little comparative study of
MHT performance, versus that of alternative tracking
methods, has been reported in the tracking literature.
However, the brief summary of reported comparative
studies, such as [25], given in [1] and the growing
acceptance of MHT among those in the tracking
community clearly indicate that MHT is the currently
preferred method for difficult tracking problems. We
next summarize some important applications with
which the author is familiar.

Track Confirmation and Maintenance for Dim Targets in
Clutter

As illustrated by Fig. 7, and discussed further
in [1, 18, 26], a confirmation test that uses the
track score (LLR) is essentially an application
of the classical sequential probability ratio test
(SPRT). Then, as detailed in [1], the choice of
confirmation and deletion thresholds (T1 and
T2, respectively, shown in Fig. 7) can be related
to tracking requirements (such as the number
of false tracks allowed per hour) through the
parameters ®= false track confirmation, and ¯ =
true track deletion probability. This approach also
provides a convenient analysis tool for preliminary
system design [1, 26].
The application of SPRT theory to MHT

track confirmation assumes that false alarms are
uncorrelated in time. In practice, such as for tracking
targets against a background of ground clutter, clutter
returns tend to be correlated in time. In this case, it
is best to maintain tracks on the stationary sources
of ground clutter that produce the returns. Thus,
special logic using motion or signal characteristics
is developed to inhibit the output of these tracks to the
user [27].
A number of studies, discussed further in [1],

have indicated that an MHT tracker will provide
performance that is comparable to the conventional,
single hypothesis (GNN) method at 10 to 100 times
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the false alarm density of the GNN method. This
allows a system using MHT to operate at a lower
detection threshold, in order to detect and track dim
targets [28]. However, the comparative study given in
[29] showed that a well-designed track-before-detect
(TBD) approach that, in effect, combines the detection
and tracking functions, will confirm tracks on
nonmaneuvering dim targets at much lower SNR
(about 4—5 dB lower for the cases considered in [29]).

Agile Beam Radar

Efficient allocation of radar resources is one
of the major issues in the design of an agile beam
(or electronically scanned) radar tracking system.
Moreover, following [1, 30—32] use of an MHT
tracker can greatly enhance the effectiveness of
an allocation scheme. Specifically, the combined
use of MHT data association and IMM filtering
and prediction methods provides the most accurate
estimates of tracking error that are required for
efficient sensor allocation. The IMM filter model
probabilities and covariance matrices provide
estimates of the error due to target maneuver and the
potential error due to data association is computed
from alternative MHT hypotheses. Further discussions
of the radar benchmark study that demonstrated the
effectiveness of an IMM/MHT solution to the agile
beam radar resource allocation problem are given in
[30] and the Introduction of [33].

Missile Defense Systems

Post boost tracking scenarios for missile defense
systems are characterized by a large number
(potentially hundreds or even thousands) of closely
spaced objects. These objects are deployed over
time by the post boost vehicle (PBV or bus) and
very accurate tracks are required for impact point
prediction. In addition, track purity (defined to be
the proportion of observations in a track that were
produced by the same source) must be high so
that discrimination can be successfully performed.
Discrimination methods employ Bayesian or
Dempster-Shafer reasoning to determine the target
type using the characteristics (such as intensity
profile) of the measurements in the track as examined
over time. For example, it is very important to
discriminate between the lethal reentry vehicle (RV)
and decoys that are employed to “trick” the tracking
and discrimination algorithms.
Both radar and space-based infrared (SBIR)

tracking systems are being developed. Given the
stringent tracking requirements, it is generally
accepted that MHT should be used for both types of
sensors and there are several special features, outlined
next, that must be addressed for these applications.

Fig. 8. Triangulation with angle tracks leads to false intersections
that can be resolved with MHT and later data.

First, objects (RVs and various types of decoys) are
deployed from the PBV with basically the same
velocity as the PBV. Thus, a “warm start” track
initiation (or spawning) procedure is used in order to
quickly obtain the required tracking accuracy.
Referring to Fig. 2, observations O2 and O3

would be candidates for “warm start” new track
initiation (in addition to the hypotheses that they
update T2 or possibly T1 also). Thus, the new tracks
would be given a position estimate based upon the
measurement and a velocity estimate based upon
the velocity of the parent tracks (either T1 or T2
or an average of the two) for which they satisfied a
gating relationship. For the SBIR system, in which
only angle measurements are available, the range
from the sensor platform, as well as the platform
position, will be used along with the measured
angles to form the initial position estimate. The
initial “warm start” track filter covariance matrices
are defined using the measurement error variances
and the parent track range (for SBIR) and velocity
error covariance matrices. Also, terms to account
for the potential differences in velocity of the newly
detected (resolved) object and the parent track object
are added. Finally, once spawning occurs, MHT
processing will take over to determine, using later
data, which observations (in our example O2 or O3)
should start new tracks and which should update
existing tracks (or possibly be discarded).
An additional source of data association

uncertainty occurs for the angle-only measurements of
an SBIR system. Tracks on targets that are separated
from existing tracks (so that spawning cannot be
accurately used) must be initiated by the triangulation
process, illustrated in Fig. 8 and discussed further in
[1]. Using this procedure, the intersections (or near
intersections) of mono (angle-only) tracks from two
platforms (S1, S2) are used to initiate stereo (3D
position and velocity) tracks. The problem, shown in
Fig. 8, is that, for closely spaced targets, there may
be false intersections that form ghost tracks, as well
as the correct intersection where the targets actually
exist. Thus, an MHT approach is required so that all
feasible tracks are maintained until either the evolving
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TABLE I
Comparative Conventional and MHT Tracking Errors Referenced to an Idealized System

Early Time Intermediate Late

System Position Velocity Position Velocity Position Velocity

Conventional 3.3 2.9 2.8 5.0 3.0 3.3
MHT 1.7 2.1 1.4 2.0 1.5 1.2

Idealized 1.0 1.0 1.0 1.0 1.0 1.0

geometry or data from additional sensors (S3) allows
the system to sort out the ghosts from the true target
tracks.
In order to illustrate the advantages of MHT over

conventional single hypothesis (GNN) tracking, Table
I gives recent comparative results for a difficult SBIR
application. Table I gives comparative 97 percent
Monte Carlo simulation derived position and velocity
errors for three tracking systems. The 97 percent level
values were defined such that only 3 percent of the
tracking error (averaged over multiple targets and
multiple Monte Carlo runs) exceeded these values
at the sampling times. A highly optimistic reference
for Table I was an idealized system for which perfect
observation-to-track association was performed.
The observations were assigned target truth tags,
which were used for the association, but the effects
of unresolved targets and missed detections were
included.
The MHT and conventional (GNN) tracking

system RMS position and velocity tracking errors are
normalized with respect to the idealized system errors.
Results are presented at three times. The initial (early)
time is when targets are beginning to become resolved
so that by the last (late) time nearly all targets were
resolved. Of course, the tracking errors decreased
for all systems (even though some ratios increased)
with time but the comparative advantage of the MHT
system is clearly apparent over the entire scenario.
Finally, note that the MHT errors closely approach
those of the idealized system towards the end of
the scenario while the conventional tracker errors
remain at about 3 times the values for the idealized
system.

Ground Target Tracking

Probably the most important, and challenging,
current tracking application uses data from airborne
(or spaced-based) sensors to track ground targets.
Difficult target dynamics include move-stop-move
and on and off-road target motion as well as closely
spaced targets moving in groups (convoys). Sensor
difficulties result from potentially long revisit times
(greater than 10 sec.), obscured (by mountains or
building) sensor line-of-sight, unresolved targets, out
of sequence measurements in multiple sensor systems,
and the fact that a radar operating in the standard
ground moving target detection (GMTI) mode will not

detect stopped (or slow moving) targets that cannot be
distinguished from the ground clutter.
The difficulty of tracking ground targets has led

to the consensus that multiple filter models, for on
and off-road tracking, and MHT data association are
required. For example, see [34—38] and Chapt. 6 of
[33].
An example of the interesting challenges of the

ground target tracking problem are targets that use
move-stop-move motion in order to evade detection
by GMTI radar. This necessitates the development of
a special stopping target filter model and the inclusion
of the hypothesis that a missing detection results from
a stopped target, rather than a random miss or an
incorrect track prediction [36—38]. In particular, the
lack of detection can actually be used to infer target
position by forming the hypothesis that a missed
detection results from the fact that the target has
stopped [37].

VI. MHT RESEARCH AND DEVELOPMENT AREAS

As stated by Daum several years ago [39], a major,
mostly ignored, tracking problem is the presence
of unresolved, or partially resolved, measurements
produced by closely spaced targets. In closely-spaced
target scenarios, such as aircraft flying in formation,
an observation will often be produced by two, or
more, targets. Thus, for these conditions, the standard
MHT assumption that an observation was produced
by a single target, and thus can only be assigned to
a single track, must be modified. This issue becomes
particularly important when tracking with sensors of
different resolution capability, such as radar and IR.
References [1, 40—42] and [33, ch. 4] present methods
that are applicable to the extension of MHT to include
hypotheses that allow a potentially merged observation
to update more than one track.
Another important area of research is the

combination of MHT with group tracking. An
example where combined group and MHT tracking
will be required is the missile defense problem where
large numbers of objects may be deployed from
the PBV (bus) in a short time period [43, 44]. As
discussed in [44], there may be time intervals, as
the targets are first deployed, when the proliferation
of closely spaced targets may cause the number of
MHT hypotheses formed to become prohibitive. The
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proposed solution [44] uses group tracking until the
targets separate sufficiently to allow feasible MHT
tracking of individual targets. The determination
of when (and how) to make the transition from a
group track to MHT tracking of individual targets is
the major issue. Other applications where combined
MHT and group tracking will be required for optimal
performance include tracking formations of aircraft
[18] and convoys of ground moving targets [45].
As shown in [28], the track-before-detect (TBD)

approach may significantly outperform MHT for the
task of track confirmation of dim nonmaneuvering
targets. However, the TBD approach, which essentially
integrates signal intensity along a set of potential,
nearly straight line paths, is not applicable to highly
maneuvering targets and has questionable applicability
in dense target environments. Thus, the goal is to
combine use of the powerful TBD methods, such as
the dynamic programming algorithm, DPA [1, 46] and
Bayesian tracking [28, 47], for detecting and tracking
widely-spaced dim targets with IMM/MHT techniques
that are most applicable to maneuvering targets in
dense environments. Reference [46] discusses a
combined DPA/MHT tracking system.
Standard track and hypothesis evaluation methods

currently only use metric (measured position, range
rate, etc.) and possibly intensity (measured SNR, etc.)
data. The increased capability of sensors to measure
other feature data, such as high range resolution
(HRR) and jet engine modulation (JEM) radar
measurements, and the development of multiple sensor
tracking systems dictate that features, attributes and
target classification/ID should be used to improve data
association. This is particularly true for the problem
of maintaining tracks on high priority targets for the
ground target tracking problem [48].
A basic issue is how to weight attribute/ID data

versus metric measurements. For example, a radar
return might contain JEM information regarding
engine type that is consistent with other target
type information contained in the track, but the
measured range rate may differ significantly from
the track’s predicted range rate. How should the
observation-to-track score reflect these two different,
and possibly inconsistent, data sources? As outlined in
[1, 49] a mapping to likelihood (or LLR) is required.
However, to the author’s knowledge this approach has
not yet been implemented for a practical system.
As discussed further in [33, ch. 1], the multisensor

distributed tracking problem is of great practical
importance. One basic issue/goal for a distributed
platform system is to attempt to ensure that all
platforms have a Single Integrated Air Picture (SIAP)
so that, for example, track 1 on platform 1 represents
the same target as track 1 on platform 2, etc. Methods
for maintaining SIAP for conventional (single
hypothesis) tracking use an associated measurement
report (AMR) that is sent from the platform that

receives a measurement. The AMR contains the
association decision, made by the platform that
produced the measurement, which is broadcast to all
other platforms in the network who update their tracks
accordingly, without any further association logic
being performed.
Maintaining SIAP for an MHT system is much

more difficult because multiple current association
hypotheses are maintained so that, as shown in
Fig. 4, final irrevocable decisions are delayed. In the
meanwhile, as the result of imperfect communication
(missing and out-of-sequence data), the family
structures on the different platforms may diverge.
Also, track initiation and confirmation decisions may
differ as different platforms use different sequences of
measurements to initiate duplicate tracks on the same
target. This is an important area of current research
with approaches discussed in [50—52] and [33, ch. 6].
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